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Three Types of Learning

Imagine an organism or machine that experiences a series of sensory inputs:

x1, x2, x3, x4, . . .

Supervised learning: The machine is also given desired outputs y1, y2, . . ., and its
goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build representations of x
that can be used for reasoning, decision making, predicting things, communicating
etc.

Reinforcement learning: The machine can also produce actions a1, a2, . . . which
affect the state of the world, and receives rewards (or punishments) r1, r2, . . .. Its
goal is to learn to act in a way that maximises rewards in the long term.



Goals of Supervised Learning

Classification: The desired outputs yi are discrete class labels.
The goal is to classify new inputs correctly (i.e. to generalize).

Regression: The desired outputs yi are continuous valued.
The goal is to predict the output accurately for new inputs.

Q: But what about uncertainty in the classifications / predictions?

Both regression and classification can be though of as statistical modelling, which
naturally represents uncertainty in the predictions: p(y|xnew,Model)

Q: What about loss functions?
L(y, y∗) where y∗ is the “correct” and y is the predicted output.

Loss functions can be included, making it a decision problem (minimize expected
loss):

ŷ = arg min
y

∫
dy∗ L(y, y∗)p(y∗|xnew,Model)



Goals of Unsupervised Learning

To find useful representations of the data, for example:

• finding clusters

• dimensionality reduction

• finding the hidden causes or sources of the data

• modeling the data density

Uses of Unsupervised Learning

• data compression

• outlier detection

• classification

• make other learning tasks easier

• a theory of human learning and perception





Handwritten Digits



Web Pages

Categorisation
Clustering
Relations between pages



Why a statistical approach?

• A probabilistic model of the data can be used to

– make inferences about missing inputs
– generate predictions/fantasies/imagery
– make decisions which minimise expected loss
– communicate the data in an efficient way

• Statistical modelling is equivalent to other views of learning:

– information theoretic: finding compact representations of the data
– physical analogies: minimising free energy of a corresponding statistical

mechanical system



Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?

Some axioms (informal):

• if something is certain its uncertainty = 0

• uncertainty should be maximum if all choices are equally probable

• uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the entropy
function:

H(X) = −
∑
X=x

P (X = x) logP (X = x)

measured in bits (binary digits) if the base 2 logarithm is used or nats (natural
digits) if the natural (base e) logarithm is used.



Some Definitions and Intuitions

• Surprise (for event X = x): − logP (X = x)
• Entropy = average surpise: H(X) = −

∑
X=xP (X = x) log2P (X = x)

• Conditional entropy

H(X|Y ) = −
∑
x

∑
y

P (x, y) log2P (x|y)

• Mutual information

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y )

• Kullback-Leibler divergence (relative entropy)

KL(P (X)‖Q(X)) =
∑
x

P (x) log
P (x)
Q(x)

• Relation between Mutual information and KL: I(X;Y ) = KL(P (X,Y )‖P (X)P (Y ))
• Independent random variables: P (X,Y ) = P (X)P (Y )
• Conditional independence X⊥⊥Y |Z (X conditionally independent of Y given Z)

means P (X,Y |Z) = P (X|Z)P (Y |Z) and P (X|Y, Z) = P (X|Z)



Shannon’s Source Coding Theorem

A discrete random variable X, distributed according to P (X) has entropy equal to:

H(X) = −
∑
x

P (x) logP (x)

Shannon’s source coding theorem: n independent samples of the random variable
X, with entropy H(X), can be compressed into minimum expected code of length
nL, where

H(X) ≤ L < H(X) +
1
n

If each symbol is given a code length l(x) = − log2Q(x) then the expected
per-symbol length LQ of the code is

H(X) +KL(P‖Q) ≤ LQ < H(X) +KL(P‖Q) +
1
n
,

where the relative-entropy or Kullback-Leibler divergence is

KL(P‖Q) =
∑
x

P (x) log
P (x)
Q(x)

≥ 0



Learning: A Statistcal Approach II

• Goal: to represent the beliefs of learning agents.
• Cox Axioms lead to the following:

If plausibilities/beliefs are represented by real numbers, then the only reasonable
and consistent way to manipulate them is Bayes rule.
• Frequency vs belief interpretation of probabilities
• The Dutch Book Theorem:

If you are willing to bet on your beliefs, then unless they satisfy Bayes rule there
will always be a set of bets (“Dutch book”) that you would accept which is
guaranteed to lose you money, no matter what outcome!



Desiderata (or Axioms) for Computing
Plausibilities / Degrees of Belief

Paraphrased from E. T. Jaynes, using the notation p(A|B) is the plausibility of
statement A given that you know that statement B is true.

• Degrees of plausibility are represented by real numbers
• Qualitative correspondence with common sense, e.g.

– If p(A|C ′) > p(A|C) but p(B|A&C ′) = p(B|A&C) then p(A&B|C ′) ≥
p(A&B|C)

• Consistency:

– If a conclusion can be reasoned in more than one way, then every possible way
must lead to the same result.

– All available evidence should be taken into account when inferring a plausibility.
– Equivalent states of knowledge should be represented with equivalent

plausibility statements.

Accepting these desiderata leads to Bayes Rule being the only way to manipulate
plausibilities.



Bayes Rule

Probabilities are non-negative P (x) ≥ 0 ∀x.

Probabilities normalise:
∑
xP (x) = 1 for discrete distributions and

∫
p(x)dx = 1

for probability densities.

The joint probability of x and y is: P (x, y).

The marginal probability of x is: P (x) =
∑
y P (x, y).

The conditional probability of x given y is: P (x|y) = P (x, y)/P (y)

P (x, y) = P (x)P (y|x) = P (y)P (x|y) ⇒ P (y|x) =
P (x|y)P (y)

P (x)

(1)



Bayesian Learning

The likelihood and parameter priors are combined into the posterior for a particular
model, batch and online:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
p(θ|D, x,M) =

p(x|θ,D,M)p(θ|D,M)
p(x|D,M)

Predictions are made by integrating over the posterior:

p(x|D,M) =
∫
dθ p(x|θ,M) p(θ|D,M).

To compare models, we again use Bayes’ rule and the prior on models

p(M|D) ∝ p(D|M) p(M)

This also requires an integral over θ:

p(D|M) =
∫
dθ p(D|θ,M) p(θ|M)

For interesting models, these integrals may be difficult to compute.



Bayesian Learning: A coin toss example

Coin toss: One parameter q — the odds of obtaining heads
So our space of models is the set q ∈ [0, 1].
Learner A believes all values of q are equally plausible;
Learner B believes that it is more plausible that the coin is “fair” (q ≈ 0.5) than
“biased”.
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These priors beliefs can be described by the Beta distribution:

p(q|α1, α2) =
q(α1−1)(1− q)(α2−1)

B(α1, α2)
= Beta(q|α1, α2)

for A: α1 = α2 = 1.0 and B: α1 = α2 = 4.0.



Bayesian Learning: The coin toss (cont)

Two possible outcomes:

p(heads|q) = q p(tails|q) = 1− q (2)

Imagine we observe a single coin toss and it comes out heads
The probability of the observed data (likelihood) is:

p(heads|q) = q (3)

Using Bayes Rule, we multiply the prior, p(q) by the likelihood and renormalise to
get the posterior probability:

p(q|heads) =
p(q)p(heads|q)
p(heads)

∝ q Beta(q|α1, α2)

∝ q q(α1−1)(1− q)(α2−1) = Beta(q|α1 + 1, α2)



Bayesian Learning: The coin toss (cont)

Prior
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Some Terminology

Maximum Likelihood (ML) Learning: Does not assume a prior over the model
parameters. Finds a parameter setting that maximises the likelihood of the data:
P (D|θ).

Maximum a Posteriori (MAP) Learning: Assumes a prior over the model
parameters P (θ). Finds a parameter setting that maximises the posterior:
P (θ|D)∝P (θ)P (D|θ).

Bayesian Learning: Assumes a prior over the model parameters. Computes the
posterior distribution of the parameters: P (θ|D).



Learning about a coin II

Consider two alternative models of a coin, “fair” and “bent”. A priori, we may think
that “fair” is more probable, eg:

p(fair) = 0.8, p(bent) = 0.2

For the bent coin, (a little unrealistically) all parameter values could be equally
likely, where the fair coin has a fixed probability:
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Learning about a coin. . .

The evidence for the fair model is: p(D|fair) = (1/2)10 ' 0.001
and for the bent model:

p(D|bent) =
∫
dq p(D|q,bent)p(q|bent) =

∫
dq q2(1− q)8 = B(3, 9) ' 0.002

The posterior for the models, by Bayes rule:

p(fair|D) ∝ 0.0008, p(bent|D) ∝ 0.0004,

ie, two thirds probability that the coin is fair.
How do we make predictions? By weighting the predictions from each model by
their probability. Probability of Head at next toss is:

2
3
× 1

2
+

1
3
× 3

12
=

5
12
.

[ In contrast, the usual frequentist analysis might look something like this: Look at the observed data

under the sampling distribution given the null hypothesis (fair) – the probability of the observed data,

or something more extreme is 7/64; this is larger than 0.1 so we do not reject the null hypothesis,

and our prediction for future tosses is simply 0.5.]



Simple Statistical Modelling: modelling correlations

Y 

Y 1 

2 

Assume:

• we have a data set Y = {y1, . . . ,yN}

• each data point is a vector of D features:
yi = [yi1 . . . yiD]

• the data points are i.i.d. (independent and
identically distributed).

One of the simplest forms of unsupervised learning: model the mean of the data
and the correlations between the D features in the data
We can use a multi-variate Gaussian model:

p(y|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}



ML Estimation of a Gaussian

Data set Y = {y1, . . . ,yN}, likelihood: p(Y |µ,Σ) =
N∏
n=1

p(yn|µ,Σ)

Maximize likelihood ⇔ maximize log likelihood
Goal: find µ and Σ that maximise log likelihood:

L = log
N∏
n=1

p(yn|µ,Σ) =
∑
n

log p(yn|µ,Σ)

= −N
2

log |2πΣ| − 1
2

∑
n

(yn − µ)>Σ−1(yn − µ)

(4)

Note: equivalently, minimise −L, which is quadratic in µ
Procedure: take derivatives and set to zero:

∂L
∂µ

= 0 ⇒ µ̂ =
1
N

∑
n

yn (sample mean)

∂L
∂Σ

= 0 ⇒ Σ̂ =
1
N

∑
n

(yn − µ̂)(yn − µ̂)> (sample covariance)



Note

Y 

Y 1 

2 

modelling correlations
m

maximising likelihood of a Gaussian model
m

minimising a squared error cost function
m

minimizing data coding cost in bits (assuming Gaussian distributed)



Error functions, noise models, and likelihoods

• Squared error: (y − µ)2

Gaussian noise assumption, y is real-valued

• Absolute error: |y − µ|
Exponential noise assumption, y real or positive

• Binary cross entropy error:
−y log p− (1− y) log(1− p)
Binomial noise assumption, y binary

• Cross entropy error:
∑
i yi log pi

Multinomial noise assumption, y is discrete (binary unit vector)



Three Limitations

• What about higher order statistical structure in the data? ⇒ nonlinear and
hierarchical models

• What happens if there are outliers? ⇒ other noise models

• There are D(D + 1)/2 parameters in the multi-variate Gaussian model. What if
D is very large?

⇒ dimensionality reduction



End Notes

For some matrix identities and matrix derivatives see:
www.gatsby.ucl.ac.uk/∼roweis/notes/matrixid.pdf

Also, see Tom Minka’s notes on matrix algebra at CMU.
http://lib.stat.cmu.edu/∼minka/papers/matrix.html


