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Gibbs sampling (an MCMC method) and relations to EM 
 

Lecture Outline 
 

1. Gibbs 
•  the algorithm 
•  a bivariate example 
•  an elementary convergence proof for a (discrete) bivariate case 
•  more than two variables 
•  a counter example. 
 

2. EM – a again  (These notes will follow as a separate file.) 
•  EM as a maximization/maximization method 
•  Gibbs as a variation of Generalized EM 

o an example 
•  A counterexample for EM 
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Gibbs Sampling 
 

We have a joint density 
f(x, y1, …, yk) 

and we are interested, say, in some features of the marginal density 

f(x)  =  ∫∫…∫ f(x, y1, …, yk) dy1, dy2, …, dyk.  

For instance, suppose that we are interested in the average 

E[X] =  ∫ x f(x)dx. 
 
If we can sample from the marginal distribution, then 

∞→mlim  n
1 ∑

=

n

i
iX

1
 = E[X] 

without using f(x) explicitly in integration.  Similar reasoning applies to 
any other characteristic of the statistical model, i.e., of the population. 
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The Gibbs Algorithm for computing this average. 

Assume we can sample the k+1-many univariate conditional densities: 
f(X |  y1, …, yk) 
f(Y1 |  x, y2, …, yk) 
f(Y2 |  x, y1, y3, …, yk) 
… 

f(Yk |  x, y1, y3, …, yk-1). 

Choose, arbitrarily, k initial values: Y1= y0
1 , Y2= y0

2, …., Yk= yk
0 . 

Create:   x1  by a draw from f(X | y0
1 , …, yk

0 ) 

    y1
1 by a draw from f(Y1 | x1 , y0

2, …, yk
0 ) 

    y1
2 by a draw from f(Y2 | x1 , y1

1, y0
3…, yk

0 ) 
    … 
    yk

1  by a draw from f(Yk | x1 , y1
1, …, yk

1
1− ). 
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This constitutes one Gibbs “pass” through the k+1 conditional distributions, 

yielding values:      ( x1 , y1
1, y1

2, …., yk
1 ). 

Iterate the sampling to form the second “pass”   
( x2, y2

1 , y2
2, …., yk

2 ). 
Theorem:  (under general conditions)  

The distribution of xn  converges to F(x) as n → ∞. 

Thus, we may take the last n X-values after many Gibbs passes: 

n
1 ∑

+

=

nm

mi

iX   ≈  E[X] 

or take just the last value, in
ix of n-many sequences of Gibbs passes  

(i = 1, … n)     n
1 ∑

=

n

ii

n
i

iX   ≈  E[X] 

to solve for the average,  =  ∫ x f(x)dx. 
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A bivariate example of the Gibbs Sampler. 
 
Example: Let X and Y have similar truncated conditional exponential 
distributions:  

f(X | y)  ∝   ye-yx  for 0 < X < b  

f(Y | x)  ∝   xe-xy  for 0 < Y < b 
where b is a known, positive constant. 
 
Though it is not convenient to calculate, the marginal density f(X) is 

readily simulated by Gibbs sampling from these (truncated) exponentials. 

 

Below is a histogram for X, b = 5.0, using a sample of 500 terminal 
observations with 15 Gibbs’ passes per trial, in

ix  (i = 1,…, 500, ni = 15) 
(from Casella and George, 1992). 
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Histogram for X, b = 5.0, using a sample of 500 terminal observations with 15 Gibbs’ passes per trial, 
in

ix  (i = 1,…, 500, ni = 15).  Taken from (Casella and George, 1992). 
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Here is an alternative way to compute the marginal f(X) using the same 
Gibbs Sampler. 
 
Recall the law of conditional expectations (assuming E[X] exists): 

E[ E[X | Y] ] = E[X] 
 

Thus     E[f(x|Y)] =  ∫ f(x | y)f(y)dy = f(x). 
 
Now, use the fact that the Gibbs sampler gives us a simulation of the 
marginal density f(Y) using the penultimate values (for Y) in each Gibbs’ 
pass, above:    1−in

iy  (i = 1, …500; ni = 15). 
Calculate f(x | 1−in

iy ), which by assumption is feasible. 
 
Then note that: 

f(x)   ≈  n
1 ∑

=

−n

ii

n
i

iy  ) |f(x 1  
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The solid line graphs the alternative Gibbs Sampler estimate of the marginal f(x) from eth  
same sequence of 500 Gibbs’ passes, using ∫ f(x | y)f(y)dy = f(x).  The dashed-line is the 
exact solution.  Taken from (Casella and George, 1992). 
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An elementary proof of convergence in the case of 2 x 2 Bernoulli data 
 
Let (X,Y) be a bivariate variable, marginally, each is Bernoulli 

   X 
                                   0       1 
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where pi > 0, ∑ pi = 1, marginally  

P(X=0) = p1+p3  and  P(X=1) = p2+p4 

P(Y=0) = p1+p2  and  P(Y=1) = p3+p4. 
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The conditional probabilities P(X|y) and P(Y|x) are evident: 

P(Y|x):           X 
                               0                 1 
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P(X|y):           X 
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Suppose (for illustration) that we want to generate the marginal 

distribution of X by the Gibbs Sampler, using the sequence of iterations 

of draws between the two conditional probabilites P(X|y) and P(Y|x). 

 

That is, we are interested in the sequence <xi : i = 1, … > created from the 

starting value y0= 0 or y0= 1.   

Note that: 

P( X n  = 0 |xi : i = 1, …, n-1) = P( X n  = 0 |xn 1− )  the Markov property 

 = P( X n=0 | yn 1− =0) P(Y n 1− =0 |xn 1− )  +  P( X n=0 | yn 1− =1) P(Y n 1− =1 |xn 1− )  
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Thus, we have the four (positive) transition probabilities:  

P( X n  = j |xn 1− = i)  = pij > 0, with ∑i ∑j pij = 1  (i, j = 0, 1). 

With the transition probabilities positive, it is an (old) ergodic theorem 

that, P( X n) converges to a (unique) stationary distribution, independent 

of the starting value ( y0).  

 

Next, we confirm the easy fact that the marginal distribution P(X) is that 

same distinguished stationary point of this Markov process. 
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P( X n  = 0)    

=      P( X n  = 0 |xn 1− = 0) P( X n 1−  = 0)  +  P( X n  = 0 |xn 1− = 1) P( X n 1−  = 1)  

=    P( X n=0 | yn 1− =0) P(Y n 1− =0 |xn 1− = 0) P( X n 1−  = 0)   

+  P( X n=0 | yn 1− =1) P(Y n 1− =1 |xn 1− = 0) P( X n 1−  = 0) 

+    P( X n=0 | yn 1− =0) P(Y n 1− =0 |xn 1− = 1) P( X n 1−  = 1)   

+  P( X n=0 | yn 1− =1) P(Y n 1− =1 |xn 1− = 1) P( X n 1−  = 1)     

=  EP [EP [ X n=0 | X n 1− ] ] 

=  EP [ X n= 0 ] 
=  P( X n  = 0) . 



 14

The Ergodic Theorem: 

Definitions:  

•  A Markov chain, X0, X1, ….  satisfies  

P(Xn| xi: i = 1, …, n-1) =  P(Xn| xn-1) 

•  The distribution F(x), with density f(x), for a Markov chain is 

stationary (or invariant) if    

∫A  f(x) dx  = ∫ P(Xn∈ A | xn-1) f(x) dx. 

•  The Markov chain is irreducible if each set with positive P-

probability is visited at some point (almost surely).   
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•  An irreducible Markov chain is recurrent if, for each set A 

having positive P-probability, with positive P-probability the 

chain visits A infinitely often. 

•  A Markov chain is periodic if for some integer k > 1, there is a 

partition into k sets {A1, …, Ak} such that  

P(Xn+1 ∈  Aj+1 | xn∈ Aj) = 1 for all j= 1, …, k-1 (mod k).  That 

is, the chain cycles through the partition.  

Otherwise, the chain is aperiodic. 
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Theorem:  If the Markov chain X0, X1, ….  is irreducible with an 

invariant probability distribution F(x) then: 

1.  the Markov chain is recurrent 

2.  F is the unique invariant distribution 

If the chain is aperiodic, then for F-almost all x0, both 

3. limn→∞ supA | P(Xn ∈  A | X0 = x0 ) – ∫A  f(x) dx  | = 0 

And for any function h with ∫  h(x) dx < ∞, 

4.   limn→∞  n
1 ∑

=

n

ii
iXh )(   = ∫ h(x) f(x) dx   (= EF[h(x)] ), 

That is, the time average of h(X) equals its state-average, a.e. F. 
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A (now-familiar) puzzle. 

Example (continued): Let X and Y have similar conditional exponential 
distributions:  

f(X | y)  ∝   ye-yx  for 0 < X  

f(Y | x)  ∝   xe-xy  for 0 < Y 

To solve for the marginal density f(X) use Gibbs sampling from these 

exponential distributions.  The resulting sequence does not converge! 

Question:  Why does this happen? 

Answer:  (Hint: Recall HW #1, problem 2.)  Let θ be the statistical 
parameter for X with f(X|θ) the exponential model.  What “prior” 
density for θ yields the posterior f(θ | x)  ∝   xe-xθ?  

 Then, what is the “prior” expectation for X?  
Remark: Note that W = Xθ is pivotal.  What is its distribution? 
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More on this puzzle: 
The conjugate prior for the parameter θ in the exponential distribution is 
the Gamma Γ(α, β). 

f(θ) = )(α
βα

Γ θα-1 e-βθ    for θ, α, β > 0,  

Then the posterior for θ based on x = (x1, .., xn), n iid observations from 
the exponential distribution is 
    f(θ|x) is Gamma Γ(α′ , β′) 

where α′  = α+n and β′ = β + Σ xi. 
Let n=1, and consider the limiting distribution as α, β → 0.\ 
 

This produces the “posterior” density f(θ | x)  ∝   xe-xθ , 
which is mimicked in Bayes theorem by the improper “prior” density   

f(θ )  ∝   1/θ.  But then EF(θ) does not exist! 
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