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Some Asymptotic Bayesian Inference 
(background to Chapter 2 of Tanner’s book) 

 
Principal Topics 

• The approach to certainty with increasing evidence. 

• The approach to consensus for several agents, with increasing  

shared evidence.  

• A role for statistical models in these asymptotic results. 

o symmetry/independence assumptions in these results. 

o data reduction 

o asymptotic Normal inference for these results. 



 2

Generalizing the coin-tossing example from last lecture: 

 

Sample space of (observable) outcomes: 

A 2-sided coin is repeatedly tossed, indefinitely, 

X = <X1, X2, …, Xn, …> 

Xj = 0, or Xj = 1 as the coin lands tails up or heads up on the jth flip. 

So that, x = < x1, x2, …, xn, …> is a point of the space��� = {0,1}ℵ 0   

 

Of course, at any one time we observe only a finite, initial segment. 
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The events that make up the σ-algebra, �, are the (smallest) σ-field of 

sets including all the (historical) observable events, of the form, 

Hn = < x1, x2, …, xn, {0,1}, {0,1}, ….> 

  

The Statistical Model:   

 Introduce a statistical quantity, a parameter �, such that the events in � 

have a determinate conditional probability, given the parameter. 

 Bernoulli (i.i.d.) Coin flipping (continued):   

P(Xj = 1| θ) = θ  (j = 1, …), for 0 < θ < 1 

P(Hn | θ) = θk(1-θ)n-k, where k of the first n coordinates of Hn are 1  

and n-k of the first n coordinates Hn of are 0.  
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Now, if we are willing to make � into a random variable (by expanding the  

σ-algebra accordingly), we can write Bayes theorem for the parameter: 

 P(θ | Hn) =  P(Hn | θ) P(θ) / P(Hn)      

∝ P(Hn | θ) P(θ)       

OR 

The posterior probability for �    is proportional to  

the product of the likelihood for �� and its prior probability.  
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With the conjugate Beta(α , β) prior for ��

�

P(θ | Hn)  is given by the distribution  Beta(α+k , β+n-k) 

 

having mean   (α+k) / (α+k+β+n-k)   = (α+k) / (α+β+n) 

 

and variance   (α+k)(β+n-k) / (α+β+n)2(α+β+n+1) 

 

Note:  Here we may reduce the historical data of n-bits to two quantities (k, n-k).  

That is, the two likelihood functions: P(Hn | θ)  and P(k, n-k | θ)  are the same. 

P(Hn | θ) =  P(k, n-k | θ) 
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Now, by the Strong Law of Large Numbers:  for each ε > 0 and given θ 

P( lim n→∞ | k/n - θ | <  ε  | θ)  =  1. 

Hence, with probability 1, the sequence of posterior probabilities for θ  

lim n→∞  P(θ | Hn)  = lim n→∞   Beta(α+nθ , β+n(1-θ)) 

have a limit distribution with mean θ and variance 0, independent of α and β. 

 

Note:  The posterior variances for θ  are O(1/n). That is, in advance, we can 

bound from below the precision (that is, bound from above the variance) of the 

posterior distribution for the parameter by choosing the sample size to observe. 
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Asymptotic Certainty 

THUS, under each conjugate (Beta) prior: 

 With probability 1, the posterior probability for θ  converges to the  

(0-1) Delta distribution, concentrated on the true parameter value. 

 

From the perspective of the posterior probability for θ ,  

through the likelihood function, the data “swamp” the prior. 
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Asymptotic Consensus 

(Merging of Posterior Probability Distributions) 

 
As a metric (distance) between two distributions P and Q over the algebra �, 
consider a strict standard, uniform distance, 

�(P,Q)  =  supE∈ �  | P(E) – Q(E) | 
 
Let Pn = P(θ | Hn)  and  Qn = Q(θ | Hn) (n = 1, 2, …) be two sequences of 

posterior probability distributions for the parameter θ  based on two (conjugate) 
Beta priors.   
 
Then, it is not hard to show that 
 

lim n→∞  �( Pn, Qn)  = lim n→∞ supΘ | P(θ | Hn)  – Q(θ | Hn) | = 0. 

 
In other words, the two systems of posterior probabilities for the parameter, 
based on shared evidence, merge together. 
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Question:  What about posterior probability distributions over the algebra 
generated by the observable events, �?  

• Recall that the i.i.d. Bernoulli statistical model for the data is shared between these 
two investigators:  (∀ E∈ �) P(E | θ) = Q(E | θ). 

• Also, with conjugate priors from the Beta family, the prior probability is positive for 
each “historical” event Hn.  That is, (∀ Hn, 0 < θ < 1) P(Hn | θ) > 0.  Moreover, 

P(Hn) = ∫Θ P(Hn | θ)dP(θ).  Therefore, P(Hn) > 0, and likewise Q(Hn) > 0. 

•  
Answer:  P(E | Hn)   =  ∫Θ P(E | θ, Hn) P(θ | Hn)dPn(θ).  

     =  ∫Θ [P(E, Hn | θ) / P(Hn | θ)] P(θ | Hn)dPn(θ) 

and as Pn merges with Qn for large n, 
≈ ∫Θ [P(E, Hn | θ) / P(Hn | θ)] Q(θ | Hn)dQn(θ) 

=  ∫Θ [Q(E, Hn | θ) / Q(Hn | θ)] Q(θ | Hn)dQn(θ) 

=  ∫Θ Q(E | θ, Hn) Q(θ | Hn)dQn(θ) 

=  Q(E | Hn).  
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Thus, the two posterior predictive distributions (over �) also merge. 
 

For example, the probability that the next flip lands heads given Hn is: 

   P(Xn+1 | Hn)   = EPn[θ] = (α+k) / (α+β+n), 

which for large n,          ≈  k/n 
and by parallel reasoning 
             ≈  Q(Xn+1 | Hn). 

          

 

Note, that the agreement between P(E | Hn) and Q(E | Hn)  takes a stronger form 

for cases when the historical observation Hn precludes E, when  (E∩ Hn) = ∅ .   

 
Then,     P(E | Hn’)  = Q(E | Hn’)  = 0 for all n’ > n.  
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Question:  What parts of these asymptotic results for the algebra of events � 
depends upon the (shared) statistical model? 
 
Answers: 
 

(1) Asymptotic Certainty is automatic with the Bayesian framework! 
(∀ E∈ �) with P-probability 1,  

lim n→∞ Pn(E) = �(E), i.e. 
 

(2) Asymptotic Consensus requires only agreement on “null” events. 
Assume that (∀ E∈ �) P(E) = 0 if and only if Q(E) = 0. 
With P-(or Q-) probability 1, with respect to �  

lim n→∞  �( Pn, Qn) = 0. 
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However, the statistical model is needed for each of the following: 

(1) data reduction 
(2) rates of convergence to certainty 
(3) rates of merging for Bayesian investigators with shared evidence 

 
 
In the next lectures we will explore themes for Bayesian asymptotics: 
 

• A role for statistical models in these asymptotic results. 

o symmetry/independence assumptions in these results. 

o data reduction 

o asymptotic Normal inference for these results. 
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A puzzlement? 

We have two investigators (T and Z) for our coin-tossing problem. 

They share the same statistical (i.i.d. Bernoulli) model for coin flips,  

and they have the same (conjugate) Beta prior for θ. 

 
They collect (shared) evidence by flipping the coin until one says, “Stop.” 
 
In fact, they observe the sequence  

(H,H,T,H,T,T,H,H,T,H) 
at which point they both (simultaneously) say “Stop!” 
 
However: 

 T’s plan was to flip the coin exactly 10 times and stop 
and  Z’s plan was to flip until there were 6 “Heads” and stop. 
 
Exercise:  Give the Bayes analysis for T and for Z of these data. 


