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The policy gradient

Recall initial definition of the policy gradient from last lecture:

Vo](0) J {Zy T(x¢ } [iVIogne(atlxt)} dt

t=0

where T = (xq,...,Xt, Qg, ..., ar) is a full trajectory. Given K sample
trajectories we can approximate this gradient as follows:

T

ii [Z )] [ 3 Vologmolatind)

i=1 t=0 t=0
Note the following, for each trajectory:

e we sample from po(x¢) and continue. ..
e using the same 0

e the reason we are using K > 1 is to get a better estimate; the Monte Carlo
estimate can be quite noisy!
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0

t=0
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po(T ZZy T(xn) Vlog e (aelx) dt
t=0

n=0
T

.
>y JPG(Xny ap, x) Y r(xn) Viog o (alxi) d(xn, ar, xi)

t=0n=0

A

Let’s consider n < t:

A= Jpg(xn,xt)yn T(xn) {Jﬂe(at‘xt) Vlog e (ailx¢) dat} dxn dxy =0

expectation of a score is equal to 0

Plugging this back in (leaving these terms in would only add variance!):

Ve](6) J {ZVlogﬂe a¢lx) {Zy T(x¢ H
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Expectation of a score

The simplification of the expectation of a score (gradient of a log-likelihood)
again makes use of Vlogx = %Vx

Jve log p(x10) p(x10) dx — jvep(x\e) ax

= Vo Jp(x\e) dx
=Vel =0
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Variance reduction in general

Consider the general problem of computing an expectation:

N

Epix) [f(X)] = & Z f(x')  where x* ~ p(x)
i=1
F

but F is now a random variable so we can talk about its variance

Problem: F may have high variance; in the setting of gradient descent this
additional variance can “bump” us off the descent path

Solution: replace F with a new quantity F/ with the same expectation, but lower
variance
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Control variates

Consider an additional function ¢(x) whose expectation pg = Eld(x)] we know.
We can introduce this function and write

E[ft0] = E[f) —¢0)] +  po,

use Monte Carlo here =~ we know this

Nothing ground-breaking, but what about the variance?
var [f(x) - d)(x)] = var [f(x)] — 2cov [f(x)7 cb(x)] + var[(b(x)}

i.e. we can get a reduction in variance if f and ¢ are strongly correlated

¢ is our control variate—so-called because it allows us to control the variance
of our estimate
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Control variates for policy gradients (baselines)

In the same way that we eliminated zero-mean terms in the previous slide we
can also add terms,

N T T o o
—% Y Y ) Vlogmel(ails}) [y r(si, ai) — b(sk, a})

i=1 t=0 k=t

Z\H

which is called a baseline, i.e. a “baseline reward” to improve on

This can be interpreted as a control variate of the form

T T
) =Y Y Viegm(adse)bilsk, ax)

t=0 k=t

which so long as by is computed using only state/action pairs before time k will
have expectation zero
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Choice of baseline

There is some analysis in Greensmith et al. providing an optimal baseline under
various settings—a bit complicated (and different from the earlier analysis)

However, a common baseline to use is the averaged reward:

N
b=%D D v'risi,ai)

i=1 t=0

in some sense this is intuitive and gives rise to the baseline name:

by combining this with our gradient the reward provides us with an
improvement over the average
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Actor-critic methods

Another technique involves using the value function as a baseline,
o0
V7(s) = E{thr(st, ay)lso = S}
t=0
which is similar to the averaged-reward baseline presented earlier
Actor-critic methods! extend this to using compatible function approximation

for the value-function (approximate using a linear function of the policy
gradient)

The Natural Actor-Critic takes these ideas and applies the natural gradient.
Whether this counts as a variance reduction technique is a bit murky.

27 7]
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A continuous control problem

We will now consider a discrete-time, continuous state system which evolves
according to:

Xt11 = Ax¢ + Buy (Linear)
where u are the actions; the system has costs (negative rewards) given by

c(x,u) =x' Qx+u'Ru (Quadratic)

The resulting algorithm is the Linear Quadratic Regulator (LQR)

e the state evolves linearly (due to A) where deviations can be corrected by u
in a fashion limited by B

e the cost model penalizes deviations of both the state and the actions away
from zero—i.e. we want to get to x = 0 and stay there

e the most common “classical control” problem
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Value iteration for LQR

Let’s first consider the finite-horizon problem:

T
* . t .
uj.p =argmin ) y'c(x¢,u) given X
Uo:T 4o

and note that we’ve eliminated the expectation because our model is
deterministic! We’re minimizing because we have a cost!

As a refresher, value iteration can be used for a T horizon problem by optimally
solving the problem at time T, then T — 1 using the solution at time T, ...

To do so we can write the value of being in state x at time T:
Vr(x) = minc(x,u)
u
= min [XT Qx+u’ Ru}
u
=x"Qx =x"Prx

Often this is just given as a definition with ut being undefined (since it’s always
zero).
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First let’s recall how we did value iteration in the discrete case:

Vroi(x) =max [rx+v ) P(xla’,x)Vr(x')]

a’

Similarly (although again we lose the integral) we can write the value function
for LQR as:

Vr_i(x) = min [c(x,u) +vVr(Ax + Bu)]
= min [x' Qx + u'Ru + (Ax + Bu) " P1(Ax + Bu)]

x Qx + (Ax) " P1(Ax)
+min [u"Ru + (Bu) "Pr(Bu) + (Ax) ' Pr(Bu) |
A
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u* =argminA = argminu' (R+B"PrB)u+ (Ax) ' PtBu

u u

w e
=-Wlw

and the minimum value is
minA = —-w' W lw
u

=-—x'"ATPtB(R+B'PtB) 'B'P{Ax

Plugging this back into the value function we have:

Vr(x) =x" (Q+A"T (Pt —PtB(R+B'PtB) 'B'P{)A)x

Pr_1

i.e. we now have a recursive definition for the value function which is
parameterized by the quadratic term Py
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Infinite-horizon LQR

In the same way that we defined the infinite-horizon value function for discrete
models, we can iterate

Piy1=Q+AT(Pi—PiB(R+B'P;B) 'B'P)A
which will converge to the optimal value function,

V(x) =x'Px.

The optimal policy can be found similarly:

u* =argminu' (R+ B PrB)u+ (Ax) "PtBu

u

w wT
=W l'w=—-Kx where K=(R+B'PB)"'B'PA

Note this can also be found non-iteratively using what is known as the algebraic
Riccati equation
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Stochastic LQR

We can also consider noisy transitions,
X1 = Ax¢ + Buy + N(0, W) (Linear-Gaussian)

which can be solved similarly, Similarly (although again we lose the integral) we
can write the value function for LQR as:

Vro1(x) = min [c(x,u) + YE[Vr (x)]]

The value function has an additional term due to the noise; but it is
uncontrollable (minimizing u cannot affect it). The policy is still:

u* = Kx
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Linear-Quadratic-Gaussian control (LQG)

We can also consider hidden-state models:
y: = Cx + N(0,V)

Again a similar approach can be used, but where the controller acts on the
states X predicted by a Kalman filter.
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