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Reinforcement Learning and Decision Making

Reinforcement learning is an area of machine learning concerned with how an
agent can perform actions to receive rewards from an evironment.

Reinforcement Learning is closely related to models from various disparate fields
such as behaviourist psychology, game theory and control theory.

Although details vary, in each case a central question is what are the rational
and/or optimal actions when faced with various types of information.
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Intelligent Behaviour?

Agent

x: observed
sensory
input a: actions/decisions

Environment

s: hidden state

Imagine
a creature/agent (human/animal/machine)
which receives sensory inputs and
can take some actions in an environment:

Assume
that the creature also receives rewards
(or penalties/losses) from the environment.

The goal of the creature
is to maximise the rewards it receives
(or equivalently minimise the losses).

A theory for choosing actions that minimize losses is a theory for how to behave
optimally...
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Examples

• Autonomous helicopters
• Atari games
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https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=Q70ulPJW3Gk


Bayesian Decision Theory

Bayesian decision theory deals with the problem of making optimal
decisions—that is, decisions or actions that minimize an expected loss.

• Let’s say we have a choice of taking one of k possible actions a1 . . .ak.
• Assume that the world can be in one of m different states s1, . . . , sm.
• If we take action ai and the world is in state sj we incur a loss `ij
• Given all the observed data D and prior background knowledge B, our

beliefs about the state of the world are summarized by p(s|D,B).
• The optimal action is the one which is expected to minimize loss (or

maximize utility):

a∗ = arg min
ai

m∑
j=1

`ij p(sj|D,B)

Bayesian sequential decision theory (statistics)
Optimal control theory (engineering)
Reinforcement learning (computer science / psychology)
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Making decisions

We can often frame decisions using a table of our payouts. Let’s say we are
diagnosed with cancer and have to decide between treatment A or treatment B
with the following payouts:

A -10
B -100

with these payouts the optimal action is easily seen to be treatment A. But what if
there is uncertainty in the state:

p1 1 − p1

cancer no cancer
A -10 -50
B -100 0

V(A) = −10p1 − 50(1 − p1) = −50 + 40p1

V(B) = −100p1
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What if treatment A has probability p2 of eliminating the cancer, and otherwise
we must only then consider taking actions A, B, or some new action C.

In this course we will consider problems wherein our actions have an effect on the
state of the world and we must solve a sequential decision process.
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Markov decision processes

An MDP is a tuple (X,A,p, r) where

• X is a set of states;
• A is a set of actions;
• p(z|x,a) is a transition distribution defining the probability of moving to

state z ∈ X from state x ∈ X on action a ∈ A;
• and r(x) is a reward function.

Let π(a|x) be a policy defining the probability of taking action a from state x.

In this lecture we will assume π is given and try to compute its value. In later
lectures we will consider modifying or optimizing π.
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A graphical model for MDPs

x0x0

a0a0

x1x1

a1a1

… xnxn

r0r0 r1r1 rnrn

Alternatively the reward can be written as r(xn,an, xn+1) or some subset of these
variables. These can all be made equivalent WLOG by modifying the state-space.
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Markov reward processes

By integrating out the actions we can write

pπ(z|x) =

∫
a∈A

p(z|x,a)π(a|x)da

which defines a Markov process over the space X.

This transition model combined with the reward function defines a Markov
reward process (MRP) which transitions between states with this probability and
spits out rewards.

For a few slides we will ignore the dependency on π and just consider p(z|x)
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Using the Markov process

Let µ(x) be some distribution over X often called an initial state distribution.

The formulation as a Markov process allows us to compute the distribution over
n steps by chaining integrals:

p1(x1) =

∫
p(x1|x0)µ(x0)dx0

pn(xn) =

∫
p(xn|xn−1)

( ∫
· · ·
( ∫
p(x1|x0)µ(x0)dx0

)
· · ·
)
dxn−1

=

∫
p(xn|xn−1)pn−1(xn−1)dxn−1 where p0(x0) = µ(x0).
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Discrete state-spaces

For discrete state-spaces the previous integrals simplify. Let P = [pij] be a matrix
such that pij is the probability of moving to state i from state j and µ = [µi] be
some initial-state vector.

The previous integral can then be written as

[p1]i =
∑
j

pijµj

which can be summarized as
pt = Ppt−1.

What does Pπ look like given arrays [Piaj] and [πaj]?
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Value of an MDP

Now that we have a handle on the distribution of a Markov process over time,
we can use it to compute the expected value of the process

Reintroducing π let pπt (xt) be the t-step distribution given some policy π.

J(π) =
∑
t6T

E[r(xt)] =
∑
t6T

∫
pπt (xt) r(xt)dt

Note, though, that this depends on having an initial distribution p0(x).
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Infinite horizon

In order to extend the value computations to infinite horizons we need some way
to average over an infinite number of rewards:

J(π) := lim
T→∞

1
T

∑
t6T

E[r(xt)]

or

J(π) :=
∑
t6∞E[γt r(xt)]

The second can also be thought of as a Geometric probability of “the world
ending”.
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Policy search

There is a reason why we wrote our value function as J(π)—we can use this
iteratively to define a sequence of policies πi such that J(πi) > J(πi−1). This is
known as policy search.

If the policy πθ is indirectly defined by some differentiable parameters θ then

θi = θi−1 + αi∇θJ(θi−1)

can be used—this uses the policy gradient.
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Value functions

Rather than directly parameterizing the policy and computing its value we can
write the value of the policy if we start in a specific state:

Vπ(x) = E
[∑
t>0

γtr(xt)
∣∣∣x0 = x

]
= r(x) + E

[∑
t>1

γtr(xt)
∣∣∣x0 = x

]
= r(x) + γE

[
Vπ(x1)

∣∣x0 = x
]
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Discrete value functions

Let’s use again a discrete transition model Pπ for which both the reward and
value function are vectors r, vπ ∈ Rm. The previous equation can be written as

vπ = r+ γPπvπ

(I− γPπ)vπ = r

or an iterative procedure can be used to find

v(i) = r+ γPπv(i−1)
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Model-based versus model-free Reinforcement Learning

The previous slides have assumed the ability to integrate over the distribution
pπt (xt) which itself requires knowledge of µ(x0) and p(z|x,a) to construct.

However what if we do not have access to these distributions? Typically
reinforcement learning assumes we can only sample from these.

This distinction is often also known as model-based versus model-free RL.

In the simplest case we can compute the value of a policy as

J(π) =
1
N

∑
i6N

∑
t6T

r(x
(i)
t ) for x(i)0:T ∼ pπ(x0:T )
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model-
free

model-
based

policy search

value function

continuous

discrete

RL

policy grad.

DP

ADP

control
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Partially-observable MDPs (POMDPs)

x0x0

a0a0

x1x1

a1a1

… xnxn

r0r0 r1r1 rnrn

y0y0 y1y1

The agent does not observe the full state
of the environment. What is the optimal policy?

• If the agent
has the correct model of the world, it turns
out that the optimal policy is a (piece-wise
linear) function of the belief state,
P(xt|a1, . . . ,at−1, r1, . . . , rt,y1, . . . ,yt).
Unfortunately, the belief
state can grow exponentially complex.

• Equivalently, we can view the optimal policy
as being a function of the entire sequence
of past actions and observations (this is the
usual way the policy in influence diagrams is represented).
Unfortunately, the set of possible such
sequences grows exponentially.

Efficient methods for approximately solving POMDPs is an active research area.
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