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Key concepts

• generalize: scalar Gaussian, multivariate Gaussian, Gaussian process
• Key insight: functions are like infinitely long vectors
• Surprise: Gaussian processes are practical, because of

• the marginalization property
• generating from Gaussians

• joint generation
• sequential generation
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The Gaussian Distribution

The univariate Gaussian distribution is given by

p(x|µ,σ2) = (2πσ2)−1/2 exp
(
−

1
2σ2 (x− µ)

2)
The multivariate Gaussian distribution for D-dimensional vectors is given by

p(x|µ,Σ) = N(µ,Σ) = (2π)−D/2|Σ|−1/2 exp
(
− 1

2 (x − µ)>Σ−1(x − µ)
)

where µ is the mean vector and Σ the covariance matrix.
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Conditionals and Marginals of a Gaussian, pictorial

 

 

joint Gaussian
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joint Gaussian
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Both the conditionals p(x|y) and the marginals p(x) of a joint Gaussian p(x,y)
are again Gaussian.
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Conditionals and Marginals of a Gaussian, algebra

If x and y are jointly Gaussian

p(x, y) = p
([ x

y

])
= N

([ a
b

]
,
[
A B

B> C

])
,

we get the marginal distribution of x, p(x) by

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x) = N(a, A),

and the conditional distribution of x given y by

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x|y) = N(a+BC−1(y− b), A−BC−1B>),

where x and y can be scalars or vectors.
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What is a Gaussian Process?

A Gaussian process is a generalization of a multivariate Gaussian distribution to
infinitely many variables.
Informally: infinitely long vector ' function

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. �

A Gaussian distribution is fully specified by a mean vector, µ, and covariance
matrix Σ:

f = (f1, . . . , fN)> ∼ N(µ,Σ), indexes n = 1, . . . ,N

A Gaussian process is fully specified by a mean function m(x) and covariance
function k(x, x ′):

f ∼ GP(m,k), indexes: x ∈ X

here f and m are functions on X, and k is a function on X× X
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The marginalization property

Thinking of a GP as a Gaussian distribution with an infinitely long mean vector
and an infinite by infinite covariance matrix may seem impractical. . .

. . . luckily we are saved by the marginalization property:

Recall:

p(x) =

∫
p(x, y)dy.

For Gaussians:

p(x, y) = N
([ a

b

]
,
[
A B

B> C

])
=⇒ p(x) = N(a, A),

which works irrespective of the size of y.

Key: only ever ask finite dimensional questions about functions.
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:

p(f) ∼ GP
(
m, k

)
, where m(x) = 0, and k(x, x ′) = exp(− 1

2 (x− x
′)2).

To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f(x1), f(x2), . . . , f(xN))>, for which

f ∼ N(0,Σ), where Σij = k(xi, xj).

Then plot the coordinates of f as a function of the corresponding x values.
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Joint Generation

To generate a random sample from a D dimensional joint Gaussian with
covariance matrix K and mean vector m: (in octave or matlab)

z = randn(D,1);
y = chol(K)’*z + m;

where chol is the Cholesky factor R such that R>R = K.
Thus, the covariance of y is:

E[(y − m)(y − m)>] = E[R>zz>R] = R>E[zz>]R = R>IR = K.
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Sequential Generation

Factorize the joint distribution

p(f1, . . . , fN|x1, . . . xN) =

N∏
n=1

p(fn|fn−1, . . . , f1, xn, . . . , x1),

and generate function values sequentially. For Gaussians:

p(fn, f<n) = N
([ a

b

]
,
[
A B

B> C

])
=⇒

p(fn|f<n) = N(a + BC−1(f<n − b), A− BC−1B>).
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Function drawn at random from a Gaussian Process with Gaussian covariance
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