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Model structure and overfitting:
a simple example
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Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?

SVYDAAAQLTADVKKDLRDSWKVIGSDKKGNGVALMTTY

How many auditory sources in the input?



Using Occam’s Razor to Learn Model Structure

Select the model class Mi with the highest probability given the data:

P (Mi|y) =
P (y|Mi)P (Mi)

P (y)
, P (y|Mi) =

∫
Θi

P (y|θi,Mi)P (θi|Mi) dθi

Interpretation: The probability that randomly selected parameter values from the
model class would generate data set y.

Model classes that are too simple are unlikely to generate the data set.

Model classes that are too complex can generate many possible data sets, so again,
they are unlikely to generate that particular data set at random.
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Bayesian Model Selection: Occam’s Razor at Work
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Scaling the parameter priors

It is important to consider how the parameter prior changes as the number of
parameters increases — this determines whether an Occam’s hill is present or not.

Unscaled models:
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Scaled models:
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Practical Bayesian approaches

• Laplace approximations:

– Appeals to Central Limit Theorem making a Gaussian approximation about
maximum a posteriori parameter estimate.

• Large sample approximations (e.g. BIC).

• Markov chain Monte Carlo methods (MCMC):

– In the limit are guaranteed to converge, but:
– Many samples required to ensure accuracy.
– Sometimes hard to assess convergence.

• Variational approximations

Note: other deterministic approximations are also available now: e.g. Bethe
approximations and Expectation Propagation



Laplace Approximation

data set y, modelsM1 . . . ,Mn, parameter sets θ1 . . . , θn

Model Selection: P (Mi|y) ∝ P (Mi)P (y|Mi)

For large amounts of data (relative to number of parameters, d) the parameter
posterior is approximately Gaussian around the MAP estimate θ̂i:

P (θi|y,Mi) ≈ (2π)
−d
2 |A|12 exp

{
−1

2
(θi − θ̂i)

>
A(θi − θ̂i)

}

P (y|Mi) =
P (θi,y|Mi)
P (θi|y,Mi)

Evaluating the above expression for lnP (y|Mi) at θ̂i:

lnP (y|Mi) ≈ lnP (θ̂i|Mi) + lnP (y|θ̂i,Mi) +
d

2
ln 2π − 1

2
ln |A|

where A is the d× d negative Hessian matrix of the log posterior.

This can be used for model selection.



Bayesian Information Criterion (BIC)

BIC can be obtained from the Laplace approximation:

lnP (y|Mi) ≈ lnP (θ̂i|Mi) + lnP (y|θ̂i,Mi) +
d

2
ln 2π − 1

2
ln |A|

by taking the large sample limit (N →∞) where N is the number of data points:

lnP (y|Mi) ≈ lnP (y|θ̂i,Mi) +
d

2
lnN

Properties:

• Quick and easy to compute
• It does not depend on the prior
• We can use the ML estimate of θ instead of the MAP estimate
• It is equivalent to the MDL criterion
• It assumes that in the large sample limit, all the parameters are well-determined

(i.e. the model is identifiable; otherwise, d should be the number of well-
determined parameters)
• Danger: counting parameters can be deceiving! (c.f. sinusoid, infinite models)



MCMC Approximations

Let’s consider a non-Markov chain method, Importance Sampling:

lnP (y|Mi) = ln
∫

Θi

P (y|θi,Mi)P (θi|Mi) dθi

= ln
∫

Θi

P (y|θi,Mi)
P (θi|Mi)
Q(θi)

Q(θi) dθi

≈ ln
∑
k

P (y|θ(k)
i ,Mi)

P (θ(k)
i |Mi)

Q(θ(k)
i )

where θ
(k)
i are i.i.d. draws from Q(θi). Assumes we can sample from and evaluate

Q(θi) (incl. normalization!) and we can compute the likelihood P (y|θ(k)
i ,Mi).

Although importance sampling does not work well in high dimensions, it inspires the
following approach: Create a Markov chain, Qk → Qk+1 . . . for which:

• Qk(θ) can be evaluated including normalization

• limk→∞Qk(θ) = P (θ|y,Mi)



Variational Bayesian Learning
Lower Bounding the Evidence

Let the hidden latent variables be x, data y and the parameters θ.
We can lower bound the evidence (Jensen’s inequality):

lnP (y|M) = ln
∫
dx dθ P (y,x,θ|M)

= ln
∫
dx dθ Q(x,θ)

P (y,x,θ)
Q(x,θ)

≥
∫
dx dθ Q(x,θ) ln

P (y,x,θ)
Q(x,θ)

.

Use a simpler, factorised approximation to Q(x,θ):

lnP (y) ≥
∫
dx dθ Qx(x)Qθ(θ) ln

P (y,x,θ)
Qx(x)Qθ(θ)

= F(Qx(x), Qθ(θ),y).



Variational Bayesian Learning . . .

Maximizing this lower bound, F , leads to EM-like updates:

Q∗x(x) ∝ exp 〈lnP (x,y|θ)〉Qθ(θ) E−like step

Q∗θ(θ) ∝ P (θ) exp 〈lnP (x,y|θ)〉Qx(x) M−like step

Maximizing F is equivalent to minimizing KL-divergence between the approximate
posterior, Q(θ)Q(x) and the true posterior, P (θ,x|y).



Conjugate-Exponential models

Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):
Condition (1). The joint probability over variables is in the exponential family:

P (x,y|θ) = f(x,y) g(θ) exp
{
φ(θ)>u(x,y)

}
where φ(θ) is the vector of natural parameters, u are sufficient statistics
Condition (2). The prior over parameters is conjugate to this joint probability:

P (θ|η,ν) = h(η,ν) g(θ)η exp
{
φ(θ)>ν

}
where η and ν are hyperparameters of the prior.
Conjugate priors are computationally convenient and have an intuitive interpretation:

• η: number of pseudo-observations
• ν: values of pseudo-observations



Conjugate-Exponential examples

In the CE family:

• Gaussian mixtures
• factor analysis, probabilistic PCA
• hidden Markov models and factorial HMMs
• linear dynamical systems and switching models
• discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart,

Multinomial and others.

Not in the CE family:

• Boltzmann machines, MRFs (no simple conjugacy)
• logistic regression (no simple conjugacy)
• sigmoid belief networks (not exponential)
• independent components analysis (not exponential)

Note: one can often approximate these models with models in the CE family.



A Useful Result

Theorem Given an iid data set y = (y1, . . .yn), if the model is CE then:

(a) Qθ(θ) is also conjugate, i.e.

Qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{
φ(θ)>ν̃

}
where η̃ = η + n and ν̃ = ν +

∑
iu(xi,yi).

(b) Qx(x) =
∏n
i=1Qxi(xi) is of the same form as in the E step of regular EM,

but using pseudo parameters computed by averaging over Qθ(θ)

Qxi(xi) ∝ f(xi,yi) exp
{
φ(θ)>u(xi,yi)

}
= P (xi|yi,φ(θ))

KEY points:

(a) the approximate parameter posterior is of the same form as the prior, so it is
easily summarized in terms of two sets of hyperparameters, η̃ and ν̃;

(b) the approximate hidden variable posterior, averaging over all parameters, is of
the same form as the hidden variable posterior for a single setting of the parameters,
so again, it is easily computed using the usual methods.



The Variational EM algorithm

VE Step: Compute the expected sufficient statistics
∑
iu(xi,yi) under the

hidden variable distributions Qxi(xi).

VM Step: Compute expected natural parameters φ(θ) under the parameter
distribution given by η̃ and ν̃.

Properties:

• Reduces to the EM algorithm if Qθ(θ) = δ(θ − θ∗).

• F increases monotonically, and incorporates the model complexity penalty.

• Analytical parameter distributions (but not constrained to be Gaussian).

• VE step has same complexity as corresponding E step.

• We can use the junction tree, belief propagation, Kalman filter, etc, algorithms
in the VE step of VEM, but using expected natural parameters.



Variational Bayes: History of Models Treated

• multilayer perceptrons (Hinton & van Camp, 1993)

• mixture of experts (Waterhouse, MacKay & Robinson, 1996)

• hidden Markov models (MacKay, 1995)

• other work by Jaakkola, Jordan, Barber, Bishop, Tipping, etc

Examples of Variational Learning of Model Structure

• mixtures of factor analysers (Ghahramani & Beal, 1999)

• mixtures of Gaussians (Attias, 1999)

• independent components analysis (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000)

• principal components analysis (Bishop, 1999)

• linear dynamical systems (Ghahramani & Beal, 2000)

• mixture of experts (Ueda & Ghahramani, 2000)

• discrete graphical models (Ghahramani & Beal, in prep)



Mixture of Factor Analysers

Goal:

• Infer number of clusters

• Infer intrinsic dimensionality of each cluster

Under the assumption that each cluster is Gaussian

embed demo



Mixture of Factor Analysers

True data: 6 Gaussian clusters with dimensions: (1 7 4 3 2 2) embedded in 10-D

Inferred structure:

                   number of points 
                   per cluster		 1	 7	 4	 3	 2	 2

			 8		  	        2			      1
			 8		     1			   2
			 16		 1		       4			 2
			 32		 1	 6	 3	 3	 2	 2
			 64		 1	 7	 4	 3	 2	 2
			 128		 1	 7	 4	 3	 2	 2

intrinsic dimensionalities

• Finds the clusters and dimensionalities efficiently.

• The model complexity reduces in line with the lack of data support.

demos: run simple and ueda demo



Hidden Markov Models
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Observations yt.

How many hidden states?
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demo: vbhmm demo



Hidden Markov Models:
Discriminating Forward from Reverse English

First 8 sentences from Alice in Wonderland.
Compare VB-HMM with ML-HMM.
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Linear Dynamical Systems
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• Assumes yt generated from a sequence of Markov hidden state variables xt
• If transition and output functions are linear, time-invariant, and noise distributions

are Gaussian, this is a linear-Gaussian state-space model:

xt = Axt−1 + wt, yt = Cxt + vt

• Three levels of inference:

I Given data, structure and parameters, Kalman smoothing → hidden state;

II Given data and structure, EM → hidden state and parameter point estimates;

III Given data only, VEM → model structure and distributions over
parameters and hidden state.



Linear Dynamical System Results

Inferring model structure:

a) SSM(0,3) i.e. FA
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True model: SSM(6,6) • 10-dim observation vector.
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Independent Components Analysis

Blind Source Separation: 5 × 100 msec speech and music sources linearly mixed to
produce 11 signals (microphones)

from Attias (2000)



Part 2: Another view of Model Selection:
Nonparametric Methods and Infinite Models

We ought not to limit the complexity of our model a priori (e.g. number of hidden
states, number of basis functions, number of mixture components, etc) since we
don’t believe that the real data was actually generated from a statistical model with
a small number of parameters.

Therefore, regardless of how much training data we have, we should consider models
with as many parameters as we can handle computationally.

Neal (1994) showed that MLPs with large numbers of hidden units achieved good
performance on small data sets. He used MCMC to average over parameters.

Here there is no model order selection task:

• No need to evaluate evidence (which is often difficult).

• We don’t need or want to use Occam’s razor to limit the number of parameters
in our model.

In fact, we may even want to consider doing inference in models with an infinite
number of parameters...



Infinite Models 1: Gaussian Processes

Neal (1994) showed that a one-hidden-layer neural network with bounded
activation function and Gaussian prior over the weights and biases converges to
a (nonstationary) Gaussian process prior over functions.

p(y|x) = N (0, C(x))

where e.g. Cij ≡ C(xi, xj) = g(|xi − xj|).
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Bayesian inference is GPs is conceptually and algorithmically much easier than
inference in large neural networks.

Williams (1995; 1996) and Rasmussen (1996) have evaluated GPs as regression
models and shown that they are very good.



Gaussian Processes: prior over functions
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Linear Regression ⇒ Gaussian Processes

in four steps...

1. Linear Regression with inputs xi and outputs yi: yi =
∑
k

wkxik + εi

2. Kernel Linear Regression: yi =
∑
k

wkφk(xi) + εi

3. Bayesian Kernel Linear Regression:

wk ∼ N(0, βk) [indep. of w`], εi ∼ N(0, σ2)

4. Now, integrate out the weights, wk:

〈yi〉 = 0, 〈yiyj〉 =
∑
k

βkφk(xi)φk(xj) + δijσ
2 ≡ Cij

This is a Gaussian process with covariance function:

C(x,x′) =
∑
k

βkφk(x)φk(x′) + δijσ
2 ≡ Cij

This is a Gaussian process with finite number of basis functions. Many useful GP
covariance functions correspond to infinitely many kernels.



Infinite Models 2: Infinite Gaussian Mixtures

Following Neal (1991), Rasmussen (2000) showed that it is possible to do inference
in countably infinite mixtures of Gaussians.

P (x1, . . . , xN |π, µ,Σ) =
N∏
i=1

K∑
j=1

πj N (xi|µj,Σj)

=
∑

s

P (s,x|π, µ,Σ) =
∑

s

N∏
i=1

K∏
j=1

[πj N (xi|µj,Σj)]δ(si,j)

Joint distribution of indicators is multinomial

P (s1, . . . , sN |π) =
K∏
j=1

π
nj
j , nj =

N∑
i=1

δ(si, j) .

Mixing proportions are given symmetric Dirichlet prior

P (π|β) =
Γ(β)

Γ(β/K)K

K∏
j=1

π
β/K−1
j



Infinite Gaussian Mixtures (continued)

Joint distribution of indicators is multinomial

P (s1, . . . , sN |π) =
K∏
j=1

π
nj
j , nj =

N∑
i=1

δ(si, j) .

Mixing proportions are given symmetric Dirichlet conjugate prior

P (π|β) =
Γ(β)

Γ(β/K)K

K∏
j=1

π
β/K−1
j

Integrating out the mixing proportions we obtain

P (s1, . . . , sN |β) =
∫
dπ P (s1, . . . , sN |π)P (π|β) =

Γ(β)
Γ(n+ β)

K∏
j=1

Γ(nj + β/K)
Γ(β/K)

This yields a Dirichlet Process over indicator variables.



Dirichlet Process Conditional Probabilities

Conditional Probabilities: Finite K

P (si = j|s−i, β) =
n−i,j + β/K

N − 1 + β

where s−i denotes all indices except i, and n−i,j is total number of observations of
indicator j excluding ith.
DP: more populous classes are more more likely to be joined

Conditional Probabilities: Infinite K
Taking the limit as K →∞ yields the conditionals

P (si = j|s−i, β) =


n−i,j
N−1+β j represented

β
N−1+β all j not represented

Left over mass, β, ⇒ countably infinite number of indicator settings.
Gibbs sampling from posterior of indicators is easy!



Other infinite models

Infinite Mixtures of Experts where each each expert is a Gaussian process

Infinite hidden Markov Models

etc...



Which view: model order selection or nonparametric models?

I think, in theory, the large/infinite models view is more natural and preferable. But
models become nonparametric and often require sampling or O(n3) computations
(e.g. GPs).

hyperparameters

parameters

...data

hyperparameters

...

In practice, model order selection via Occam’s razor is sometimes attractive, yielding
smaller models and allowing deterministic (e.g. variational) approximation methods.



Summary & Conclusions

• Bayesian learning avoids overfitting and can be used to do model selection.

• Two views: model selection via Occam’s Razor, versus large/infinite models.

• View 1 - a practical approach: variational approximations

– Variational EM for CE models and propagation algorithms

• View 2 - Gaussian processes, infinite mixtures, mixture of experts & HMMs.

– Results in non-parametric models, often requires sampling.

• In the limit of small amounts of data, we don’t necessarily favour small models
— rather the posterior over model orders becomes flat.

• The two views can be reconciled in the following way: Model complexity 6=
number of parameters, Occam’s razor can still work selecting between different
infinite models (e.g. rough vs smooth GPs).
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