Gibbs sampling (an MCMC method) and relations to EM

Lecture Outline

1. Gibbs
e the algorithm
a bivariate example
an elementary convergence proof for a (discrete) bivariate case
more than two variables
a counter example.

2. EM — a again (These notes will follow as a separate file.)
e EM as a maximization/maximization method

* (G1bbs as a variation of Generalized EM
O an example

e A counterexample for EM



Gibbs Sampling

We have a joint density

f(xa V1 "'ayk)
and we are interested, say, in some features of the marginal density

f(x) - ”"'jf(xayla '-'9yk) dyla dy29 REE dyk

For instance, suppose that we are interested in the average
E[X]= |x Ax)dx.
If we can sample from the marginal distribution, then
n
1=

without using f(x) explicitly in integration. Similar reasoning applies to
any other characteristic of the statistical model, 1.e., of the population.



The Gibbs Algorithm for computing this average.

Assume we can sample the k+1-many univariate conditional densities:

f(X| y19°--9yk)
f(Yl| x9y29'--9yk)
f(Y2| x9y19y39"'9yk)

S| X 91 Y35 - Vic1)-
Choose, arbitrarily, & initial values: Y= y?, Y= yg, ooy 1= yg.
Create: x' by a draw from AX| 1), ...,»})

yi by adraw from Y| | x', 59, ..., ¥})

1 I .0 0
y, by adraw from Y, | x',y1, 3.0 ¥1)

y, by adraw from AV, | x',p1, -5 Vi_y)-



This constitutes one Gibbs “pass’ through the k+1 conditional distributions,

yielding values: (x! ,yi, y12, . "93’}%)'
[terate the sampling to form the second “pass”
2 2 2 2
(x V1 V5 ....,yk).

Theorem: (under general conditions)
The distribution of x” converges to F(x) asn — oo,

Thus, we may take the last n X-values after many Gibbs passes:

U'S" X = ELX]

I=m

or take just the last value, x;" of n-many sequences of Gibbs passes

(i=1,..n) %%Xinf =~ E[X]

to solve for the average, =[x fix)dx.



A bivariate example of the Gibbs Sampler.

Example: Let X and Y have similar truncated conditional exponential
distributions:

AX|y) O yewx for0 <X <b
fY|x) U xew forO0<Y <b
where b 1s a known, positive constant.
Though it is not convenient to calculate, the marginal density f(X) 1s

readily simulated by Gibbs sampling from these (truncated) exponentials.

Below i1s a histogram for X, b = 5.0, using a sample of 500 terminal
observations with 15 Gibbs’ passes per trial, x,* (i= 1,..., 500, n; = 15)
(from Casella and George, 1992).
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Histogram for X, b = 5.0, using a sample of 500 terminal observations with 15 Gibbs’ passes per trial,

n.
X; "(i=1,...,500, n; =15). Taken from (Casella and George, 1992).



Here 1s an alternative way to compute the marginal f(X) using the same
Gibbs Sampler.

Recall the law of conditional expectations (assuming E[X] exists):

E[E[X|Y]]=E[X]
Thus E[fixN]= [fix [y)/)dy =fix).

Now, use the fact that the Gibbs sampler gives us a simulation of the
marginal density Y) using the penultimate values (for Y) in each Gibbs’

pass, above: yfl'_l (i=1,...500;n; = 15).

Calculate f{x | y!" _1), which by assumption is feasible.

Then note that:
~ 1 L n.—1
fx) = L3ty

1=
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The solid line graphs the alternative Gibbs Sampler estimate of the marginal f(x) from eth

same sequence of 500 Gibbs’ passes, using | f(x | »)A(y)dy =f(x). The dashed-line is the
exact solution. Taken from (Casella and George, 1992).



An elementary proof of convergence in the case of 2 x 2 Bernoulli data

Let (X,Y) be a bivariate variable, marginally, each 1s Bernoulli

X
_O 1_
0

v L P2
23 P4

where p; > 0, 2. p; = 1, marginally
P(X=0) = p1+p3 and P(X=1)=po+p4

P(Y=0) =p1+p2 and P(Y=1)=p3ip4.



P(¥]x):

P(X]y):

The conditional probabilities P(X]y) and P(Y|x) are evident:

X
0 1
P P
ptys bty
4! Py
Dty Doy
X
P P
pty, ptp
P Py
Dtpy Dty
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Suppose (for illustration) that we want to generate the marginal
distribution of X by the Gibbs Sampler, using the sequence of iterations
of draws between the two conditional probabilites P(X]y) and P(Y]x).

That is, we are interested in the sequence < ¥ :i=1, ... > created from the

starting value "= 0 or y'= 1.

Note that:
P(x"=0]|x:1=1,...,n-1)=P(x" =0 |x"") the Markov property

=P(x"=0[y""'=0) P(y"7'=0 [x"™) + P(x"=0]y""'=1) P(y""'=1 |x")
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Thus, we have the four (positive) transition probabilities:
P(Xn :j |xn_1: l) :pij > 09 with Zi Z]plj =1 (19] — O: 1)

With the transition probabilities positive, it 1s an (old) ergodic theorem

that, P( x") converges to a (unique) stationary distribution, independent

of the starting value ().

Next, we confirm the easy fact that the marginal distribution P(X) is that

same distinguished stationary point of this Markov process.
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P(x" =0)
— P(Xn =0 |xn—1: 0) P(Xn—l — 0) 4 P(X" =0 |xn—1: ]) P(Xn—l — 1)

= P(x"=0 |y""'=0) P(y"=0 |x"~'= 0) P(x"! = 0)

+  P(x"=0[y"'=1) P(y" =1 |x"'= 0) P(x"! = 0)

+  P(x"=0]y""'=0) P(y" =0 |x"'= ) P(x"' = 1)
tP(x"=0 Y TI=D) P(y =L [ = D POy = 1)

= Ep [Ep [x"=0] x"]]
= Ep[x"=0]
= P(x"=0).
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The Ergodic Theorem:
Definitions:

* A Markov chain, X, X1, .... satisfies

P(X,| x;:1=1, ..., n-1)= P(X,| x,-1)
e The distribution F(x), with density f(x), for a Markov chain is

stationary (or invariant) if
o fx) dx = PX,0A | x,1) flx) dx.
e The Markov chain is irreducible if each set with positive P-

probability is visited at some point (almost surely).
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e An irreducible Markov chain 1s recurrent if, for each set A
having positive P-probability, with positive P-probability the
chain visits A infinitely often.

e A Markov chain is periodic if for some integer k£ > 1, there 1s a

partition into k sets {A1, ..., A} such that
P(X, 4 U Aj+1 |anAj) =1 forallj=1, ..., k-1 (mod k). That

1s, the chain cycles through the partition.

Otherwise, the chain 1s aperiodic.
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Theorem: If the Markov chain Xy, X1, .... 1s irreducible with an

invariant probability distribution F(x) then:
1. the Markov chain is recurrent
2. F 1s the unique invariant distribution

[f the chain 1s aperiodic, then for F-almost all x, both
3.0im, _ o supa | P, OA | Xg=x9)— s flx)dx |=0

And for any function & with | h(x) dx < oo,

4 limy e LY H(X;) = [0 fi) dx (= Eglh(X)]),

That 1s, the time average of h(X) equals its state-average, a.e. F.
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A (now-familiar) puzzle.

Example (continued): Let X and Y have similar conditional exponential
distributions:

fiX|y) O yerx for0 <X

AY|x) OO xew for0<Y
To solve for the marginal density f(X) use Gibbs sampling from these
exponential distributions. The resulting sequence does not converge!

Question: Why does this happen?

Answer: (Hint: Recall HW #1, problem 2.) Let @be the statistical
parameter for X with f(X]6) the exponential model. What “prior”
density for Byields the posterior (8] x) O xex8?
Then, what 1s the “prior” expectation for X?

Remark: Note that W = X0 is pivotal. What is its distribution?
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More on this puzzle:
The conjugate prior for the parameter 0 in the exponential distribution is
the Gamma [ (Q, [3).

f16) = %ea-l RO for 8, a, B> 0,

Then the posterior for 8 based on x = (xy, .., X,,), 7 iid observations from
the exponential distribution i1s

f(Bx) 1s Gamma I (a', B)
where o' =0a+n and B' =3 + Z x;.

Let n=1, and consider the limiting distribution as o, 3 - 0.\

This produces the “posterior” density 8| x) O xe=x?,
which 1s mimicked in Bayes theorem by the improper “prior” density

f(6) O 1/6. Butthen Eg(0) does not exist!

18



Additional References

Casella, G. and George, E. (1992) “Explaining the Gibbs Sampler,”
Amer. Statistician 46, 167-174.

Flury, B. and Zoppe, A. (2000) “Exercises in EM,” Amer. Staistican 54,
207-209.

Hastie, T., Tibshirani, R, and Friedman, J. The Elements of Statistical
Learning. New York: Spring-Verlag, 2001, sections 8.5-8.6.

Tierney, L. (1994) “Markov chains for exploring posterior distributions’

(with discussion) Annals of Statistics 22, 1701-1762,

bJ

19



	Gibbs sampling (an MCMC method) and relations to EM
	
	
	Gibbs Sampling
	An elementary proof of convergence in the case of 2 x 2 Bernoulli data
	X




	A (now-familiar) puzzle.
	which is mimicked in Bayes theorem by the improper “prior” density
	f(? )  (  1/????But then EF(?) does not exist!
	Casella, G. and George, E. (1992) “Explaining the Gibbs Sampler,”
	Tierney, L. (1994) “Markov chains for exploring posterior distributions”

