Lecture 4 and 5: Modern reinforcement learning-LSTD and policy gradients

Reinforcement Learning and Decision Making MLSALT7, Lent 2016

Matthew W. Hoffman, Zoubin Ghahramani, Carl Edward Rasmussen

Department of Engineering University of Cambridge
http://mlg.eng.cam.ac.uk/teaching/mlsalt7/

The value function (again!)

Once again, the value function V can be defined as the unique fixed point of the Bellman operator, $\mathrm{V}^{\pi}=\mathrm{T}^{\pi} \mathrm{V}^{\pi}$

$$
\left(\mathcal{T}^{\pi} V\right)(x)=r(x)+\gamma \int_{x} P\left(x^{\prime} \mid x, \pi(x)\right) V\left(x^{\prime}\right) d x^{\prime}
$$

or more concisely, as

$$
\mathfrak{T}^{\pi} \mathrm{V}=\mathrm{r}+\mathrm{P}^{\pi} \mathrm{V}
$$

Linear function approximation for the value function

Instead of computing V^{π} for every state (which may not even be possible!) we will approximate this with a weighted combination of features $\phi: \mathcal{X} \rightarrow \mathbb{R}^{k}$, i.e.

$$
V^{\pi}(x) \approx \phi(x)^{\top} \theta
$$

Let's return to the definition of the value function, by way of the Bellman operator, and apply it to the approximator:

$$
\mathfrak{T}^{\pi}\left[\phi(x)^{\top} \theta\right]=\mathrm{r}(x)+\gamma \mathrm{P}^{\pi}\left[\phi(x)^{\top} \theta\right]
$$

What's wrong with applying the Bellman operator to this approximation?

Linear function approximation for the value function

Instead of computing V^{π} for every state (which may not even be possible!) we will approximate this with a weighted combination of features $\phi: \mathcal{X} \rightarrow \mathbb{R}^{k}$, i.e.

$$
V^{\pi}(x) \approx \phi(x)^{\top} \theta
$$

Let's return to the definition of the value function, by way of the Bellman operator, and apply it to the approximator:

$$
\mathfrak{T}^{\pi}\left[\phi(x)^{\top} \theta\right]=\mathrm{r}(x)+\gamma \mathrm{P}^{\pi}\left[\phi(x)^{\top} \theta\right]
$$

What's wrong with applying the Bellman operator to this approximation?
More concretely: does there exist a θ^{*} such that $\mathcal{T}^{\pi}\left[\phi(x)^{\top} \theta\right]=\phi(x)^{\top} \theta^{*}$?

Linear function approximation in general

Let's go back to what it means to approximate some function. We want to find the best approximation under some norm,

$$
f(x) \approx \phi(x)^{\top} \theta^{*} \text { where } \theta^{*}=\underset{\theta}{\arg \min }\left\|\phi(x)^{\top} \theta-f(x)\right\|
$$

Linear function approximation

However $\mathfrak{T}^{\pi} \Phi w$ may not necessarily lie in the span of Φ. Instead, we will introduce a projection operator Π such that

$$
\Pi v=\Phi \underset{u \in \mathbb{R}^{k}}{\arg \min }\|\Phi u-v\|^{2}
$$

Linear function approximation

However $\mathfrak{T}^{\pi} \Phi w$ may not necessarily lie in the span of Φ. Instead, we will introduce a projection operator Π such that

$$
\Pi v=\Phi \underset{u \in \mathbb{R}^{k}}{\arg \min }\|\Phi u-v\|^{2}
$$

We can then define the following fixed point:

$$
\Phi \mathcal{w}=\Pi \mathfrak{T}^{\pi} \Phi w .
$$

A bit of geometry

Existence and uniqueness of the solution

First, the Bellman operator is a γ-contraction, i.e. for any y, z

$$
\left\|\mathcal{T}^{\pi} y-\mathcal{T}^{\pi} z\right\| \leqslant \gamma\|y-z\|
$$

and the projection operator is non-expansive, i.e. for any y

$$
\|\Pi y\| \leqslant\|y\| .
$$

Combining these two means that $\Pi \mathcal{T}^{\pi}$ is a γ-contraction, and due to the Banach fixed-point theorem there exists a unique fixed point $\hat{v}=\Pi \mathcal{T}^{\pi} \hat{v}$.

Note! This does not mean that there is a unique solution $\Phi w=\hat{v}$.

Finding the fixed point

We can write the fixed point as the following:

$$
\begin{aligned}
w & =\underset{u \in \mathbb{R}^{k}}{\arg \min }\left\|\Phi u-\left(\mathrm{r}+\gamma \mathrm{P}^{\pi} \Phi w\right)\right\|^{2} \\
= & \left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top}\left(\mathrm{r}+\gamma \mathrm{P}^{\pi} \Phi w\right) \\
& \vdots \\
= & \underbrace{\left(\Phi^{\top}\left(\Phi-\gamma \mathrm{P}^{\pi} \Phi\right)\right)^{-1}}_{A^{-1}} \underbrace{\Phi^{\top} r}_{\mathrm{b}}
\end{aligned}
$$

A "model-free" approach

The previous approach required forming the entire feature matrix Φ and also required the transition model P^{π}.

Instead we will assume samples ($x_{i}, a_{i}, x_{i}^{\prime}$) generated on-policy and form

$$
\hat{\Phi}=\left[\begin{array}{c}
\phi\left(x_{1}\right)^{\mathrm{T}} \\
\vdots \\
\phi\left(x_{m}\right)^{\top}
\end{array}\right], \hat{\Phi}^{\prime}=\left[\begin{array}{c}
\phi\left(x_{1}^{\prime}\right)^{\mathrm{T}} \\
\vdots \\
\phi\left(x_{m}^{\prime}\right)^{\top}
\end{array}\right], \hat{\mathrm{r}}=\left[\begin{array}{c}
r\left(x_{1}\right) \\
\vdots \\
r\left(x_{m}\right)
\end{array}\right] .
$$

Solving for the fixed point is then given by

$$
w=\left(\hat{\Phi}^{\top}\left(\hat{\Phi}-\gamma \hat{\Phi}^{\prime}\right)\right)^{-1} \hat{\Phi}^{\top} \hat{r}
$$

Moving on to policy improvement

The previous method is model-free for policy evaluation, but in order to improve the policy (moving from LSTD to LSPI) we would need a model.

Instead, learn the Q-function,

$$
\begin{aligned}
Q^{\pi}(x, a) & =\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}\right) \mid x_{0}=x, a_{0}=a, \pi\right] \\
\pi^{\text {new }}(x) & =\underset{a}{\arg \max } Q^{\pi}(x, a)
\end{aligned}
$$

Learning the Q-function

Define the Bellman operator as

$$
\mathrm{T}^{\pi} \mathrm{Q}=\mathrm{r}+\gamma \mathrm{PH}^{\pi} \mathrm{Q}
$$

where H^{π} is called Π^{π} in (Lagoudakis and Parr), and PH^{π} basically describes the probability of transitioning from $(x, a) \rightarrow\left(x^{\prime}, a^{\prime}\right)$.

Learning the Q-function

Define the Bellman operator as

$$
\mathrm{T}^{\pi} \mathrm{Q}=\mathrm{r}+\gamma \mathrm{PH}^{\pi} \mathrm{Q}
$$

where H^{π} is called Π^{π} in (Lagoudakis and Parr), and PH^{π} basically describes the probability of transitioning from $(x, a) \rightarrow\left(x^{\prime}, a^{\prime}\right)$.

Now, when we move to the empirical version we have samples (x, a, x^{\prime}) not necessarily drawn on-policy. We construct

$$
\hat{\Phi}=\left[\begin{array}{c}
\phi\left(x_{1}, a_{1}\right)^{\top} \\
\vdots \\
\phi\left(x_{\mathfrak{m}}, a_{m}\right)^{\top}
\end{array}\right], \hat{\Phi}^{\prime}=\left[\begin{array}{c}
\phi\left(x_{1}^{\prime}, \pi\left(x_{1}^{\prime}\right)\right)^{\top} \\
\vdots \\
\phi\left(x_{m}^{\prime}, \pi\left(x_{m}^{\prime}\right)\right)^{\top}
\end{array}\right], \hat{r}=\left[\begin{array}{c}
r\left(x_{1}\right) \\
\vdots \\
r\left(x_{m}\right)
\end{array}\right] .
$$

The solution for w is the same as before.

Parameterized policies

Rather than indirectly parameterizing a policy via its value function we can directly parameterize the policy

$$
\pi_{\theta}(\mathfrak{a} \mid x)
$$

with parameters θ. Note that now we'll go back to assuming a stochastic policy (we'll see why shortly) and return to the value of a full trajectory,

$$
J(\theta)=\mathbb{E}_{\theta}\left[\sum_{t=0}^{k} \gamma^{t} r\left(X_{t}\right)\right]
$$

Example policies

For a discrete space we can define policies of the form:

$$
\pi_{\theta}(a \mid x)=\frac{\exp \left(\theta_{a x}\right)}{\sum_{a^{\prime}} \exp \left(\theta_{a^{\prime} x}\right)}
$$

Or a common policy for continuous spaces is:

$$
\pi_{\theta}(\mathrm{a} \mid \mathrm{x})=\mathrm{K} x+\mathrm{m} \quad \text { for } \theta=(\mathrm{K}, \mathrm{~m})
$$

A little notation

Let's let $\tau=\left(x_{0}, \ldots, x_{k}, a_{0}, \ldots, a_{k}\right)$ denote a single trajectory. How can we write the probability of τ ?

$$
p_{\theta}(\tau)=p\left(x_{0}\right) \pi_{\theta}\left(a_{0} \mid x_{0}\right) \prod_{n=1}^{k} p\left(x_{n} \mid x_{n-1}, a_{n-1}\right) \pi_{\theta}\left(a_{n} \mid x_{n}\right)
$$

We can also write the reward for a trajectory as

$$
R(\tau)=\sum_{t=0}^{k} \gamma^{t} r\left(x_{t}\right)
$$

for which our objective becomes

$$
\mathrm{J}(\theta)=\mathbb{E}_{\theta}[\mathrm{R}(\tau)]
$$

The policy gradient

Now we can expand our gradient as follows:

$$
\begin{array}{rlr}
\nabla \mathrm{J}(\theta) & =\nabla \int \mathrm{R}(\tau) p_{\theta}(\tau) \mathrm{d} \tau & \\
& =\int \mathrm{R}(\tau) \nabla p_{\theta}(\tau) \mathrm{d} \tau & \\
& =\int R(\tau) p_{\theta}(\tau) \nabla \log p_{\theta}(\tau) d \tau & \text { because } \nabla \log f=\nabla f / f \\
& =\int R(\tau) p_{\theta}(\tau)\left[\sum_{n=0}^{k} \nabla \log \pi_{\theta}\left(a_{n} \mid x_{n}\right)\right] &
\end{array}
$$

What does this mean?

- We need only sample trajectories
- We need to know the policy and its gradient, but that's fine because we decide on that

Exploting independence

- MC approx. to the gradient can be quite noisy
- Looking more closely we can see that the gradient consists of summing over terms

$$
\nabla \log \pi_{\theta}\left(A_{n} \mid X_{n}\right) r\left(X_{t}\right)
$$

- for $t<n$ rewards at time t cannot be affected by actions that come after it
- we end up with expectations

$$
\mathbb{E}_{\theta}\left[\nabla \log \pi_{\theta}\left(A_{n} \mid X_{n}\right)\right] \mathbb{E}_{\theta}\left[r\left(X_{t}\right)\right]=0
$$

Exploting independence cont'd

$$
\begin{aligned}
& R(\tau)\left[\sum_{n=0}^{k} \nabla \log \pi_{\theta}\left(A_{n} \mid X_{n}\right)\right] \\
= & \sum_{n=0}^{k} \nabla \log \pi_{\theta}\left(A_{n} \mid X_{n}\right) \sum_{t=0}^{k} \gamma^{t} r\left(X_{t}\right)
\end{aligned}
$$

Expand the term inside the expectation...

Under expectation we can eliminate rewards for $t<n$

$$
=\sum_{n=0}^{k} \nabla \log \pi_{\theta}\left(A_{n} \mid X_{n}\right) \underbrace{\sum_{\text {Call this } R_{n}(\tau)}^{k} \gamma^{t} r\left(X_{t}\right)}_{t=n}
$$

Including those terms would only add noise!

Baselines

- Let $R_{n}(\cdot)$ be the sum of rewards after step n
- We can now write

$$
\begin{equation*}
\nabla J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{n=0}^{k} R_{n}\left(\tau^{(i)}\right) \nabla \log \pi_{\theta}\left(a_{n}^{(i)} \mid x_{n}^{(i)}\right) \tag{i}
\end{equation*}
$$

for N sample trajectories

- Following this gradient coincides with
- REINFORCE [Williams, 1992]
- GPOMDP [Baxter and Bartlett, 2001]

The policy gradient

- For the same reason that we eliminated rewards with $t<n$, we can write the reward as

$$
R_{n}\left(\tau^{(i)}\right)=\sum_{t=n}^{k} r\left(x_{t}^{(i)}\right)-b_{t}
$$

Variance of gradient depends on magnitude of rewards.
for baseline quantities independent of the nth action

- can depend on previous rewards! (say the average)
- this baseline can then be selected to reduce variance
- see [Greensmith et al., 2001], [Riedmiller, et al, 2008]

