Gibbs sampling (an MCMC method) and relations to EM Lectures – Outline

Part 1 (Feb. 20) Gibbs

- the algorithm
- a bivariate example
- an elementary convergence proof for a (discrete) bivariate case
- more than two variables
- a counter example.

Part 2 (Feb. 25) EM – again

- EM as a maximization/maximization method • Gibbs as a variation of Generalized EM with an example (for HW #2)
- A counterexample for EM

EM as a maximization/maximization method.

Recall:

 $L(\theta; x) \text{ is the likelihood function for } \theta \text{ with respect to the incomplete data } x.$ $L(\theta; (x, z)) \text{ is the likelihood for } \theta \text{ with respect to the complete data } (x,z).$ And $L(\theta; z \mid x)$ is a *conditional likelihood* for θ with respect to z, given x;
which is based on $h(z \mid x, \theta)$: the conditional density for the data z, given (x,θ) .
Then as $f(X \mid \theta) = f(X, Z \mid \theta) / h(Z \mid x, \theta)$ we have $log L(\theta; x) = log L(\theta; (x, z)) - log L(\theta; z \mid x) \quad (*)$

As below, we use the *EM* algorithm to compute the *mle*

$$\hat{\theta} = argmax_{\Theta} L(\theta; x)$$

With $\hat{\theta}_0$ an arbitrary choice, define (*E-step*) $Q(\theta \mid x, \hat{\theta}_0) = \int_Z [log L(\theta; x, z)] h(z \mid x, \hat{\theta}_0) dz$ and $\hat{z} = \hat{z} = \int_Z [log L(\theta; x, z)] h(z \mid x, \hat{\theta}_0) dz$

$$H(\theta \mid x, \hat{\theta}_0) = \int_{\mathbb{Z}} [\log L(\theta; z \mid x)] h(z \mid x, \hat{\theta}_0) dz.$$

then $\log \mathbf{L}(\theta; \mathbf{x}) = \mathbf{Q}(\theta \mid \mathbf{x}, \theta_0) - \mathbf{H}(\theta \mid \mathbf{x}, \theta_0),$

as we have integrated-out z from (*) using the conditional density $h(z \mid x, \hat{\theta}_0)$.

The *EM algorithm* is an iteration of

(1) the *E*-step: determine the integral *Q*(θ | *x*, θ̂_j),
(2) the *M*-step: define θ̂_{i+1} as *argmax*_Θ *Q*(θ | *x*, θ̂_i).

Continue until there is convergence of the $\hat{\theta}_i$.

Now, for a *Generalized EM* algorithm.

Let be P(Z) any distribution over the augmented data Z, with density p(z)Define the function F by:

$$F(\theta, P(Z)) = \int_{Z} [\log L(\theta; x, z)] p(z) dz - \int_{Z} \log p(z) p(z) dz$$
$$= E_{P} [\log L(\theta; x, z)] - E_{P} [\log p(z)]$$

When $p(Z) = h(Z | x, \hat{\theta}_0)$ from above, then $F(\theta, P(Z)) = log L(\theta; x)$.

Claim: For a fixed (arbitrary) value $\theta = \hat{\theta}_0$, $F(\hat{\theta}_0, P(Z))$ is maximized over distributions P(Z) by choosing $p(Z) = h(Z | x, \hat{\theta}_0)$.

Thus, the *EM* algorithm is a sequence of *M*-*M* steps: the old *E*-step now is a max over the second term in $F(\hat{\theta}_0, P(Z))$, given the first term. The second step remains (as in *EM*) a max over θ for a fixed second term, which does not involve θ

Suppose that the augmented data Z are multidimensional.

Consider the *GEM* approach and, instead of maximizing the choice of P(Z) over all of the augmented data – instead of the old *E*-step – instead maximize over only *one* coordinate of Z at a time, alternating with the (old) *M*-step.

This gives us the following link with the Gibbs algorithm: Instead of maximizing at each of these two steps, use the conditional distributions, we sample from them!

In HW #2, you will work out this parallel analysis between the *EM* and Gibbs algorithms for the calculation of the posterior distribution in the (k = 2) case of a *Mixture of Gaussians* problem.

An *EM* "counterexample":

We are testing failure times on a new variety of hard disk. Based on an *ECE theory* of these disks, the failure times follow a **Uniform** $U(0, \theta]$ distribution, $\theta > 0$.

We select at random m + n disks, having a common θ for failure We select *n* of these (at random) and test them until failure.

These *n* disks run as *iid* $U(0, \theta]$ quantities until they fail. The lab records the data of their exact failure times: $y = (y_1, ..., y_n)$.

We know (from HW #1) that

 $\hat{y} = max(y_1, ..., y_n)$

is both *sufficient* and is the *mle* for θ , w.r.t. the data *y*.

We conduct a different experiment with the remaining *m* disks.

We start them at a common time $t_0 = 0$. At time t > 0, chosen as an ancillary quantity w.r.t. θ , we halt our *m*-trials and observe only which of the *m*-many disks are still running.

Thus our observed data from the second experiment are only the *m* indicators, $x = (x_1, ..., x_m)$ where $x_i = 1$, or $x_i = 0$ as disk *i* is, or is not still running after *t* units time.

In what follows, assume that *at least* one of these *m*-disks is still running. So, given *x*, we know that $\theta \ge t$.

Our goal is to calculate the *mle* $\hat{\theta}$ = $argmax_{\Theta} L(\theta; t, x, y) = argmax_{\Theta} log L(\theta; t, x, y)$ (as *log* is monotone) The data x data are *incomplete* relative to data y. We don't know the failure times for the m observed disks, though we have one-sided censoring for each.

That is, for $x_i = 0$, the *i*th disk has already failed though we don't know its value. For $x_i = 1$, we may imagine, instead of halting the trial, letting the *i*th disk continue to run until it would fail.

Denote these missing data correspond to x by $z = (z_1, ..., z_m)$. Thus, we have that $z_i > (\leq) t$ as $x_i = 1$ ($x_i = 0$). Let $\hat{z} = max(z_1, ..., z_m)$: \hat{z} is *sufficient* and the *mle* for θ *w.r.t.* the data z. Let us try to use the *EM* algorithm to compute the *mle* for θ given the *incomplete* (observed) data (*x*,*y*), using the *complete* data (*x*,*y*,*z*).

Now, for applying the EM algorithm we recall that: $log L(\theta; t, x, y) = log L(\theta; t, x, y, z) - log h(z | t, x, y, \theta).$

But as *t* is ancillary and as *x* is function of *z* and *t*; *z* is sufficient for θ *w.r.t.* data (*z*,*x*,*t*),

so
$$\mathbf{L}(\theta; t, x, y, z) = \mathbf{L}(\theta; y, z).$$

Evidently, the *mle* and the *sufficient statistic* for the complete data is: $argmax_{\Theta} p(t,x,y,z \mid \theta) = \max(\hat{y}, \hat{z}) = \hat{\theta}^*$

as $p(y,z|\hat{\theta}^*,\theta) = [1/\hat{\theta}^*]^{n+m}$ for all $\theta \ge \hat{\theta}^*$

 $= 0 \qquad \text{for all } \theta < \hat{\theta}^*$

independent of θ , for all θ consistent with the data, as properly summarized by the sufficient statistic $\hat{\theta}^*$ for the data.

For the *E-step* in *EM*

$$Q(\theta \mid t, x, y, \hat{\theta}_{j}) = \int_{Z} [\log L(\theta; y, z)] h(z \mid t, x, y, \hat{\theta}_{j}) dz$$
$$= \mathbf{E}_{t, x, y, \hat{\theta}_{j}} [\log L(\theta; y, z)]$$
$$= \mathbf{E}_{t, x, y, \hat{\theta}_{j}} [\log [1/\theta]^{n+m}] \text{ for } \theta \ge \hat{\theta}^{*}$$

where $\hat{\theta}^* = \max(\hat{y}, \hat{z})$,

which depends upon x only through \hat{z} and upon y only through \hat{y} . That is, $\log L(\theta; y, z) = \log [1/\theta]^{n+m}$

is constant in (x, y) for each $\theta \ge \hat{\theta}^*$

So, for the *E*-step it appears that we require only to know

 $\mathbf{E}_{t,x,y,\hat{\theta}_{j}}[\hat{\theta}^{*}]$

Observe that, as the z_i are conditionally *iid* given θ , and as x_i is a function only of z_i and the ancillary quantity t,

$$E(z_{i} | t, x, y, \hat{\theta}_{j}) = E(z_{i} | t, x, \hat{\theta}_{j})$$

$$= E(z_{i} | t, x_{i}, \hat{\theta}_{j})$$

$$= \begin{bmatrix} (1/2)(t + \hat{\theta}_{j}) & \text{if } x_{i} = 1 \text{ (still running at time } t) \\ \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} (1/2)t & \text{if } x_{i} = 0 \text{ (not running at time } t) \end{bmatrix}$$

Thus, $\mathbf{E}_{t,x,y,\hat{\theta}_j}[\hat{\theta}^*] = \max[\hat{y}, (1/2)(t+\hat{\theta}_j)],$ as we have assumed that at least one $x_i = 1$, i.e., at least one of the *m*disks is still spinning when we look at time *t*. For the *M*-step in *EM* then we get:

$$\hat{\theta}_{j+1} = argmax_{\Theta} Q(\theta \mid t, x, y, \hat{\theta}_j)$$
$$= max[\hat{y}, (1/2)(t+\hat{\theta}_j)]$$

Thus, the *EM* algorithm iterates:

$$\hat{\theta}_{j+1} = max[\hat{y}, (1/2)(t+\hat{\theta}_j)]$$

and for each choice of $\hat{\theta}_0 > 0$,

$$lim_{j\to\infty} \hat{\theta}_{j+1} = max[\hat{y},t]$$

That is, the *EM* algorithm takes t to be sufficient for x, given that at least one of the *m*-disks is still spinning when we look at time t.

EM behaves here just as if $\hat{z} = t$.

Let $1 \le k \le m$ be the number of disks still spinning at time *t*, i.e. $k = \sum_i x_i$.

A more careful analysis of the likelihood function $L(\theta; t, x, y)$ reveals that:

$$\mathbf{L}(\theta; t, \mathbf{x}, \mathbf{y}) = \mathbf{p}(\mathbf{y}, \mathbf{x} \mid t, \theta)$$

= $\chi_{[\hat{\mathbf{y}}, \infty)}(\theta) \times \frac{1}{\theta}^n \times \frac{t}{\max(t, \theta)}^{m-k} \times (1 - \frac{t}{\max(t, \theta)})^k$

So that:

$$\hat{\theta} = argmax_{\Theta} \mathbf{L}(\theta; t, x, y) = max[\hat{y}, \frac{n+m}{n+m-k}t]$$

and unless $\frac{n+m}{n+m-k}t \leq \hat{y}$, $\hat{\theta} > \lim_{j \to \infty} \hat{\theta}_{j+1} = max[\hat{y},t],$

which is a larger value than the EM algorithm gives.

What goes wrong in the *EM* algorithm is that in computing the *E*-step, we have not attended to the important fact that the *log* likelihood function does not exist when $z_i > \theta$.

When computing $\mathbf{E}_{t,x,y,\hat{\theta}_{j}}$ [log L(θ ; y,z)] at the *j*+st *E*-step, say, we use the fact that, given $x_{i} = 1$ and $\theta = \hat{\theta}_{j}$, then z_{i} is Uniform $U[t, \hat{\theta}_{j}]$, with a conditional expected value of $(t+\hat{\theta}_{j})/2$. However, for each parameter value θ , $t < \theta < \hat{\theta}_{j}$ with with positive $\hat{\theta}_{i}$ -probability,

 $P_{t,x_{i}\hat{\theta}_{i}}(z_{i}: p(z_{i} | t, x_{i}, \theta) = 0) > 0$

and the expected *log*-likelihood for the *E*-step fails to exist for such θ !

The lesson to be learned from this example is this:

Before using the EM-algorithm, make sure that the log-likelihood function exists, so that the E-step is properly defined.

Additional References

- Flury, B. and Zoppe, A. (2000) "Exercises in EM," Amer. Staistican 54, 207-209.
- Hastie, T., Tibshirani, R, and Friedman, J. *The Elements of Statistical Learning*. New York: Spring-Verlag, 2001, sections 8.5-8.6.