Appendix A

KL condition

We show that in the dropout case, the KL condition (eq. (3.12)) holds for a large enough number of hidden units when we specify the model prior to be a product of uncorrelated Gaussian distributions over each weight1:

$$p(\omega) = \prod_{i=1}^{L} p(W_i) = \prod_{i=1}^{L} \mathcal{MN}(W_i; 0, I/\ell_i^2, I).$$

We set the approximating distribution to be $q_\theta(\omega) = \int q_\theta(\omega|\epsilon)p(\epsilon)d\epsilon$ where $q_\theta(\omega|\epsilon) = \delta(\omega - g(\theta, \epsilon))$, with $g(\theta, \epsilon) = \{\text{diag}(\epsilon_1)M_1, \text{diag}(\epsilon_2)M_2, b\}$, $\theta = \{M_1, M_2, b\}$, and $p(\epsilon_i)$ defined as a product of Bernoulli distributions (ϵ_i is a vector of draws from the Bernoulli distribution). Since we assumed $q_\theta(\omega)$ to factorise over the layers and over the rows of each weight matrix, we have

$$\text{KL}(q_\theta(\omega)||p(\omega)) = \sum_{i,k} \text{KL}(q_{\theta_{i,k}}(w_{i,k})||p(w_{i,k}))$$

with i summing over the layers and k summing over the rows in each layers’ weight matrix.

We approximate each $q_{\theta_{i,k}}(w_{i,k}|\epsilon) = \delta(w_{i,k} - g(\theta_{i,k}, \epsilon_{i,k}))$ as a narrow Gaussian with a small standard deviation $\Sigma = \sigma^2 I$. This means that marginally $q_{\theta_{i,k}}(w_{i,k})$ is a mixture of two Gaussians with small standard deviations, and one component fixed at zero. For large enough models, the KL condition follows from this general proposition:

Proposition 4. Fix $K, L \in \mathbb{N}$, a probability vector $p = (p_1, \ldots, p_L)$, and $\Sigma_i \in \mathbb{R}^{K \times K}$ diagonal positive-definite for $i = 1, \ldots, L$, with the elements of each Σ_i not dependent on

1Here $\mathcal{MN}(0, I, I)$ is the standard matrix Gaussian distribution.
Let

\[q(x) = \sum_{i=1}^{L} p_i \mathcal{N}(x; \mu_i, \Sigma_i) \]

be a mixture of Gaussians with \(L \) components and \(\mu_i \in \mathbb{R}^K \), let \(p(x) = \mathcal{N}(0, I_K) \), and further assume that \(\mu_i - \mu_j \sim \mathcal{N}(0, I) \) for all \(i, j \).

The KL divergence between \(q(x) \) and \(p(x) \) can be approximated as:

\[
\text{KL}(q(x) || p(x)) \approx \sum_{i=1}^{L} p_i \left(\mu_i^T \mu_i + \text{tr}(\Sigma_i) - K(1 + \log 2\pi) - \log |\Sigma_i| \right) - \mathcal{H}(p) \quad (A.1)
\]

with \(\mathcal{H}(p) := -\sum_{i=1}^{L} p_i \log p_i \) for large enough \(K \).

Before we prove the proposition, we observe that a direct result from it is the following:

Corollary 2. The KL condition (eq. (3.12)) holds for a large enough number of hidden units when we specify the model prior to be

\[
p(\omega) = \prod_{i=1}^{L} p(W_i) = \prod_{i=1}^{L} \mathcal{N}(W_i; 0, I/l_i^2, I)
\]

and the approximating distribution to be a dropout variational distribution.

Proof.

\[
\frac{\partial}{\partial m_{i,k}} \text{KL}(q_0(\omega)||p(\omega)) = \frac{\partial}{\partial m_{i,k}} \text{KL}(q_{\theta_{i,k}}(w_{i,k})||p(w_{i,k})) \\
\approx \frac{(1 - p_i)}{2} \frac{l_i^2}{\partial m_{i,k} m_{i,k}^T} \frac{\partial}{\partial m_{i,k}} \eta_1 \lambda_1 ||M_1||^2 + \lambda_2 ||M_2||^2 + \lambda_3 ||b||^2
\]

for \(\lambda_i = \frac{(1 - p_i)}{2N\tau} \).

Next we prove proposition 4.

Proof. We have

\[
\text{KL}(q(x)||p(x)) = \int q(x) \log \frac{q(x)}{p(x)} dx \\
= \int q(x) \log q(x) dx - \int q(x) \log p(x) dx
\]
\[-H(q(x)) - \int q(x) \log p(x) dx \tag{A.2}\]

—a sum of the entropy of \(q(x) \) \((H(q(x))) \) and the expected log probability of \(x \). The expected log probability can be evaluated analytically, but the entropy term has to be approximated.

We begin by approximating the entropy term. We write

\[
H(q(x)) = - \sum_{i=1}^{L} p_i \int \mathcal{N}(x; \mu_i, \Sigma_i) \log q(x) dx
\]

\[
= - \sum_{i=1}^{L} p_i \int \mathcal{N}(\epsilon_i; 0, I) \log q(\mu_i + L_i \epsilon_i) d\epsilon_i
\]

using a change of variables \(x = \mu_i + L_i \epsilon_i \), where \(L_i L_i^T = \Sigma_i \) and \(\epsilon_i \sim \mathcal{N}(0, I) \).

Now, the term inside the logarithm can be written as

\[
q(\mu_i + L_i \epsilon_i) = \sum_{j=1}^{L} p_i \mathcal{N}(\mu_i + L_i \epsilon_i; \mu_j, \Sigma_j)
\]

\[
= \sum_{j=1}^{L} p_i (2\pi)^{-K/2} |\Sigma_j|^{-1/2} \exp \left\{ - \frac{1}{2} ||\mu_j - \mu_i - L_i \epsilon_i||_{\Sigma_j}^2 \right\}
\]

where \(|| \cdot ||_\Sigma \) is the Mahalanobis distance. Since \(\mu_i, \mu_j \) are assumed to be normally distributed, the quantity \(||\mu_j - \mu_i - L_i \epsilon_i||_{\Sigma_j}^2 \) is also normally distributed. Since the expectation of a generalised \(\chi^2 \) distribution with \(K \) degrees of freedom increases with \(K \), we have that \(K \gg 0 \) implies that \(||\mu_j - \mu_i - L_i \epsilon_i||_{\Sigma_j}^2 \gg 0 \) for \(i \neq j \) (since the elements of \(\Sigma_j \) do not depend on \(K \)). Finally, we have for \(i = j \) that \(||\mu_i - \mu_i - L_i \epsilon_i||_{\Sigma_i}^2 = \epsilon_i^T L_i^T L_i L_i^{-1} L_i \epsilon_i = \epsilon_i^T \epsilon_i \). Therefore the last equation can be approximated as

\[
q(\mu_i + L_i \epsilon_i) \approx p_i (2\pi)^{-K/2} |\Sigma_i|^{-1/2} \exp \left\{ - \frac{1}{2} \epsilon_i^T \epsilon_i \right\}
\]

I.e., in high dimensions the mixture components will not overlap. This gives us

\[
H(q(x)) \approx - \sum_{i=1}^{L} p_i \int \mathcal{N}(\epsilon_i; 0, I) \log \left(p_i (2\pi)^{-K/2} |\Sigma_i|^{-1/2} \exp \left\{ - \frac{1}{2} \epsilon_i^T \epsilon_i \right\} \right) d\epsilon_i
\]

\[
= \sum_{i=1}^{L} \frac{p_i}{2} \left(\log |\Sigma_i| + \int \mathcal{N}(\epsilon_i; 0, I) \epsilon_i^T \epsilon_i d\epsilon_i + K \log 2\pi \right) + H(p)
\]

2With mean zero and variance \(\text{Var}(\mu_i - \mu_i - L_i \epsilon_i) = 2I + \Sigma_i \).

3To be exact, for diagonal matrices \(\Lambda, \Delta \) and \(v \sim \mathcal{N}(0, \Lambda) \), we have \(\mathbb{E}[||v||_\Delta] = \mathbb{E}[v^T \Delta^{-1} v] = \sum_{k=1}^{K} \mathbb{E}[\Delta_k^{-1} v_k^2] = \sum_{k=1}^{K} \Delta_k^{-1} \Lambda_k \).
where $\mathcal{H}(p) := -\sum_{i=1}^{L} p_i \log p_i$. Since $\mathbf{e}_i^T \mathbf{e}_i$ distributes according to a χ^2 distribution, its expectation is K, and the entropy can be approximated as

$$\mathcal{H}(q(x)) \approx \sum_{i=1}^{L} \frac{p_i}{2} \left(\log |\Sigma_i| + K(1 + \log 2\pi) \right) + \mathcal{H}(p). \quad (A.3)$$

Next, evaluating the expected log probability term of the KL divergence we get

$$\int q(x) \log p(x) dx = \sum_{i=1}^{L} p_i \int \mathcal{N}(x; \mu_i, \Sigma_i) \log p(x) dx$$

for $p(x) = \mathcal{N}(0, I_K)$ it is easy to show that

$$\int q(x) \log p(x) dx = -\frac{1}{2} \sum_{i=1}^{L} p_i \left(\mu_i^T \mu_i + \text{tr}(\Sigma_i) \right). \quad (A.4)$$

Finally, combining eq. (A.3) and eq. (A.4) as in (A.2) we get:

$$\text{KL}(q(x)||p(x)) \approx \sum_{i=1}^{L} \frac{p_i}{2} \left(\mu_i^T \mu_i + \text{tr}(\Sigma_i) - K(1 + \log 2\pi) - \log |\Sigma_i| \right) - \mathcal{H}(p),$$

as required to show. \qed