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The value function (again!)

Once again, the value function V can be defined as the unique fixed point of the
Bellman operator, V™ = T™V™

(T™V)(x) = 1(x) + ny P(x'|x, (x)) V(x') dx’

or more concisely, as
TV =1+ vyP™V.
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Linear function approximation for the value function

Instead of computing V™ for every state (which may not even be possible!) we
will approximate this with a weighted combination of features ¢ : X — R¥, i.e.

Let’s return to the definition of the value function, by way of the Bellman
operator, and apply it to the approximator:

T [d(x) 0] =1(x) +YP™ [d(x) 0]

What’s wrong with applying the Bellman operator to this approximation?
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Linear function approximation for the value function

Instead of computing V™ for every state (which may not even be possible!) we
will approximate this with a weighted combination of features ¢ : X — R¥, i.e.

Let’s return to the definition of the value function, by way of the Bellman
operator, and apply it to the approximator:

T [d(x) 0] =1(x) +YP™ [d(x) 0]

What’s wrong with applying the Bellman operator to this approximation?

More concretely: does there exist a 0* such that J™ [q)(x)Te] =d(x)T0*?
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Linear function approximation in general

Let’s go back to what it means to approximate some function. We want to find
the best approximation under some norm,

f(x) ~ ¢(x) ' 0" where 8* = argmin ||dp(x) "0 — f(x)]|
0
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Linear function approximation

However T"®w may not necessarily lie in the span of ®@. Instead, we will
introduce a projection operator T such that

Mv = ® arg min || ®u — v||%.
ueRrk
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Linear function approximation

However T"®w may not necessarily lie in the span of ®@. Instead, we will
introduce a projection operator T such that

Mv = ® arg min || ®u — v||%.
ueRrk

We can then define the following fixed point:

Ow =TT Odw.
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A bit of geometry

T v

(Minimized by BRM)

Minimized by LSTD
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Existence and uniqueness of the solution

First, the Bellman operator is a y-contraction, i.e. for any y, z
177y = T7z|| < vlly —z|
and the projection operator is non-expansive, i.e. for any y

Myl <yl

Combining these two means that TTT™ is a y-contraction, and due to the Banach
fixed-point theorem there exists a unique fixed point v = TTT™V.

Note! This does not mean that there is a unique solution ®w =+".
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Finding the fixed point

We can write the fixed point as the following:

w = arg min ||®u — (v + yPTOW)||?
ueRrk

= (@T0) 'O (r+yPTDW)

= (@7 (@ —yP"0)) 0Ty
A b

Hoffman, Ghahramani, Rasmussen RL part 2 8 / 20



A “model-free” approach

The previous approach required forming the entire feature matrix @ and also
required the transition model P™.

Instead we will assume samples (X, ai, x{) generated on-policy and form

d(x1)" d(x7)" r(x1)

!/ . a
7(D: . 71‘:

()T oxl)T t(%m)

(i):

Solving for the fixed point is then given by

w=(0T(d—yd)) DT+
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Moving on to policy improvement

The previous method is model-free for policy evaluation, but in order to improve
the policy (moving from LSTD to LSPI) we would need a model.

Instead, learn the Q-function,

Q™(x,a) = [Zyrxt)xo—xao—an

t=0
x) = arg max Q" (x, a)
a

,nnew (
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Learning the Q-function

Define the Bellman operator as
T"Q =r+vyPH™Q

where H™ is called TT™ in (Lagoudakis and Parr), and PH™ basically describes
the probability of transitioning from (x, a) — (x/,a’).
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Learning the Q-function

Define the Bellman operator as
T"Q =r+vyPH™Q
where H™ is called TT™ in (Lagoudakis and Parr), and PH™ basically describes

the probability of transitioning from (x, a) — (x/,a’).

Now, when we move to the empirical version we have samples (x, a,x’) not
necessarily drawn on-policy. We construct

¢(X1,a1)T d)(x{,ﬂ(x{))T T(x1)
. (D/ — .

(xm, am)T O(xl, m(xt))T F(%m)

é:

The solution for w is the same as before.

Hoffman, Ghahramani, Rasmussen RL part 2 11 / 20



Parameterized policies

Rather than indirectly parameterizing a policy via its value function we can
directly parameterize the policy
o (alx)

with parameters 8. Note that now we’ll go back to assuming a stochastic policy
we’ll see why shortly) and return to the value of a full trajectory,
J y

J(0) = Fo [ivtr(xt)}
t=0
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Example policies

For a discrete space we can define policies of the form:

exp(Qax)

e (alx) :—Z  exp(0ars)

Or a common policy for continuous spaces is:

me(alx) =Kx+m for 8 = (K, m)
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A little notation

Let’s let T = (xg,...,Xx, Qg, ..., ax) denote a single trajectory. How can we
write the probability of T7

k
Po(t) = p(x0)7e (aolxo) H (XnlXn—1, an—1)70 (anxXn)

We can also write the reward for a trajectory as

Kk
= Z yir(xe)
t=0
for which our objective becomes

J(6) = Eo[R(7)]
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The policy gradient

Now we can expand our gradient as follows:

] (0) VJR(T)Pe(T)d’f

= “R(T) Vpo(T)dT

= | R(T) po(t) Vilogpo(T)dT because Vlogf = VTf/f

k
= | R(T) po(T) [ Z V log e (an|xn)

n=0
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What does this mean?

e We need only sample trajectories

e We need to know the policy and its gradient, but that’s fine because we
decide on that
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Exploting independence

* MC approx. to the gradient can be quite noisy
» Looking more closely we can see that the
gradient consists of summing over terms

Vlogmg(An| X0 )r(Xy)

— for t<n rewards at time t cannot be affected by actions
that come after it

— we end up with expectations

Eg[Vlog 7o (An| Xn)[Eglr(X¢) =0

‘Expectation of the score is zero
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Exploting independence cont’d

k

R(7) {Z Vlog mp(Ay, ’Xn):| Expand the term
inside the

expectation...

n=0

k k

=Y Viogmo(An|X,) > +'r(Xy)
n=0 t=0

Under expectation we can eliminate rewards for t<n

k k
:ZVIOg 7T9(An|Xn)nytr(Xt) Including those
n—0 —r terms would

— only add noise!
Call this R,,(7)
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Baselines

« Let R, (-)e the sum of rewards after step n
« We can now write

ZZR (7)Y V log mp (a'?|2D)

1=1 n=0
for N sample trajectories ()

» Following this gradient coincides with
— REINFORCE [Williams, 1992]
— GPOMDP [Baxter and Bartlett, 2001]
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The policy gradient

* For the same reason that we eliminated rewards
with t<n, we can write the reward as

k Variance of gradient
(i)y _ (i)y _ depends on magnitude
Ry (T ) - T(‘rt ) by of rewards.
t=n

for baseline quantities independent of the nth
action

— can depend on previous rewards! (say the average)
— this baseline can then be selected to reduce variance
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