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Three Types of Learning

Imagine an organism or machine that experiences a series of sensory inputs:
L1, L2, X3, L4, ...

Supervised learning: The machine is also given desired outputs 1,1y, ..., and its
goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build representations of x
that can be used for reasoning, decision making, predicting things, communicating
etc.

Reinforcement learning: The machine can also produce actions aq,as, ... which
affect the state of the world, and receives rewards (or punishments) 71,79, .... Its
goal is to learn to act in a way that maximises rewards in the long term.



Goals of Supervised Learning

Classification: The desired outputs y; are discrete class labels.
The goal is to classify new inputs correctly (i.e. to generalize).

Regression: The desired outputs y; are continuous valued.
The goal is to predict the output accurately for new inputs.

Q: But what about uncertainty in the classifications / predictions?

Both regression and classification can be though of as statistical modelling, which
naturally represents uncertainty in the predictions: p(y|z"®W, Model)

Q: What about loss functions?
L(y,y*) where yx is the “correct” and y is the predicted output.

Loss functions can be included, making it a decision problem (minimize expected
loss):

§ = arg min / dy* Ly, y*)p(y*|z"®", Model)
Yy



Goals of Unsupervised Learning

To find useful representations of the data, for example:

finding clusters
dimensionality reduction
finding the hidden causes or sources of the data

modeling the data density

Uses of Unsupervised Learning

data compression

outlier detection

classification

make other learning tasks easier

a theory of human learning and perception
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Advanced Search Preferences Language Tools Search Tips
- O { ) le'“ unsupervised learning
L - Google Searchl’m Feeling Lucky

Web Images Groups Directory

Searched the web for unsupervised learning. Results 1- 10 of about 55,500. Search took 0.18 seconds.

Caregory:  Computers > Arificial Intelligence > Machine Learning

Recursive-Partitioning.com -- Supervised & Unsupervised Learning
... Check our Machine Learning Books at Amazon.com. Search and Caregories. ...

Description: Recursive partitioning based supervised and unsupervised learning methods resources. Comprehensive...

Caregory: Computers > Artificial Intelligence > Machine Leaming
WWW .recursive-partitioning.com/ - 18k - Cached - Similar pages

ACL’99 Workshop -- Unsupervised Learning in Natural Language ...

PROGRAM ACL’99 Workshop Unsupervised Learning in Namural Language Processing.

University of Maryland June 21, 1999. ...

Description: Workshop atthe 37th Annual Meeting of the Association for Compurational Lingnistics. University...
Caregory: Computers > Artificial Intelligence > Machine Leaming > Conferences

www.aisri.com/~kehlerunsup-acl-99 html - Sk Cached - Similar pages

Mixture modelling, Clustering, Intrinsic classification, ...

.. Mixture modelling is also known as unsupervised concept learning (in Artificial

Intelligence ); intrinsic classification (in Philosophy), or, classification; ...

Description: Mixture modelling, Clustering, Intrinsic classification, Unsupervised learning and Mixmure modeling....
Caregory: Computers > Artificial Intelligence > Machine Leaming

www .cs.monash.edu.an/~dld/mixmre.modelling. page htm1 - 26k Cached - Similar pages

Workshop in Bonn

Computer Vision Group , Computer Science , University Bonn Dagstuhl-Seminar on
Unsupervised Learning. 21.3.-26.3. 1999, Schloss Dagstuhl, Wadern, Germany: ...
www-dbv.informarik uni-bonn.de/dagsmhl/ - 13k - Cached - Similar pages

NIPS*98 Workshop - Integrating Supervised and Unsupervised ...
NIPS *98 Workshop “Integrating Supervised and Unsupervised Learning’’
Friday, December 4, 1998. ORGANIZERS: ...

www .cs.cmu.edw/~meeallum/supunsup - Tk Cached - Similar pages

LearningInvariances
... Unsupervised Learning of Invariances. Laurenz Wiskott and Terrence J. Sejnowski. ... Unsupervised
Learning of Invariances in Neural Visual Systems. ...

ith.biologie hu-berlin. de/~wiskott/Projects/Learninglnvariances.htm1- 6k Cached - Similar pages

NIPS Tutorial 1999

Probabilistic Models for Unsupervised Learning Tutorial presented at

the 1999 NIPS Conference by Zoubin Ghahramani and Sam Rowes. ...
www.gatsby.uclac.uk/~zoubin/NIPStronal.hrml - 4k Cached - Similar pages

ps] www.cs.jhuedu/~brill/acl-wkshp.ps
Similar pages

What does unsupervised learning learn?
Partl - Part2 - Part3 - Partd ... [ do? What does unsupervised

Web Pages

Categorisation
Clustering
Relations between pages



Why a statistical approach?

e A probabilistic model of the data can be used to

— make inferences about missing inputs

— generate predictions/fantasies/imagery

— make decisions which minimise expected loss
— communicate the data in an efficient way

e Statistical modelling is equivalent to other views of learning:

— information theoretic: finding compact representations of the data
— physical analogies: minimising free energy of a corresponding statistical
mechanical system



Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?

Some axioms (informal):

e if something is certain its uncertainty = 0
e uncertainty should be maximum if all choices are equally probable

e uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the entropy

function:
H(X)=-) P(X=u1)logP(X =ux)

measured in bits (binary digits) if the base 2 logarithm is used or nats (natural
digits) if the natural (base e) logarithm is used.



Some Definitions and Intuitions

e Surprise (for event X = x): —log P(X = )
e Entropy = average surpise: H(X) =—) __ P(X =2x) log, P(X = x)
e Conditional entropy

H(X|Y) = ZZP z,y) logy P(xy)

Mutual information

[(X;Y)=H(X)-HX|Y)=HY)-H(Y|X)=HX)+HY) - HX,Y)

Kullback-Leibler divergence (relative entropy)

KLPOOIQX) = 3 Pla )iog §

e Relation between Mutual information and KL: I(X;Y) = KL(P(X,Y)||P(X)P(Y))
e Independent random variables: P(X,Y) = P(X)P(Y)

e Conditional independence X 1LY'|Z (X conditionally independent of Y given Z)
means P(X,Y|Z) = P(X|Z)P(Y|Z) and P(X|Y, Z) = P(X|Z)



Shannon’s Source Coding Theorem

A discrete random variable X, distributed according to P(X) has entropy equal to:
Z P(z)log P(z

Shannon’s source coding theorem: n independent samples of the random variable

X, with entropy H(X), can be compressed into minimum expected code of length
nL, where

H(X)< £ < H(X) +%

If each symbol is given a code length [(z) = —log, () then the expected
per-symbol length L of the code is

H(X)+ KL(P|Q) < Lo < H(X)+ KL(P|Q) + —

where the relative-entropy or Kullback-Leibler divergence is

P(z)
Q(x) ~

L(P||Q) = ZP log >0



Learning: A Statistcal Approach |I

e Goal: to represent the beliefs of learning agents.

e Cox Axioms lead to the following:

If plausibilities/beliefs are represented by real numbers, then the only reasonable
and consistent way to manipulate them is Bayes rule.

e Frequency vs belief interpretation of probabilities

e [he Dutch Book Theorem:

If you are willing to bet on your beliefs, then unless they satisfy Bayes rule there
will always be a set of bets (“Dutch book”) that you would accept which is
guaranteed to lose you money, no matter what outcome!




Desiderata (or Axioms) for Computing
Plausibilities / Degrees of Belief

Paraphrased from E. T. Jaynes, using the notation p(A|B) is the plausibility of
statement A given that you know that statement B is true.

e Degrees of plausibility are represented by real numbers
e Qualitative correspondence with common sense, e.g.

— If p(A|C") > p(A|C) but p(B|A&C’) = p(B|A&C) then p(A&B|C’) >
p(A&B|C)

e Consistency:

— If a conclusion can be reasoned in more than one way, then every possible way
must lead to the same result.

— All available evidence should be taken into account when inferring a plausibility.

— Equivalent states of knowledge should be represented with equivalent
plausibility statements.

Accepting these desiderata leads to Bayes Rule being the only way to manipulate
plausibilities.



Bayes Rule

Probabilities are non-negative P(x) > 0 V.

Probabilities normalise: Y P(x) = 1 for discrete distributions and [ p(x)dz =1
for probability densities.

The joint probability of x and y is: P(x,y).
The marginal probability of z is: P(z) =) P(z,y).

The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

P(z|y)P(y)
P(z)

P(z,y) = P(x)P(ylz) = P(y)P(x|y) = P(ylz) =

(1)



Bayesian Learning

The likelihood and parameter priors are combined into the posterior for a particular
model, batch and online:

D|0, M)p(0| M)
p(D|M)

2(8, D, M)p(6]D, M)

_
PO M) =, M)

p(01D, M) = P!

Predictions are made by integrating over the posterior:
p(x|D, M) = /d@ p(x|0, M) p(8|D, M).
To compare models, we again use Bayes' rule and the prior on models
p(M|D) x p(D|M) p(M)
This also requires an integral over 6:

p(DIM) = / 46 p(D6, M) p(6|M)

For interesting models, these integrals may be difficult to compute.



Bayesian Learning: A coin toss example

Coin toss: One parameter ¢ — the odds of obtaining heads
So our space of models is the set g € [0, 1].
Learner A believes all values of ¢ are equally plausible;

Learner B believes that it is more plausible that the coin is “fair” (¢ =~ 0.5) than
“biased” .
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These priors beliefs can be described by the Beta distribution:

gl@17Y (1 — ¢)le2-V

B(Oél, 042)
for A: 1 = a9 = 1.0 and B: a1 = a9 = 4.0.

p(qlar, o) = = Beta(g|ag, as)



Bayesian Learning: The coin toss (cont)

Two possible outcomes:

p(heads|q) = ¢  p(tailslg) =1 —¢ (2)

Imagine we observe a single coin toss and it comes out heads
The probability of the observed data (likelihood) is:

p(heads|q) = ¢ (3)

Using Bayes Rule, we multiply the prior, p(q) by the likelihood and renormalise to
get the posterior probability:

head
p(g|heads) = p(q;](jéeaezs)smqueta(Qlozl,ozz)

x qq17 V(1 - g)*27Y) = Beta(g|a; + 1, as)



Bayesian Learning: The coin toss
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Some Terminology

Maximum Likelihood (ML) Learning: Does not assume a prior over the model
parameters. Finds a parameter setting that maximises the likelihood of the data:
P(D|0).

Maximum a Posteriori (MAP) Learning: Assumes a prior over the model
parameters P(f). Finds a parameter setting that maximises the posterior:

P(0|D) x P(O)P(D|6).

Bayesian Learning: Assumes a prior over the model parameters. Computes the
posterior distribution of the parameters: P(0|D).



Learning about a coin |l

Consider two alternative models of a coin, “fair’ and “bent”. A priori, we may think
that “fair” is more probable, eg:

p(fair) = 0.8, p(bent) = 0.2

For the bent coin, (a little unrealistically) all parameter values could be equally
likely, where the fair coin has a fixed probability:
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We make 10 tosses, and get: THTHTTTTTT



Learning about a coin. ..

The evidence for the fair model is: p(D|fair) = (1/2)'° ~ 0.001
and for the bent model:

p(D|bent) = /dq p(D|q, bent)p(g|bent) = /dq ¢*(1 —q)® = B(3,9) ~ 0.002
The posterior for the models, by Bayes rule:

p(fair|D) o 0.0008, p(bent|D) o< 0.0004,

ie, two thirds probability that the coin is fair.
How do we make predictions? By weighting the predictions from each model by
their probability. Probability of Head at next toss is:
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[ In contrast, the usual frequentist analysis might look something like this: Look at the observed data
under the sampling distribution given the null hypothesis (fair) — the probability of the observed data,
or something more extreme is 7/64; this is larger than 0.1 so we do not reject the null hypothesis,
and our prediction for future tosses is simply 0.5.]



Simple Statistical Modelling: modelling correlations

Assume:

e we have adataset Y ={y1,...,yn}

e each data point is a vector of D features:
Yi = |Yi1 - - - YiD]

e the data points are i.i.d. (independent and
identically distributed).

One of the simplest forms of unsupervised learning: model the mean of the data
and the correlations between the D features in the data
We can use a multi-variate Gaussian model:

vl =) = | e { - ) 5y - ) |



ML Estimation of a Gaussian

N
Data set Y ={y1,...,yn}, likelihood: p(Y|u,X) = H p(ynlu, )
n=1

Maximize likelihood < maximize log likelihood
Goal: find ¢ and X that maximise log likelihood:

N
L =log || pynl,£) =) logp(ynlu, %)

n=1

N 1 _
=~ log 2rX] — 5 > (yn— 1) "S  yn — p)

n

Note: equivalently, minimise —L, which is quadratic in p
Procedure: take derivatives and set to zero:

oL

o

oL

E))

1

/\

=0 = = Zyn (sample mean)

=N

~ 1
=0 = XY= N Z(y” — ) (yn— )" (sample covariance)



Note

modelling correlations

0

maximising likelihood of a Gaussian model

)

minimising a squared error cost function

0

minimizing data coding cost in bits (assuming Gaussian distributed)



Error functions, noise models, and likelihoods

Squared error: (y — p1)?
Gaussian noise assumption, vy is real-valued

Absolute error: |y — p|
Exponential noise assumption, y real or positive

Binary cross entropy error:

—ylogp — (1 —y)log(1l —p)
Binomial noise assumption, y binary

Cross entropy error: > . y;logp;
Multinomial noise assumption, y is discrete (binary unit vector)



Three Limitations

e What about higher order statistical structure in the data? = nonlinear and
hierarchical models

e What happens if there are outliers? = other noise models
e There are D(D + 1)/2 parameters in the multi-variate Gaussian model. What if

D is very large?
= dimensionality reduction



End Notes

For some matrix identities and matrix derivatives see:

www.gatsby.ucl.ac.uk/~roweis/notes/matrixid.pdf

Also, see Tom Minka's notes on matrix algebra at CMU.
http://lib.stat.cmu.edu/~minka/papers/matrix.html



