Gibbs sampling (an MCMC method) and relations to EM
Lectures — Outline
Part 1 (Feb. 20) Gibbs

e the algorithm
 a bivariate example

e an elementary convergence proof for a (discrete) bivariate case
e more than two variables

* a counter example.

Part 2 (Feb. 25) EM - again

 EM as a maximization/maximization method
0 Gibbs as a variation of Generalized EM
with an example (for HW #2)

* A counterexample for EM



EM as a maximization/maximization method.
Recall:
L(0 ; x) is the likelihood function for 8 with respect to the incomplete data x.
L(0 ; (x, 7)) is the likelihood for O with respect to the complete data (x,z).
And L(0 ; z | x) is a conditional likelihood for 8 with respect to z, given Xx;
which is based on A(z | x, 9): the conditional density for the data z, given (x,0).
Then as fX|9=AX,Z|9) /h(Z|x,0)
we have log LB ;x)=1log L(O;(x,2)—logL(O;z|x) (¥

As below, we use the EM algorithm to compute the mle

0 = argmaxgL(0;x)



With 8, an arbitrary choice, define
(E-step) 0(8]x.80) = I;[log L(®;x,2)] h(z|x,80) dz

and

H®|x,8p) = [,[log L(®;z|x)] h(z|x, B dz.

then log L(8:x) = Q(8]x, 8p)— H(®|x, 6,
as we have integrated-out z from (*) using the conditional density &(z | x, 8).

The EM algorithm is an iteration of
(1) the E-step: determine the integral Q(0 | x, éj),
(2) the M-step: define éjﬂ as argmaxg Q(9 | x, éj).

Continue until there is convergence of the éj.



Now, for a Generalized EM algorithm.

Let be P(Z) any distribution over the augmented data Z, with density p(z)
Define the function F by:

F(8, P(Z)) = [,[log L(8; x, 2)] p(z)d= - [ log p(z) p(z)dz
= Ep[log L(8; x, 7)] - Ep [ log p(2)]

When p(Z) = h(Z | x, 8y from above, then F(0, P(Z)) = log L(8 ; x).

Claim: For a fixed (arbitrary) value 8 = 85, F(8,, P(Z)) is maximized over
distributions P(Z) by choosing p(Z) = h(Z | x, 8).

Thus, the EM algorithm is a sequence of M-M steps: the old E-step now is a
max over the second term in F (éo, P(Z)), given the first term. The second step

remains (as in £M) a max over 0 for a fixed second term, which does not
involve O



Suppose that the augmented data Z are multidimensional.

Consider the GEM approach and, instead of maximizing the choice of
P(Z) over all of the augmented data — instead of the old E-step — instead
maximize over only one coordinate of Z at a time, alternating with the
(old) M-step.

This gives us the following link with the Gibbs algorithm: Instead of
maximizing at each of these two steps, use the conditional distributions,
we sample from them!

In HW #2, you will work out this parallel analysis between the EM and
Gibbs algorithms for the calculation of the posterior distribution in the (k= 2)
case of a Mixture of Gaussians problem.



An EM “counterexample”:

We are testing failure times on a new variety of hard disk.
Based on an ECE theory of these disks, the failure times follow a

Uniform U(0, 0] distribution, 6 > 0.

We select at random m + n disks, having a common 0 for failure
We select n of these (at random) and test them until failure.

These n disks run as iid U(0, 0] quantities until they fail.
The lab records the data of their exact failure times: y = (yy, ...., ¥,,)-

We know (from HW #1) that

y = max (Y1, ...., V)
is both sufficient and is the mle for 0, w.r.t. the data y.



We conduct a different experiment with the remaining m disks.

We start them at a common time 7y = 0. At time 7 > 0, chosen as an

ancillary quantity w.r.t. 0, we halt our m-trials and observe only which of
the m-many disks are still running.

Thus our observed data from the second experiment are only the m
indicators, X=(X1, c0enr Xpp)
where x; = 1, or x;= 0 as disk i 1s, or 1s not still running after ¢ units time.

In what follows, assume that at least one of these m-disks is still running.
So, given x, we know that 0 > .

Our goal is to calculate the mle 6
= argmaxg L(9 ; tx,y) = argmaxg log (9 ; t.x,y) (as log is monotone)



The data x data are incomplete relative to data y. We don’t know the
failure times for the m observed disks, though we have one-sided
censoring for each.

That is, for x; = 0, the ith disk has already failed though we don’t know
its value. For x; = 1, we may imagine, instead of halting the trial, letting
the ith disk continue to run until it would fail.

Denote these missing data correspond to x by z = (zy, ...., Z,,)
Thus, we have that zi> () tasx; =1 (x;=0).

Let 2 = max(zy,...., z,,): 2 1s sufficient and the mle for © w.r.t. the data z.



Let us try to use the EM algorithm to compute the mle for 0 given the
incomplete (observed) data (x.,p), using the complete data (x,y,z).

Now, for applying the EM algorithm we recall that:
log L(; 1.x,y) = log L(6; t.x,p,2) — log h(z | t,x.,.0).

But as ¢ 1s ancillary and as x 1s function of z and ¢;
z 1s sufficient for O w.r.z. data (z,x,?),

SO L(0; ,x,y,2) = L(0; ,2).

Evidently, the mle and the sufficient statistic for the complete data 1s:
argmaxg p(t.x,y,z | 0) = max (§,2) = 6*

as p(y.z| 6%, 0)=[1/6*]»tm  for all © > 6*
= 0 for all 6 < B*

independent of 0, for all O consistent with the data, as properly summarized by the
sufficient statistic ©* for the data.



For the E-step in EM
00|txy.0) = [, [logL®;p2)]hG]|txy.d)) dz

= Ey x5, llog L(O: 1,2)]

= E;x..0. [log [1/8]7m] for 0 = 6*

9)’9
where 8* = max (¥,2),

which depends upon x only through Z and upon y only through ¥.
That 1s, log L(B; y,z)] = log [1/8]+m

is constant in (x,y) for each 8 = 6*

So, for the E£-step i1t appears that we require only to know
Efxp.6 2.6, 6%
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Observe that, as the zj are conditionally iid given 0, and as xj is a

function only of zj and the ancillary quantity ¢,
EGi|txp,8) = E(z|tx,0)
= E(Zl | taxiaej)
[ (1/2)(t+6;) if x;=1 (still running at time 7)
= |

] (1/2)¢ if x;=0 (not running at time ?)
ThU.S, Ef x,y’ [9*] = max[}?, (1/2)(t+éj) ],

as we have assumed that at least one x; = 1, i.e., at least one of the m-
disks is still spinning when we look at time ¢.
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For the M-step in EM then we get:
éj+1= argmaxg Q(0 | t.x.y, éj)
= max[, (1/2)(+6;)

Thus, the EM algorithm iterates:

A

0501 = max(3., (112)(t+6))]

and for each choice of 8,> 0,

lim; _, o 0= max[y,t].

That is, the EM algorithm takes ¢ to be sufficient for x, given that at least

one of the m-disks is still spinning when we look at time «.

EM behaves here just as if 2z =+¢.
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Let 1 <k < m be the number of disks still spinning at time ¢, 1.e. £k = Z; x;.

A more careful analysis of the likelihood function L(0; #,x,y) reveals that:
L(©; txy) =px|10)

_ 1" y m—k _ ¢ k
X[}A/,OO)(G) X 0 X max(z,0) x (1 max(t,e))
So that:
0 = argmaxg L(B; t.x,y) = max[y, ]
and unless — ”+m 1S9,

é > Zimj_)oo éj-l—l = max[yat]a

which 1s a larger value than the EM algorithm gives.
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What goes wrong in the EM algorithm is that in computing the E-step,
we have not attended to the important fact that the /og likelihood
function does not exist when z; > 0.

When computing E; »,0. [log L(6; y,z)] at the J+St E-step, say, we use the
b4 9 _]

fact that, given x; =1 and 0 = éj» then zj 1s Uniform U[#, @j], with a conditional
expected value of (t+ éj)/Z. However, for each parameter value 0, 1 <0 < éj
with with positive 8;-probability,

P 0.1 pzi [ £x,9)=0) >0

and the expected log-likelihood for the E-step fails to exist for such 0!

The lesson to be learned from this example i1s this:

Before using the EM-algorithm, make sure that the log-likelihood
function exists, so that the E-step is properly defined.
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