#### **Statistical Approaches to Learning and Discovery**

Lecture 1: Introduction, Statistical Basics, and a bit of Information Theory

Zoubin@cs.cmu.edu & teddy@stat.cmu.edu

CALD / CS / Statistics / Philosophy Carnegie Mellon University Spring 2002

# **Three Types of Learning**

Imagine an organism or machine that experiences a series of sensory inputs:

 $x_1, x_2, x_3, x_4, \ldots$ 

**Supervised learning:** The machine is also given desired outputs  $y_1, y_2, \ldots$ , and its goal is to learn to produce the correct output given a new input.

**Unsupervised learning:** The goal of the machine is to build representations of x that can be used for reasoning, decision making, predicting things, communicating etc.

**Reinforcement learning:** The machine can also produce actions  $a_1, a_2, \ldots$  which affect the state of the world, and receives rewards (or punishments)  $r_1, r_2, \ldots$  Its goal is to learn to act in a way that maximises rewards in the long term.

## **Goals of Supervised Learning**

**Classification:** The desired outputs  $y_i$  are discrete class labels. The goal is to classify new inputs correctly (i.e. to generalize).

**Regression:** The desired outputs  $y_i$  are continuous valued. The goal is to predict the output accurately for new inputs.

**Q:** But what about uncertainty in the classifications / predictions?

Both regression and classification can be though of as *statistical modelling*, which naturally represents uncertainty in the predictions:  $p(y|x^{\text{new}}, \text{Model})$ 

**Q:** What about loss functions?

 $L(y, y^*)$  where  $y_*$  is the "correct" and y is the predicted output.

Loss functions can be included, making it a *decision problem* (minimize expected loss):

$$\hat{y} = \arg\min_{y} \int dy^* L(y, y^*) p(y^* | x^{\mathsf{new}}, \mathsf{Model})$$

# **Goals of Unsupervised Learning**

To find useful representations of the data, for example:

- finding clusters
- dimensionality reduction
- finding the hidden causes or sources of the data
- modeling the data density

# **Uses of Unsupervised Learning**

- data compression
- outlier detection
- classification
- make other learning tasks easier
- a theory of human learning and perception



### Handwritten Digits





Advanced Search Preferences Language Tools Search Tips unsupervised learning Google SearchI'm Feeling Lucky

Web Images Groups Directory Searched the web for unsupervised learning.

Results 1 - 10 of about 55,500. Search took 0.18 seconds.

Category: Computers > Artificial Intelligence > Machine Learning

Recursive-Partitioning.com -- Supervised & Unsupervised Learning ... Check out Machine Learning Books at Amazon.com. Search and Categories. ... Description: Recursive partitioning based supervised and unsupervised learning methods resources. Comprehensive... Category: Computers > Artificial Intelligence > Machine Learning www.recursive-partitioning.com/ - 18k - Cached - Similar pages

ACL'99 Workshop -- Unsupervised Learning in Natural Language ... PROGRAM ACL'99 Workshop Unsupervised Learning in Natural Language Processing. University of Maryland June 21, 1999... Description: Workshop at the 37th Annual Meeting of the Association for Computational Linguistics. University... Category: Computers > Artificial Intelligence > Machine Learning > Conferences www.ai.sri.com/~kehler/unsup-acl-99.html - 5k Cached - Similar pages

Mixture modelling, Clustering, Intrinsic classification, ... ... Mixture modelling is also known as **unsupervised** concept **learning** (in Artificial Intelligence); intrinsic classification (in Philosophy), or, classification; ... Description: Mixture modelling, Clustering, Intrinsic classification, **unsupervised learning** and Mixture modeling.... Category: Computers > Artificial Intelligence > Machine Learning www.cs.monash.edu.au/~dld/mixture.modelling.page.html - 26k Cached - Similar pages

Workshop in Bonn Computer Vision Group, Computer Science, University Bonn Dagstuhl-Seminar on Unsupervised Learning. 21.3.-26.3. 1999. Schloss Dagstuhl, Wadern, Germany: ... www-dby.informatik.uni-bonn.de/dagstuhl/- 13k - Cached - Similar pages

NIPS\*98 Workshop - Integrating Supervised and Unsupervised ... NIPS\*98 Workshop "Integrating Supervised and Unsupervised Learning" Friday, December 4, 1998. ORGANIZERS: ... www.cs.cmu.edu/~mccallum/supunsup - 7k Cached - Similar pages

Learning Invariances ... Unsupervised Learning of Invariances. Laurenz Wiskott and Terrence J. Sejnowski. ... Unsupervised Learning of Invariances in Neural Visual Systems. ... itb.biologie.hu-berlin.de/~wiskott/Projects/LearningInvariances.html - 6k Cached - Similar pages

NIPS Tutorial 1999 Probabilistic Models for Unsupervised Learning Tutorial presented at the 1999 NIPS Conference by Zoubin Ghahramani and Sam Roweis. ... www.gatsby.ucl.ac.uk/~zoubin/NIPStutorial.html - 4k Cached - Similar pages

[PS] www.cs.jhu.edu/~brill/acl-wkshp.ps Similar pages

What does unsupervised learning learn? Part1 - Part2 - Part3 - Part4 ... I do? What does unsupervised

## Web Pages

Categorisation Clustering Relations between pages

# Why a statistical approach?

- A probabilistic model of the data can be used to
  - make inferences about missing inputs
  - generate predictions/fantasies/imagery
  - make decisions which minimise expected loss
  - communicate the data in an efficient way
- Statistical modelling is equivalent to other views of learning:
  - information theoretic: finding compact representations of the data
  - physical analogies: minimising free energy of a corresponding statistical mechanical system

# Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?

Some axioms (informal):

- if something is certain its uncertainty = 0
- uncertainty should be maximum if all choices are equally probable
- uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the entropy function:

$$H(X) = -\sum_{X=x} P(X=x) \log P(X=x)$$

measured in *bits* (**bi**nary digi**ts**) if the base 2 logarithm is used or *nats* (**na**tural digi**ts**) if the natural (base e) logarithm is used.

### **Some Definitions and Intuitions**

- Surprise (for event X = x):  $-\log P(X = x)$
- Entropy = average surplise:  $H(X) = -\sum_{X=x} P(X = x) \log_2 P(X = x)$
- Conditional entropy

$$H(X|Y) = -\sum_{x} \sum_{y} P(x,y) \log_2 P(x|y)$$

• Mutual information

I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y)

• Kullback-Leibler divergence (relative entropy)

$$KL(P(X)||Q(X)) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

- Relation between Mutual information and KL: I(X;Y) = KL(P(X,Y) || P(X)P(Y))
- Independent random variables: P(X, Y) = P(X)P(Y)
- Conditional independence  $X \perp\!\!\!\perp Y | Z$  (X conditionally independent of Y given Z) means P(X, Y | Z) = P(X | Z) P(Y | Z) and P(X | Y, Z) = P(X | Z)

#### Shannon's Source Coding Theorem

A discrete random variable X, distributed according to P(X) has entropy equal to:

$$H(X) = -\sum_{x} P(x) \log P(x)$$

**Shannon's source coding theorem:** n independent samples of the random variable X, with entropy H(X), can be compressed into minimum expected code of length  $n\mathcal{L}$ , where

$$H(X) \le \mathcal{L} < H(X) + \frac{1}{n}$$

If each symbol is given a code length  $l(x) = -\log_2 Q(x)$  then the expected per-symbol length  $\mathcal{L}_Q$  of the code is

$$H(X) + KL(P||Q) \le \mathcal{L}_Q < H(X) + KL(P||Q) + \frac{1}{n},$$

where the relative-entropy or Kullback-Leibler divergence is

$$KL(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} \ge 0$$

# Learning: A Statistcal Approach II

- Goal: to represent the beliefs of learning agents.
- Cox Axioms lead to the following: If plausibilities/beliefs are represented by real numbers, then the only reasonable and consistent way to manipulate them is Bayes rule.
- Frequency vs belief interpretation of probabilities
- The Dutch Book Theorem:

If you are willing to bet on your beliefs, then unless they satisfy Bayes rule there will always be a set of bets ("Dutch book") that you would accept which is guaranteed to lose you money, no matter what outcome!



# Desiderata (or Axioms) for Computing Plausibilities / Degrees of Belief

Paraphrased from E. T. Jaynes, using the notation p(A|B) is the plausibility of statement A given that you know that statement B is true.

- Degrees of plausibility are represented by real numbers
- Qualitative correspondence with common sense, e.g.
  - If p(A|C') > p(A|C) but p(B|A&C') = p(B|A&C) then  $p(A\&B|C') \geq p(A\&B|C)$
- Consistency:
  - If a conclusion can be reasoned in more than one way, then every possible way must lead to the same result.
  - All available evidence should be taken into account when inferring a plausibility.
  - Equivalent states of knowledge should be represented with equivalent plausibility statements.

Accepting these desiderata leads to Bayes Rule being the only way to manipulate plausibilities.

#### **Bayes Rule**

Probabilities are non-negative  $P(x) \ge 0 \ \forall x$ .

Probabilities normalise:  $\sum_{x} P(x) = 1$  for discrete distributions and  $\int p(x)dx = 1$  for probability densities.

The joint probability of x and y is: P(x, y).

The marginal probability of x is:  $P(x) = \sum_{y} P(x, y)$ .

The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

$$P(x,y) = P(x)P(y|x) = P(y)P(x|y) \implies P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$
(1)

### **Bayesian Learning**

The likelihood and parameter priors are combined into the posterior for a particular model, batch and online:

$$p(\theta|\mathcal{D},\mathcal{M}) = \frac{p(\mathcal{D}|\theta,\mathcal{M})p(\theta|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})} \qquad p(\theta|\mathcal{D},x,\mathcal{M}) = \frac{p(x|\theta,\mathcal{D},\mathcal{M})p(\theta|\mathcal{D},\mathcal{M})}{p(x|\mathcal{D},\mathcal{M})}$$

Predictions are made by integrating over the posterior:

$$p(x|\mathcal{D}, \mathcal{M}) = \int d\theta \ p(x|\theta, \mathcal{M}) \ p(\theta|\mathcal{D}, \mathcal{M}).$$

To compare models, we again use Bayes' rule and the prior on models

$$p(\mathcal{M}|\mathcal{D}) \propto p(\mathcal{D}|\mathcal{M}) \ p(\mathcal{M})$$

This also requires an integral over  $\theta$ :

$$p(\mathcal{D}|\mathcal{M}) = \int d\theta \ p(\mathcal{D}|\theta, \mathcal{M}) \ p(\theta|\mathcal{M})$$

For interesting models, these integrals may be difficult to compute.

#### **Bayesian Learning: A coin toss example**

Coin toss: One parameter q — the odds of obtaining *heads* So our space of models is the set  $q \in [0, 1]$ . Learner A believes all values of q are equally plausible; Learner B believes that it is more plausible that the coin is "fair" ( $q \approx 0.5$ ) than "biased".



These priors beliefs can be described by the Beta distribution:

$$p(q|\alpha_1, \alpha_2) = \frac{q^{(\alpha_1 - 1)}(1 - q)^{(\alpha_2 - 1)}}{B(\alpha_1, \alpha_2)} = \text{Beta}(q|\alpha_1, \alpha_2)$$
for A:  $\alpha_1 = \alpha_2 = 1.0$  and B:  $\alpha_1 = \alpha_2 = 4.0$ .

#### Bayesian Learning: The coin toss (cont)

Two possible outcomes:

$$p(\mathsf{heads}|q) = q$$
  $p(\mathsf{tails}|q) = 1 - q$  (2)

**Imagine we observe a single coin toss and it comes out** *heads* The probability of the observed data (likelihood) is:

$$p(\mathsf{heads}|q) = q \tag{3}$$

Using Bayes Rule, we multiply the prior, p(q) by the likelihood and renormalise to get the posterior probability:

$$p(q|\text{heads}) = \frac{p(q)p(\text{heads}|q)}{p(\text{heads})} \propto q \operatorname{Beta}(q|\alpha_1, \alpha_2)$$
$$\propto q q^{(\alpha_1 - 1)}(1 - q)^{(\alpha_2 - 1)} = \operatorname{Beta}(q|\alpha_1 + 1, \alpha_2)$$

# Bayesian Learning: The coin toss (cont)



Posterior

q

q

## Some Terminology

**Maximum Likelihood (ML) Learning**: Does not assume a prior over the model parameters. Finds a parameter setting that maximises the likelihood of the data:  $P(\mathcal{D}|\theta)$ .

**Maximum a Posteriori (MAP) Learning**: Assumes a prior over the model parameters  $P(\theta)$ . Finds a parameter setting that maximises the posterior:  $P(\theta|\mathcal{D}) \propto P(\theta)P(\mathcal{D}|\theta)$ .

**Bayesian Learning**: Assumes a prior over the model parameters. Computes the posterior distribution of the parameters:  $P(\theta|\mathcal{D})$ .

#### Learning about a coin II

Consider two alternative models of a coin, "fair" and "bent". A priori, we may think that "fair" is more probable, eg:

$$p(fair) = 0.8, \quad p(bent) = 0.2$$

For the bent coin, (a little unrealistically) all parameter values could be equally likely, where the fair coin has a fixed probability:



#### Learning about a coin. . .

The evidence for the fair model is:  $p(\mathcal{D}|\text{fair}) = (1/2)^{10} \simeq 0.001$ and for the bent model:

$$p(\mathcal{D}|\text{bent}) = \int dq \ p(\mathcal{D}|q, \text{bent}) p(q|\text{bent}) = \int dq \ q^2(1-q)^8 = B(3,9) \simeq 0.002$$

The posterior for the models, by Bayes rule:

 $p(\text{fair}|\mathcal{D}) \propto 0.0008, \qquad p(\text{bent}|\mathcal{D}) \propto 0.0004,$ 

ie, two thirds probability that the coin is fair.

**How do we make predictions?** By weighting the predictions from each model by their probability. Probability of Head at next toss is:

$$\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{3}{12} = \frac{5}{12}.$$

[In contrast, the usual frequentist analysis might look something like this: Look at the observed data under the sampling distribution given the null hypothesis (fair) – the probability of the observed data, or something more extreme is 7/64; this is larger than 0.1 so we do not reject the null hypothesis, and our prediction for future tosses is simply 0.5.]

## Simple Statistical Modelling: modelling correlations



Assume:

- we have a data set  $Y = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$
- each data point is a vector of D features:  $\mathbf{y}_i = [y_{i1} \dots y_{iD}]$
- the data points are i.i.d. (independent and identically distributed).

One of the simplest forms of unsupervised learning: model the **mean** of the data and the **correlations** between the D features in the data We can use a multi-variate Gaussian model:

$$p(\mathbf{y}|\mu, \Sigma) = |2\pi\Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{y}-\mu)^{\top}\Sigma^{-1}(\mathbf{y}-\mu)\right\}$$

#### **ML Estimation of a Gaussian**

Data set 
$$Y = {\mathbf{y}_1, \dots, \mathbf{y}_N}$$
, likelihood:  $p(Y|\mu, \Sigma) = \prod_{n=1}^N p(\mathbf{y}_n|\mu, \Sigma)$   
Maximize likelihood  $\Leftrightarrow$  maximize log likelihood

**Goal:** find  $\mu$  and  $\Sigma$  that maximise log likelihood:

$$\mathcal{L} = \log \prod_{n=1}^{N} p(\mathbf{y}_n | \mu, \Sigma) = \sum_n \log p(\mathbf{y}_n | \mu, \Sigma)$$

$$= -\frac{N}{2} \log |2\pi\Sigma| - \frac{1}{2} \sum_n (\mathbf{y}_n - \mu)^\top \Sigma^{-1} (\mathbf{y}_n - \mu)$$
(4)

**Note:** equivalently, minimise  $-\mathcal{L}$ , which is *quadratic* in  $\mu$ **Procedure:** take derivatives and set to zero:

$$\frac{\partial \mathcal{L}}{\partial \mu} = 0 \qquad \Rightarrow \qquad \hat{\mu} = \frac{1}{N} \sum_{n} \mathbf{y}_{n} \quad \text{(sample mean)}$$
$$\frac{\partial \mathcal{L}}{\partial \Sigma} = 0 \qquad \Rightarrow \qquad \hat{\Sigma} = \frac{1}{N} \sum_{n} (\mathbf{y}_{n} - \hat{\mu}) (\mathbf{y}_{n} - \hat{\mu})^{\top} \quad \text{(sample covariance)}$$

#### Note



## Error functions, noise models, and likelihoods

- Squared error:  $(y \mu)^2$ Gaussian noise assumption, y is real-valued
- Absolute error:  $|y \mu|$ Exponential noise assumption, y real or positive
- Binary cross entropy error:  $-y \log p (1 y) \log(1 p)$ Binomial noise assumption, y binary
- Cross entropy error:  $\sum_{i} y_i \log p_i$ Multinomial noise assumption, y is discrete (binary unit vector)

## **Three Limitations**

- What about higher order statistical structure in the data? ⇒ nonlinear and hierarchical models
- What happens if there are outliers? ⇒ other noise models
- There are D(D+1)/2 parameters in the multi-variate Gaussian model. What if D is very large?

 $\Rightarrow$  dimensionality reduction

## **End Notes**

For some matrix identities and matrix derivatives see: www.gatsby.ucl.ac.uk/~roweis/notes/matrixid.pdf

Also, see Tom Minka's notes on matrix algebra at CMU. http://lib.stat.cmu.edu/~minka/papers/matrix.html