Many non-parametric multi-view clustering models and applications exist:

- A feature partition \(\mathcal{F} = \{A_1, A_2, \ldots\} \) over the data points \(|N| = \{1, \ldots, N\} \) with \(K \) possible features \(|K| = \{1, \ldots, K\} \) is defined as a partition of \(|N| \times |K| \), pairs of natural numbers where the first element denotes the data point label and the second element denotes the feature label. We require all subsets \(A_i \) to have the property that:

 \[
 \text{if } (i, j) \in A_i \text{ and } (i', j') \in A_i, \text{ then it must be that } j = j'.
 \]

- A random feature partition \(F \) is a random element in the set of feature partitions, \(\mathcal{F} \), and is said to be exchangeable if

 \[
 \sigma_i \times \sigma_j (F) = F
 \]

 for all \(\sigma_i \) permutations of \(\{1, 2, \ldots, |N|\} \) and \(\sigma_j \) permutations of \(\{1, 2, \ldots, |K|\} \).

- A random feature partition \(F \) is exchangeable w.r.t. the data points with asymptotic frequencies in order of appearance given by the distribution \(\alpha \). Let \(p(\cdot) \) be defined as

 \[
 p\left(\left\{(n_{ij})_{i,j=1}^{K}\right\}\right) = E_{\alpha \sim P}\left[\prod_{j=1}^{K} \prod_{i=1}^{n_{ij}} \prod_{k=1}^{K} \left(1 - \frac{1}{K} \right)^{1 - n_{ij}} P_{ji}
ight]\]

 for \(\left\{(n_{ij})_{i,j=1}^{K}\right\} \), a sequence of sequences of natural numbers.

- This function generalises the exchangeable random partition probability function and feature allocation probability function.

Feature Partitions

Definition 1. A feature partition \(\mathcal{F} = \{A_1, A_2, \ldots\} \) over the data points \(|N| = \{1, \ldots, N\} \) with \(K \) possible features \(|K| = \{1, \ldots, K\} \) is defined as a partition of \(|N| \times |K| \), pairs of natural numbers where the first element denotes the data point label and the second element denotes the feature label. We require all subsets \(A_i \) to have the property that:

\[
\text{if } (i, j) \in A_i \text{ and } (i', j') \in A_i, \text{ then it must be that } j = j'.
\]

Feature Partitions

Definition 2. Given a sequence of probability measures \(\mu_i \) each defined over the interval \([0, 1]\) with disjoint support sets, for every \(j \) generate a sequence of random variables \(X_{ij} \sim \mu_i \) iid for \(i \in \mathbb{N} \). The sequence \((X_{ij})\) defines a random feature partition \(F \) exchangeable in data points by \(F_{ij} = (\omega X_{ij} = X_{i}^\prime(j)) \), the event that \(s \) and \(y \) belong to the same block for \(x = (s, j), y = (i', j') \). If for all \(j \) we have in addition that if \(\mu_i \sim \mu \) then \(F \) is exchangeable in features as well.

The following construction extends Kingman’s paintbox to feature partitions:

Definition 3. The underlying directing measure for a feature partition \(\mathcal{F} \) is a factorial paintbox construction with some random measure \(\alpha \) over random measures \(\{\alpha_i\} \).

Exchangeable Probability Function

Theorem 3. The underlying directing measure for a feature partition is a factorial paintbox construction with some random measure \(\alpha \) over random measures \(\{\alpha_i\} \).

Impact

Many models and applications use multi-view clustering...

- ... we identified various multi-view clustering models as equivalent,
- ... we collapsed many multi-view clustering applications into the same class,
- ... we can share algorithmic insights between the various models using the feature partition as their underlying model:

 - Explain away differences between the models,
 - Unify inference for the different models (Gibbs sampling used for some and variational inference for others)
 - A clear way of generalisation (using various distributions over the partitions, introducing new dependencies, etc.).

Future Research

Introduce dependencies to the factorial paintbox construction:

- Could be depicted as each block having its own paintbox sampled from a distribution conditioned on the block itself.
- Could be used to model the underlying structure of correlated multi-clustering models such as in Doshi-Velez and Ghahramani [2009],
- Corresponds to a special case of the fragmentation chain [Bertoin, 2006].