
Lecture 7 and 8: More policy gradients and LQR
Reinforcement Learning and Decision Making MLSALT7, Lent 2016

Matthew W. Hoffman, Zoubin Ghahramani, Carl Edward Rasmussen

Department of Engineering
University of Cambridge

http://mlg.eng.cam.ac.uk/teaching/mlsalt7/

Hoffman, Ghahramani, Rasmussen RL part 4 1 / 18

Variance reduction for policy gradients

Hoffman, Ghahramani, Rasmussen RL part 4 2 / 18

The policy gradient

Recall initial definition of the policy gradient from last lecture:

∇θJ(θ) =
∫
pθ(τ)

[T∑
t=0

γtr(xt)
][T∑
t=0

∇ logπθ(at|xt)
]
dτ

where τ = (x0, . . . , xt,a0, . . . ,aT) is a full trajectory. Given K sample
trajectories we can approximate this gradient as follows:

≈ 1
K

K∑
i=1

[T∑
t=0

γtr(xit)
][T∑
t=0

∇θ logπθ(ait|xit)
]

Note the following, for each trajectory:

• we sample from p0(x0) and continue. . .
• using the same θ
• the reason we are using K > 1 is to get a better estimate; the Monte Carlo
estimate can be quite noisy!

Hoffman, Ghahramani, Rasmussen RL part 4 3 / 18

∇θJ(θ) =
∫
pθ(τ)

[T∑
t=0

γt r(xt)
][T∑
t=0

∇ logπθ(at|xt)
]
dτ

=

∫
pθ(τ)

T∑
t=0

T∑
n=0

γn r(xn)∇ logπθ(at|xt)dτ

=

T∑
t=0

T∑
n=0

∫
pθ(xn,at, xt)γn r(xn)∇ logπθ(at|xt)d(xn,at, xt)︸ ︷︷ ︸

A

Let’s consider n < t:

A =

∫
pθ(xn, xt)γn r(xn)

[∫
πθ(at|xt)∇ logπθ(at|xt)dat︸ ︷︷ ︸
expectation of a score is equal to 0

]
dxn dxt = 0

Plugging this back in (leaving these terms in would only add variance!):

∇θJ(θ) =
∫
pθ(τ)

[T∑
t=0

∇ logπθ(at|xt)
[T∑
n=t

γt r(xt)
]]
dτ

Hoffman, Ghahramani, Rasmussen RL part 4 4 / 18

Expectation of a score

The simplification of the expectation of a score (gradient of a log-likelihood)
again makes use of ∇ log x = 1

x
∇x∫

∇θ log p(x|θ)p(x|θ)dx =
∫
∇θp(x|θ)dx

= ∇θ
∫
p(x|θ)dx

= ∇θ1 = 0

Hoffman, Ghahramani, Rasmussen RL part 4 5 / 18

Variance reduction in general

Consider the general problem of computing an expectation:

Ep(x)
[
f(x)

]
≈ 1
N

N∑
i=1

f(xi)︸ ︷︷ ︸
F

where xi ∼ p(x)

but F is now a random variable so we can talk about its variance

Problem: F may have high variance; in the setting of gradient descent this
additional variance can “bump” us off the descent path

Solution: replace F with a new quantity F ′ with the same expectation, but lower
variance

E[F ′] = E[F] = E[f(x)],
var[F ′] 6 var[F].

Hoffman, Ghahramani, Rasmussen RL part 4 6 / 18

Control variates

Consider an additional function φ(x) whose expectation µφ = E[φ(x)] we know.
We can introduce this function and write

E
[
f(x)

]
= E

[
f(x) − φ(x)

]︸ ︷︷ ︸
use Monte Carlo here

+ µφ︸︷︷︸
we know this

Nothing ground-breaking, but what about the variance?

var
[
f(x) − φ(x)

]
= var

[
f(x)

]
− 2cov

[
f(x),φ(x)

]
+ var

[
φ(x)

]
i.e. we can get a reduction in variance if f and φ are strongly correlated

φ is our control variate—so-called because it allows us to control the variance
of our estimate

Hoffman, Ghahramani, Rasmussen RL part 4 7 / 18

Control variates for policy gradients (baselines)

In the same way that we eliminated zero-mean terms in the previous slide we
can also add terms,

∇J(θ) ≈ − 1
N

N∑
i=1

T∑
t=0

T∑
k=t

∇ logπθ(ait|s
i
t)
[
γkr(sik,a

i
k) − b̂k(s

i
k,a

i
k)
]

which is called a baseline, i.e. a “baseline reward” to improve on

This can be interpreted as a control variate of the form

φ(x) =

T∑
t=0

T∑
k=t

∇ logπθ(at|st)b̂k(sk,ak)

which so long as bk is computed using only state/action pairs before time k will
have expectation zero

Hoffman, Ghahramani, Rasmussen RL part 4 8 / 18

Choice of baseline

There is some analysis in Greensmith et al. providing an optimal baseline under
various settings—a bit complicated (and different from the earlier analysis)

However, a common baseline to use is the averaged reward:

b̂k = 1
N

N∑
i=1

K∑
t=0

γtr(sit,a
i
t)

in some sense this is intuitive and gives rise to the baseline name:

by combining this with our gradient the reward provides us with an
improvement over the average

Hoffman, Ghahramani, Rasmussen RL part 4 9 / 18

Actor-critic methods

Another technique involves using the value function as a baseline,

Vπ(s) = E
[∞∑
t=0

γtr(st,at)|s0 = s
]

which is similar to the averaged-reward baseline presented earlier

Actor-critic methods1 extend this to using compatible function approximation
for the value-function (approximate using a linear function of the policy
gradient)

The Natural Actor-Critic takes these ideas and applies the natural gradient.
Whether this counts as a variance reduction technique is a bit murky.

1[? ? ?]
Hoffman, Ghahramani, Rasmussen RL part 4 10 / 18

Continuous dynamic programming: LQR

Hoffman, Ghahramani, Rasmussen RL part 4 11 / 18

A continuous control problem

We will now consider a discrete-time, continuous state system which evolves
according to:

xt+1 = Axt + But (Linear)

where u are the actions; the system has costs (negative rewards) given by

c(x,u) = x>Qx+ u>Ru (Quadratic)

The resulting algorithm is the Linear Quadratic Regulator (LQR)

• the state evolves linearly (due to A) where deviations can be corrected by u
in a fashion limited by B

• the cost model penalizes deviations of both the state and the actions away
from zero—i.e. we want to get to x = 0 and stay there

• the most common “classical control” problem

Hoffman, Ghahramani, Rasmussen RL part 4 12 / 18

Value iteration for LQR
Let’s first consider the finite-horizon problem:

u∗0:T = argmin
u0:T

T∑
t=0

γtc(xt,ut) given x0

and note that we’ve eliminated the expectation because our model is
deterministic! We’re minimizing because we have a cost!

As a refresher, value iteration can be used for a T horizon problem by optimally
solving the problem at time T , then T − 1 using the solution at time T , . . .

To do so we can write the value of being in state x at time T :

VT (x) = min
u
c(x,u)

= min
u

[
x>Qx+ u>Ru

]
= x>Qx := x>PTx

Often this is just given as a definition with uT being undefined (since it’s always
zero).
Hoffman, Ghahramani, Rasmussen RL part 4 13 / 18

First let’s recall how we did value iteration in the discrete case:

VT−1(x) = max
a

[
rx + γ

∑
a′

P(x ′|a ′, x)VT (x ′)
]

Similarly (although again we lose the integral) we can write the value function
for LQR as:

VT−1(x) = min
u

[
c(x,u) + γVT (Ax+ Bu)

]
= min

u

[
x>Qx+ u>Ru+ (Ax+ Bu)>PT (Ax+ Bu)

]
= x>Qx+ (Ax)>PT (Ax)

+min
u

[
u>Ru+ (Bu)>PT (Bu) + (Ax)>PT (Bu)︸ ︷︷ ︸

A

]

Hoffman, Ghahramani, Rasmussen RL part 4 14 / 18

u∗ = argmin
u

A = argmin
u

u>(R+ B>PTB︸ ︷︷ ︸
W

)u+ (Ax)>PTB︸ ︷︷ ︸
w>

u

= −W−1w

and the minimum value is

min
u
A = −w>W−1w

= −x>A>PTB(R+ B>PTB)
−1B>P>TAx

Plugging this back into the value function we have:

VT−1(x) = x>(Q+A>(PT − PTB(R+ B>PTB)
−1B>P>T)A︸ ︷︷ ︸

PT−1

)x

i.e. we now have a recursive definition for the value function which is
parameterized by the quadratic term Pt

Hoffman, Ghahramani, Rasmussen RL part 4 15 / 18

Infinite-horizon LQR

In the same way that we defined the infinite-horizon value function for discrete
models, we can iterate

Pi+1 = Q+A>(Pi − PiB(R+ B>PiB)
−1B>P>i)A

which will converge to the optimal value function,

V(x) = x>Px.

The optimal policy can be found similarly:

u∗ = argmin
u

u>(R+ B>PTB︸ ︷︷ ︸
W

)u+ (Ax)>PTB︸ ︷︷ ︸
w>

u

= −W−1w = −Kx where K = (R+ B>PB)−1B>PA

Note this can also be found non-iteratively using what is known as the algebraic
Riccati equation

Hoffman, Ghahramani, Rasmussen RL part 4 16 / 18

Stochastic LQR

We can also consider noisy transitions,

xt+1 = Axt + But +N(0,W) (Linear-Gaussian)

which can be solved similarly, Similarly (although again we lose the integral) we
can write the value function for LQR as:

VT−1(x) = min
u

[
c(x,u) + γE[VT (x ′)]

]
The value function has an additional term due to the noise; but it is
uncontrollable (minimizing u cannot affect it). The policy is still:

u∗ = Kx

Hoffman, Ghahramani, Rasmussen RL part 4 17 / 18

Linear-Quadratic-Gaussian control (LQG)

We can also consider hidden-state models:

yt = Cx+N(0,V)

Again a similar approach can be used, but where the controller acts on the
states x̂ predicted by a Kalman filter.

Hoffman, Ghahramani, Rasmussen RL part 4 18 / 18

	Variance reduction for policy gradients
	Continuous dynamic programming: LQR

