
Lecture 3 and 4: Dynamic programming and
reinforcement learning

Reinforcement Learning and Decision Making MLSALT7, Lent 2016

Matthew W. Hoffman, Zoubin Ghahramani, Carl Edward Rasmussen

Department of Engineering
University of Cambridge

http://mlg.eng.cam.ac.uk/teaching/mlsalt7/

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 1 / 21

Dynamic programming for control

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 2 / 21

The Bellman operator

Recall in the last lecture that we wrote the value function recursively as

vπ(x) = r(x) + γ

∫
pπ(z|x) vπ(z)dz

which for discrete/tabular MDPs can be written as

vπ = r+ γPπvπ.

Alternatively we can introduce the Bellman operator Tπ, the discrete version of
which can be applied to any vector v resulting in

Tπv = r+ γPπv

for which vπ = Tπvπ is the unique fixed point.

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 3 / 21

The Bellman operator is a γ-contraction

We can look at the max-norm ‖v‖∞ = maxi vi of the Bellman operator:

‖Tπv1 − Tπv2‖∞ = ‖r+ γPπv1 − r− γPπv2‖∞
= γ‖Pπ(v1 − v2)‖∞
6 γ‖v1 − v2‖∞

For γ ∈ [0, 1) this shows that Tπ is a contraction under this norm and as a result
due to the Banach fixed-point theorem, Tπ has a unique fixed-point.

This states that given any two vectors applying the operator to them will take
them both closer towards something. That something can be found by
repeatedly applying the contraction:

vi+1 = Tπvi

which we have defined as the value function!

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 4 / 21

Convergence of the Bellman operator cont’d

In slightly more detail we can look at the max-norm comparing the iterative
procedure and the fixed-point:

‖vi+1 − vπ‖∞ = ‖Tπvi − Tπvπ‖∞ (the def’n of Tπ and vπ)

6 γ‖vi − vπ‖∞ (the γ-contraction)
...

6 γi+1‖v0 − vπ‖∞ → 0

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 5 / 21

Acting according to a value function

Let’s say we have an arbitrary value function v. How should we act optimally
under this value function?

We can define a policy:

π ′(x) = argmax
a

[
rx + γP

>
axv
]

If v = vπ is value function associated with policy π, do π and π ′ coincide?

No! The equation above looks similar to the Bellman operator introduced
earlier, but because of the argmax above, vπ′

x > vπx for all x ∈ X.

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 6 / 21

The Optimal Bellman operator and value iteration

Define the optimal Bellman operator T∗ as

(T∗v)x = max
a

[
rx + γP

>
axv
]
.

This can similarly be shown to be a γ-contraction which has as its fixed-point
the optimal value function v∗ = T∗v∗.

The iterative procedure:

1 start from some arbitrary v

2 and iterate v← T∗v until convergence

is known as value iteration, due to Bellman (1957). Convergence can be shown
in exactly the same way as the convergence for Tπ

What does the policy look like in this case? How would things change if the
reward was defined as raxz?

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 7 / 21

Backward induction

Value iteration is also known as backward induction. Why?

Let’s assume that rather than considering an infinite-horizon problem we want
to solve

a0 = argmax
a

Ea1:T ,x1:T
[T∑
t=1

r(xt)
∣∣∣x0]

How could we use backward induction to solve this?

The key is in the name. We can start by solving the problem optimally at step T :

vT (x) = max
a

[
rx + P>axr

]
and performing induction
backward in time. . .

vT−1(x) = max
a

[
rx + P>axvT

]
until ultimately a0 = argmax v1. This can be written recursively as vt = T∗vt+1
where vT+1 = r.

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 8 / 21

Policy evaluation and improvement

We have already shown how to compute the value of a policy by finding the
fixed-point vπ = Tπvπ. This is known as policy evaluation.

But now given the value of a policy we an improve upon that value (as shown in
an earlier slide) by setting

π(x)← argmax
a

[
rx + P>axv

π︸ ︷︷ ︸
Qπ(x,a)

]

This is known as policy improvement. The function Qπ is often known as a
state/action value-function and is not strictly necessary here since it follows
directly from vπ.

After we have evaluated and updated the policy π how can we use this to find
the optimal policy?

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 9 / 21

Policy iteration

This interleaved process of policy evaluation and improvement is known as
policy iteration:

1 Initialize v arbitrarily
2 Iterate:

1 π(x)← argmaxa
[
rx + P>axv

]
2 v← limn→∞(Tπ)nv

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 10 / 21

Generalized policy iteration

item most of these techniques can be gathered as generalized policy iteration
where

• some improvement is made to the value function v, and
• the policy π is updated to be greedy with respect to v

997550251
1
10

20

30

40

50

1
0

0.2

0.4

0.6

0.8

1

25 50 75 99

Capital

Capital

Value
estimates

Final
policy
(stake)

sweep 1
sweep 2
sweep 3

sweep 32

One particular instance
is where the evaluation
step is ended early;
succesive evaluation steps
may not change the policy.

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 11 / 21

Reinforcement learning

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 12 / 21

RL vs DP

The approaches introduced previously, based on dynamic programming, relied
on knowing the model p(z|x,a) in order to perform the necessary integrals.

• now we will only assume that we can sample z conditioned on (x,a)
• further we will only assume we can sample a single z!

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 13 / 21

The temporal difference (TD) error

Let’s return to the recursive definition of the value function:

vπ(x) = r(x) + γ
∑
z

pπ(z|x) vπ(z)

if we can sample from pπ(z|x) then this can be approximated as

≈ r(x) + γ 1
N

∑
i

vπ(zi) for zi ∼ pπ(·|x)

but we will only assume we can take a single sample. IE we have no “reset
switch” that will allow us to draw multiple samples from a single x. Once we’ve
taken an action and moved to z that’s it.

≈ r(x) + γvπ(z) for z ∼ pπ(·|x)

The difference between the left- and right-side is known as the temporal
difference error. It should be zero in expectation!

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 14 / 21

TD for policy evaluation

Temporal difference methods use the TD-error (essentially) as a noisy gradient
(think stochastic approximation)

Given a policy π and an arbitrary value function v we can compute vπ by
iterating:

1 sample the next state z ∼ pπ(·|x)
2 update the value function,

vx ← vx + α
[
rx + γvz︸ ︷︷ ︸

1-step Monte Carlo approx

−

current prediction︷︸︸︷
vx
]

3 and repeat: x← z

But this is just policy evaluation. Can we combine this with policy
improvement?

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 15 / 21

TD for control

In order to apply TD for control we first have to note that we must directly
learn Q rather than a value function. Why?

For DP-based methods policy improvement is

π(x) = argmax
a

Q(x,a) = argmax
a

rx + P>axv

only v is needed because integration with respect to pπ(z|x) can be performed.
This doesn’t work for RL.

Finally: the integration above also allows us to consider all outcomes of taking
action a. For RL we must instead explore by injecting noise into our action
selection.

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 16 / 21

On-policy TD: SARSA

1 initialize Q(x,a) arbitrarily
2 select action a arbitrarily
3 iterate

1 sample x ′ ∼ p(·|x,a)
2 choose action a ′ from Q “ε-greedily”,

a ′ =

{
argmaxa′ Q(x ′,a ′) w.p. 1− ε,
Uniform(A) otherwise.

3 update the value function

Q(x,a)← Q(x,a) + α
[
rx + γQ(x ′,a ′)︸ ︷︷ ︸

“on-policy” because a′ used here

−Q(x,a)
]

4 x← x ′; a← a ′

Note: the funny name stands for “State-Action-Reward-State-Action”

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 17 / 21

Off-policy TD: Q-learning

1 initialize Q(x,a) arbitrarily
2 select action a arbitrarily
3 iterate

1 sample x ′ ∼ p(·|x,a)
2 choose action a ′ from Q “ε-greedily”,
3 update the value function

Q(x,a)← Q(x,a) + α
[
rx + γmax

a′′
Q(x ′,a ′′)︸ ︷︷ ︸

“off-policy” due to a′′

−Q(x,a)
]

4 x← x ′; a← a ′

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 18 / 21

On- vs off-policy

What is the difference between on- and off-policy methods?

• updates are performed without using actions selected by the exploratory
policy for off-policy

• Q-learning can not care about rewards it gets while it’s learning
• we WILL choose bad actions a ′ due to the noisy exploration
• but this does not affect the value function learned by Q-learning due to
the max

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 19 / 21

Cliff-world

no noise, but the optimal path passes by a cliff with high penalty for falling

Reward
per

epsiode

−100

−75

−50

−25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = −100

T h e C l i f f

r = −1 safe path

optimal path

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 20 / 21

Cliff-world results

Reward
per

epsiode

−100

−75

−50

−25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = −100

T h e C l i f f

r = −1 safe path

optimal path

Hoffman, Ghahramani, Rasmussen Dynamic programming and RL 21 / 21

	Dynamic programming for control
	Reinforcement learning

