
MSALT7 Reinforcement Learning: Coursework

Matthew W. Hoffman, Zoubin Ghahramani, Carl Edward Rasmussen

Due: February 24, 2016

In this assignment, you will implement the basic building-blocks of Reinforcement Learning for a discrete
grid-world model. We will provide code (located at http://mlg.eng.cam.ac.uk/teaching/mlsalt7/1516/
code.zip) for constructing the models and plotting their output in matlab.

a) 20% : Implement the value iteration algorithm. This should be implemented as a function

[v, pi] = valueIteration(model, maxit)

which, given a model of the environment and a maximum number of iterations, returns the optimal
value function as an array of floats and the optimal policy as an array of integers. We have provided
3 scripts which will create the model: smallworld, gridworld, and cliffworld. For example, the
following code can be used to compute and plot the value function and policy:

smallworld;
[v, pi] = valueIteration(model, 100);
plotVP(v, pi, paramSet); % paramSet is also created by

% the smallworld script

The model parameter should be a structure which contains the number of states in model.stateCount
as well as arrays model.R(s, a) and model.P(s, s_, a) which represent the reward for taking action
a from state s and then the probability for transitioning to state s_. Note: you should also implement
an early stopping rule or convergence check for value iteration

Turn in your code for value iteration and a plot of the value function and policy for the model created
by the gridworld script. For testing purposes we have included the value function for smallworld,
which should look like:

http://mlg.eng.cam.ac.uk/teaching/mlsalt7/1516/code.zip
http://mlg.eng.cam.ac.uk/teaching/mlsalt7/1516/code.zip


b) 20% : Implement the policy iteration algorithm as a function [v, pi] = policyIteration(model,
maxit). Turn in the code for this algorithm and a plot for the optimal value function and policy for
the gridworld model.

c) 20% : Prove the convergence of policy iteration for a model with discrete states and actions. (Hint:
this should involve both the policy-based and optimal Bellman operators Tπ and T∗. What does it
mean for policy iteration to have converged? Are there a finite number of policies?)

d) 15% : Implement the SARSA algorithm as a function [v, pi] = sarsa(model, maxit, maxeps)
which takes a model, a maximum number of iterations per episode, and a maximum number of
episodes. Here an episode is the trajectory or sequence of steps that starts from the initial state and
ends in the goal state. By limiting maxit we allow the algorithm to “start over” if it is taking too long
to find the goal state, however do not make this value too small or the algorithm will never be able
to learn. Note that model.startState and model.goalState are defined so that this can be checked
during the algorithm’s progress. Turn in your code and a plot of the value function for smallworld.

e) 15% : Implement the Q-learning algorithm as a function [v, pi] = qLearning(model, maxit,
maxeps) which takes a model, a maximum number of iterations per episode, and a maximum number
of episodes. Turn in your code and a plot of the value function for smallworld.

f) 10% : Modify the SARSA and Q-learning algorithms to save the accumulated reward per episode.
Run these algorithms using the cliffworld model and plot the rewards obtained throughout the
learning process. This should look similar to Figure 6.13 from the Sutton and Barto text
(https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node65.html). Your plot may look slightly
different (and likely less smooth) due to the values you choose for ε and α.

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node65.html

