
Homework 3: Part I

Statistical Approaches to Learning and Discovery

Zoubin Ghahramani & Teddy Seidenfeld

Due: Mon Apr 22, 2002

On this assignment, you are welcome to discuss the homework with each other, but you are
encouraged to work independently. Please hand in your own work—identical answers will be frowned
upon.

1. Gaussian Markov Models

(a) Consider a multivariate Gaussian variable (x1, . . . , xn) with given mean vector µ and
covariance matrix Σ. Write out the probability density function for this vector. How
can we define a Markov network that captures the conditional independencies between
the xi?

(b) Let n = 4, µ = (0, 1, 1, 0) and

Σ =
1

6


7 −2 −2 1
−2 7 1 −2
−2 1 7 −2

1 −2 −2 7

 ,

draw the corresponding Markov network and define clique potentials consistent with the
above Gaussian.

(c) State a general theorem relating the zeros in the inverse covariance matrix of a multivari-
ate Gaussian and conditional independence between the variables. Prove your theorem.

2. Download the data file called geyser.txt from the course web site. This is a sequence of 295
consecutive measurements of two variables from Old Faithful geyser in Yellowstone National
Park: the duration of the current eruption in minutes (to nearest 0.1 minute), and the waiting
time until the next eruption in minutes (to nearest minute). Examine the data by plotting
the variables within and between consecutive time steps. E.g.
plot(geyser(1:end-1,1),geyser(2:end,1),’o’);. Discuss and justify based on your ob-
servations what kind of model might be most appropriate for this data set: e.g. a mixture of
Gaussians, a hidden Markov model, a linear dynamical system, etc.

3. Consider the following two HMMs:

P1(y1:T , s1:T ) = P (s1)P (y1|s1)
T∏
t=2

P (yt|st)P (st|st−1)

and

P2(y1:T , z1:T ) = P (z1)P (y1|z1)
T∏
t=2

P (yt|zt)P (zt|zt−1)



where x1:T denotes the sequence x1 . . . xT , yt is the observation at time t and s and z are the
hidden state variables for each HMM, respectively. Now form a new model for the data by
multiplying these two models and renormalizing:

P3(y1:T , s1:T , z1:T ) =
1

Z
P1(y1:T , s1:T )P2(y1:T , z1:T )

(a) Draw an graphical model—with a node for each variable yt, st, and zt—representing the
conditional independence relationships in this new model, P3.

(b) Given a sequence y1:T , describe how you would compute P (st, zt|y1:T ). What is the time
complexity of your algorithm?

(c) If st and zt are both discrete, taking on at most K states, is this model equivalent to an
HMM with K2 states? Why or why not?

(d) Assume you want to learn the parameters of this model from data. Let’s re-write the
model more explicitly to make it clear:

P3(y1:T , s1:T , z1:T |θ,φ) =
1

Z
P1(y1:T , s1:T |θ)P2(y1:T , z1:T |φ)

where θ and φ are the usual transition, emission, and initial state HMM parameters
for HMM 1 and 2, respectively. What is the derivative of the log likelihood of P3 with
respect to the transition parameter, θij = P (st+1 = j|st = i), (for all t)?

(e) Assume there are L possible symbols: yt ∈ {1, . . . , L} and each HMM has K states.
What is the maximum mutual information between yt and yt+1 in this model, maximizing
over all parameters?

4. In the automatic speech recognition community, HMMs are sometimes trained by using the
Viterbi algorithm instead of the forward–backward algorithm. In other words, in the E step of
EM (Baum–Welch), instead of computing the expected sufficient statistics from the posterior
distribution over hidden states: P (s1:T |y1:T ,θ), the sufficient statistics are computed using the
single most probable hidden state sequence: s∗1:T = arg maxP (s1:T |y1:T ,θ). Is this algorithm
guaranteed to converge? Is so, will it converge to the a maximum of the likelihood? If not,
will it oscillate? Support your arguments.


