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Reinforcement Learning and Decision Making

Reinforcement learning is an area of machine learning concerned with how an
agent can perform actions to receive rewards from an evironment.

Reinforcement Learning is closely related to models from various disparate fields
such as behaviourist psychology, game theory and control theory.

Although details vary, in each case a central question is what are the rational
and/or optimal actions when faced with various types of information.
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Intelligent Behaviour?

Imagine
a creature/agent (human/animal/machine) ———

. . . a ~\
which receives sensory inputs and |/ \\
can take some actions in an environment: | ~

| x:observed N
sensory {
input a: actionsldecisions\
Assume } /
that the creature also receives rewards (
(or penalties/losses) from the environment. “
\ EnvironpmE

\‘ s: hidden state
"

The goal of the creature ~ - \ Y
is to maximise the rewards it receives
(or equivalently minimise the losses).

J

A theory for choosing actions that minimize losses is a theory for how to behave
optimally...
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Examples

e Autonomous helicopters

e Atari games
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https://www.youtube.com/watch?v=0JL04JJjocc
https://www.youtube.com/watch?v=Q70ulPJW3Gk

Bayesian Decision Theory

Bayesian decision theory deals with the problem of making optimal
decisions—that is, decisions or actions that minimize an expected loss.

e Let’s say we have a choice of taking one of k possible actions aj ... a.
¢ Assume that the world can be in one of m different states s{,..., Sm.

e If we take action a; and the world is in state s; we incur a loss {;;
Given all the observed data D and prior background knowledge B, our
beliefs about the state of the world are summarized by p(s|D, B).

The optimal action is the one which is expected to minimize loss (or
maximize utility):

m
a* = argmin Z 4 p(s51D, B)

ai i—1

Bayesian sequential decision theory  (statistics)
Optimal control theory (engineering)
Reinforcement learning (computer science / psychology)
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Making decisions

We can often frame decisions using a table of our payouts. Let’s say we are

diagnosed with cancer and have to decide between treatment A or treatment B
with the following payouts:

A
B

-10
-100

with these payouts the optimal action is easily seen to be treatment A. But what if
there is uncertainty in the state:

P1 1—p

cancer | no cancer

A -10 -50
B -100 0

V(A) = —10p; — S0(1 —p1) = —50 + 40p;
V(B) = —100p;
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What if treatment A has probability p, of eliminating the cancer, and otherwise
we must only then consider taking actions A, B, or some new action C.

In this course we will consider problems wherein our actions have an effect on the
state of the world and we must solve a sequential decision process.

Hoffman, Ghahramani, Rasmussen Expected Value and Optimal Decisions 7120



Markov decision processes

An MDP is a tuple (X, .A,p, ) where

e X is a set of states;
e A is a set of actions;

* p(zlx, a) is a transition distribution defining the probability of moving to
state z € X from state x € X on action a € A;

e and r(x) is a reward function.

Let 7t(alx) be a policy defining the probability of taking action a from state x.

In this lecture we will assume 7t is given and try to compute its value. In later
lectures we will consider modifying or optimizing 7t.
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A graphical model for MDPs

OGN
___;
(of (o
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A graphical model for MDPs

Alternatively the reward can be written as 1(Xn, an, Xn+1) or some subset of these
variables. These can all be made equivalent WLOG by modifying the state-space.
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Markov reward processes

By integrating out the actions we can write
pi(e) = | plea)nlai) da
acA

which defines a Markov process over the space X.

This transition model combined with the reward function defines a Markov
reward process (MRP) which transitions between states with this probability and
spits out rewards.

For a few slides we will ignore the dependency on 7 and just consider p(z|x)
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Using the Markov process

Let p(x) be some distribution over X often called an initial state distribution.

The formulation as a Markov process allows us to compute the distribution over
n steps by chaining integrals:

pilxi) = [ plalo) i) dxo
pulxn) = [plenbin) ([ - ([ pixatxo) wlsa) axg) -+

= ‘[p(xnb(nfl)pnfl(xnfl) dxn—1  where po(xo) = p(xo)-
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Discrete state-spaces

For discrete state-spaces the previous integrals simplify. Let P = [py;] be a matrix
such that pj; is the probability of moving to state i from state j and u = [p;] be

some initial-state vector.

The previous integral can then be written as
[pili = ZPU 1
j

which can be summarized as
Pt = Ppe_1.
What does P™ look like given arrays [Piq;] and [rrq;]?
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Value of an MDP

Now that we have a handle on the distribution of a Markov process over time,
we can use it to compute the expected value of the process

Reintroducing 7t let pT(x) be the t-step distribution given some policy 7.

J) = Y Elrixo)l = 3 [px) xe) d

t<T t<T

Note, though, that this depends on having an initial distribution po(x).
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Infinite horizon

In order to extend the value computations to infinite horizons we need some way
to average over an infinite number of rewards:

Tooo |

J(mt) := lim 1 Z]E[r(xt)]
<T

or

J(m):= ) Ely"r(xt)]

t<oo

The second can also be thought of as a Geometric probability of “the world
ending”.
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Policy search

There is a reason why we wrote our value function as J(7t1)—we can use this
iteratively to define a sequence of policies 7t; such that J(7t;) > J(7ti_1). This is
known as policy search.

If the policy 7g is indirectly defined by some differentiable parameters 6 then
0i =0i1+ i Ve](0i1)

can be used—this uses the policy gradient.
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Value functions

Rather than directly parameterizing the policy and computing its value we can
write the value of the policy if we start in a specific state:

VT(x) = E{Zytr(xt) Xo = x]
>0
=r(x) + E{Zytr(xt) Xo = x}

t>1

=1(x) +YE[V™(x1) |xo =x]

Hoffman, Ghahramani, Rasmussen Expected Value and Optimal Decisions 16 /20



Discrete value functions

Let’s use again a discrete transition model P™ for which both the reward and
value function are vectors r,v™ € R™, The previous equation can be written as

Vi =14+vYP™"
(I—yP™" W =1

or an iterative procedure can be used to find

v — ¢ ypryi-1)
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Model-based versus model-free Reinforcement Learning
The previous slides have assumed the ability to integrate over the distribution
pT(x¢) which itself requires knowledge of u(x¢) and p(zlx, a) to construct.

However what if we do not have access to these distributions? Typically
reinforcement learning assumes we can only sample from these.

This distinction is often also known as model-based versus model-free RL.

In the simplest case we can compute the value of a policy as

Jim) = % > > ) forxgiy ~p™xor)

i<N t<T
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Partially-observable MDPs (POMDPs)

The agent does not observe the full state
of the environment. What is the optimal policy?

e If the agent
has the correct model of the world, it turns

out that the optimal policy is a (piece-wise E

linear) function of the belief state,
P(Xt‘ala e Q15T e o5 T Y1y e ayt)'
Unfortunately, the belief

state can grow exponentially complex.

@
EEHEE

* Equivalently, we can view the optimal policy
as being a function of the entire sequence
of past actions and observations (this is the
usual way the policy in influence diagrams is represented).
Unfortunately, the set of possible such
sequences grows exponentially.

Efficient methods for approximately solving POMDDPs is an active research area.
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