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The value function (again!)

Once again, the value function V can be defined as the unique fixed point of the
Bellman operator, Vπ = TπVπ

(TπV)(x) = r(x) + γ

∫
X

P(x ′|x,π(x))V(x ′)dx ′

or more concisely, as
TπV = r+ γPπV.
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Linear function approximation for the value function

Instead of computing Vπ for every state (which may not even be possible!) we
will approximate this with a weighted combination of features φ : X→ Rk, i.e.

Vπ(x) ≈ φ(x)>θ

Let’s return to the definition of the value function, by way of the Bellman
operator, and apply it to the approximator:

Tπ
[
φ(x)>θ

]
= r(x) + γPπ

[
φ(x)>θ

]
What’s wrong with applying the Bellman operator to this approximation?

More concretely: does there exist a θ∗ such that Tπ
[
φ(x)>θ

]
= φ(x)>θ∗?
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Linear function approximation in general

Let’s go back to what it means to approximate some function. We want to find
the best approximation under some norm,

f(x) ≈ φ(x)>θ∗ where θ∗ = argmin
θ

‖φ(x)>θ− f(x)‖
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Linear function approximation

However TπΦw may not necessarily lie in the span of Φ. Instead, we will
introduce a projection operator Π such that

Πv = Φ argmin
u∈Rk

‖Φu− v‖2.

We can then define the following fixed point:

Φw = ΠTπΦw.
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A bit of geometry

Minimized by LSTD

(Minimized by BRM)
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Existence and uniqueness of the solution

First, the Bellman operator is a γ-contraction, i.e. for any y, z

‖Tπy− Tπz‖ 6 γ‖y− z‖

and the projection operator is non-expansive, i.e. for any y

‖Πy‖ 6 ‖y‖.

Combining these two means that ΠTπ is a γ-contraction, and due to the Banach
fixed-point theorem there exists a unique fixed point v̂ = ΠTπv̂.

Note! This does not mean that there is a unique solution Φw = v̂.
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Finding the fixed point

We can write the fixed point as the following:

w = argmin
u∈Rk

‖Φu− (r+ γPπΦw)‖2

= (ΦTΦ)−1ΦT (r+ γPπΦw)

...

= (ΦT (Φ− γPπΦ))−1︸ ︷︷ ︸
A−1

ΦT r︸︷︷︸
b
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A “model-free” approach

The previous approach required forming the entire feature matrix Φ and also
required the transition model Pπ.

Instead we will assume samples (xi,ai, x ′i) generated on-policy and form

Φ̂ =

φ(x1)
T

...
φ(xm)T

 , Φ̂ ′ =

φ(x
′
1)
T

...
φ(x ′m)T

 , r̂ =

 r(x1)
...

r(xm)

 .

Solving for the fixed point is then given by

w = (Φ̂T (Φ̂− γΦ̂ ′))−1Φ̂T r̂
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Moving on to policy improvement

The previous method is model-free for policy evaluation, but in order to improve
the policy (moving from LSTD to LSPI) we would need a model.

Instead, learn the Q-function,

Qπ(x,a) = E
[ ∞∑
t=0

γtr(xt)
∣∣∣x0 = x,a0 = a,π

]
πnew(x) = argmax

a
Qπ(x,a)
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Learning the Q-function

Define the Bellman operator as

TπQ = r+ γPHπQ

where Hπ is called Ππ in (Lagoudakis and Parr), and PHπ basically describes
the probability of transitioning from (x,a)→ (x ′,a ′).

Now, when we move to the empirical version we have samples (x,a, x ′) not
necessarily drawn on-policy. We construct

Φ̂ =

 φ(x1,a1)
T

...
φ(xm,am)T

 , Φ̂ ′ =

 φ(x
′
1,π(x ′1))T

...
φ(x ′m,π(x ′m))T

 , r̂ =

 r(x1)
...

r(xm)

 .

The solution for w is the same as before.
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Parameterized policies

Rather than indirectly parameterizing a policy via its value function we can
directly parameterize the policy

πθ(a|x)

with parameters θ. Note that now we’ll go back to assuming a stochastic policy
(we’ll see why shortly) and return to the value of a full trajectory,

J(θ) = Eθ
[ k∑
t=0

γtr(Xt)
]
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Example policies

For a discrete space we can define policies of the form:

πθ(a|x) =
exp(θax)∑
a′ exp(θa′x)

Or a common policy for continuous spaces is:

πθ(a|x) = Kx+m for θ = (K,m)
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A little notation

Let’s let τ = (x0, . . . , xk,a0, . . . ,ak) denote a single trajectory. How can we
write the probability of τ?

pθ(τ) = p(x0)πθ(a0|x0)

k∏
n=1

p(xn|xn−1,an−1)πθ(an|xn)

We can also write the reward for a trajectory as

R(τ) =

k∑
t=0

γtr(xt)

for which our objective becomes

J(θ) = Eθ[R(τ)]
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The policy gradient

Now we can expand our gradient as follows:

∇J(θ) = ∇
∫
R(τ)pθ(τ)dτ

=

∫
R(τ)∇pθ(τ)dτ

=

∫
R(τ)pθ(τ)∇ log pθ(τ)dτ because ∇ log f = ∇f/f

=

∫
R(τ)pθ(τ)

[ k∑
n=0

∇ logπθ(an|xn)
]
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What does this mean?

• We need only sample trajectories
• We need to know the policy and its gradient, but that’s fine because we
decide on that
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Exploting independence
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Exploting independence cont’d
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Baselines
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The policy gradient
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