
4F13 Probabilistic Machine Learning: Coursework #1: Gaussian Processes

Carl Edward Rasmussen and David Scott Krueger

Due: 12:00 noon, Friday Nov 5th, 2021 online via gradescope
Undergrad and MLMI students set your gradescope ID to be your candidate number.

Your answers should contain an explanation of what you do, and 2-4 central commands to achieve it (but
complete listings are unnecessary). You must also give an interpretation of what the numerical values and
graphs you provide mean – why are the results the way they are? Each question should be labelled and
answered separately and distinctly. Total combined length of answers must not exceed 1000 words; clearly
indicate the actual total number of words in your coursework.

You need the Gaussian Processes for Machine Learning (GPML) toolbox (version 4.2) for matlab and octave.
Get the toolbox and walk through the documentation concerning regression from the Gaussian Process Web
site at www.gaussianprocess.org/gpml/code Note, that sometimes hyperparameters are encoded using
their logarithms (to avoid having to deal with constrained optimization for positive parameters), but you
will want to report them in their natural domain. All logs are natural (ie, base e). All questions carry
approximately equal weight.

a) Load data from cw1a.mat. Train a GP with a squared exponential covariance function, covSEiso.
Start the log hyper-parameters at hyp.cov = [-1 0]; hyp.lik = 0; and minimize the negative log
marginal likelihood. Show the 95% predictive error bars. Comment on the predictive error bars and
the optimized hyperparameters.

b) Show that by initializing the hyperparameters differently, you can find a different local optimum for
the hyperparameters. Try a range of values. Show the fit. Explain what the model is doing. Which fit
is best, and why? How confident are you about this and why?

c) Train instead a GP with a periodic covariance function. Show the fit. Comment on the behaviour of
the error-bars, compared to your fit from a). Do you think the data generating mechanism (apart from
the noise) was really strictly periodic? How confident are you about this, and why? Explain your
reasoning.

d) Generate random (essentially) noise free functions evaluated at x = linspace(-5,5,200)’; from a
GP with the following covariance function: {@covProd, {@covPeriodic, @covSEiso}}, with covari-
ance hyperparameters hyp.cov = [-0.5 0 0 2 0]. In order to apply the Cholesky decomposition to
the covariance matrix, you may have to add a small diagonal matrix, for example 1e-6*eye(200),
why? Plot some sample functions. Explain the relationship between the properties of those random
functions and the form of the covariance function.

e) Load cw1e.mat. This data has 2-D input and scalar output. Visualise the data, for example using
mesh(reshape(x(:,1),11,11),reshape(x(:,2),11,11),reshape(y,11,11)); Rotate the data, to
get a good feel for it. Compare two GP models of the data, one with covSEard covariance and the
other with {@covSum, {@covSEard, @covSEard}} covariance. For the second model be sure to break
symmetry with the initial hyperparameters (eg by using hyp.cov = 0.1*randn(6,1);).

Compare the models: How do the data fits compare? How do the marginal likelihoods compare?
Give a careful interpretation of the relationship between data fit, marginal likelihood, and model
complexity for these two models.


