
 1

Gibbs sampling (an MCMC method) and relations to EM 
Lectures –  Outline 

Part 1 (Feb. 20)  Gibbs 
•  the algorithm 
•  a bivariate example 
•  an elementary convergence proof for a (discrete) bivariate case 
•  more than two variables 
•  a counter example. 

 
Part 2 (Feb. 25)  EM – again   

•  EM as a maximization/maximization method 
o Gibbs as a variation of Generalized EM 

with an example (for HW #2) 
•  A counterexample for EM 
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EM as a maximization/maximization method. 

Recall: 

L(θ ; x) is the likelihood function for θ with respect to the incomplete data x. 

L(θ ; (x, z)) is the likelihood for θ with respect to the complete data (x,z). 

And L(θ ; z | x) is a conditional likelihood for θ with respect to z, given x;  

which is based on h(z | x, θ): the conditional density for the data z, given (x,θ). 

Then as     f(X | θ) = f(X, Z | θ)  / h(Z | x, θ) 

we have    log L(θ ; x) = log L(θ ; (x, z)) – log L(θ ; z | x) (*) 

 

As below, we use the EM algorithm to compute the mle    

θ̂   =   argmaxΘ L(θ ; x) 
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With θ̂0 an arbitrary choice, define 
(E-step)  Q(θ | x,θ̂0) =   ∫Z [log L(θ ; x, z)] h(z | x,θ̂0) dz 

       and 

   H(θ | x, θ̂0) =   ∫Z [log L(θ ; z | x)] h(z | x, θ̂0) dz. 

 

then   log L(θ ; x)  =   Q(θ | x, θ0) –  H(θ | x, θ0),  
as we have integrated-out z from (*) using the conditional density h(z | x, θ̂0). 
 
The EM algorithm is an iteration of 

(1) the E-step: determine the integral Q(θ | x, θ̂j),  
(2) the M-step: define θ̂j+1 as argmaxΘ Q(θ | x, θ̂j). 

Continue until there is convergence of the θ̂j. 
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Now, for a Generalized EM algorithm. 
 
Let be P(Z) any distribution over the augmented data Z, with density p(z)  
Define the function F by: 

F(θ, P(Z))  =  ∫Z [log L(θ; x, z)] p(z)dz - ∫Z log p(z) p(z)dz 
   =  EP [log L(θ; x, z)] - EP [ log p(z)] 

 

When  p(Z) = h(Z | x, θ̂0) from above, then F(θ, P(Z)) = log L(θ ; x). 
 
Claim: For a fixed (arbitrary) value θ = θ̂0,  F(θ̂0, P(Z)) is maximized over 
distributions P(Z) by choosing p(Z) = h(Z | x, θ̂0). 
 
Thus, the EM algorithm is a sequence of M-M steps: the old E-step now is a 
max over the second term in F(θ̂0, P(Z)), given the first term. The second step 
remains (as in EM) a max over θ for a fixed second term, which does not 
involve θ 
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Suppose that the augmented data Z are multidimensional. 
 
Consider the GEM approach and, instead of maximizing the choice of 
P(Z) over all of the augmented data – instead of the old E-step – instead 
maximize over only one coordinate of Z at a time, alternating with the 
(old) M-step.   
 
This gives us the following link with the Gibbs algorithm: Instead of 
maximizing at each of these two steps, use the conditional distributions, 
we sample from them! 
 
 In HW #2, you will work out this parallel analysis between the EM and 
Gibbs algorithms for the calculation of the posterior distribution in the (k = 2) 
case of a Mixture of Gaussians problem. 
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An EM “counterexample”: 
 
We are testing failure times on a new variety of hard disk.   
Based on an ECE theory of these disks, the failure times follow a  

Uniform U(0, θ] distribution, θ > 0.   
 
We select at random m + n disks, having a common θ for failure  
We select n of these (at random) and test them until failure. 
 
These n disks run as iid U(0, θ] quantities until they fail.   
The lab records the data of their exact failure times: y = (y1, …., yn). 
 
We know (from HW #1) that   

ŷ  =   max (y1, …., yn) 
is both sufficient and is the mle for θ, w.r.t. the data y.   
  



 7

We conduct a different experiment with the remaining m disks.  
 
We start them at a common time t0 = 0.  At time t > 0, chosen as an 
ancillary quantity w.r.t. θ, we halt our m-trials and observe only which of 
the m-many disks are still running. 
 
Thus our observed data from the second experiment are only the m 
indicators,       x = (x1, …., xm)   
where xi = 1, or xi = 0 as disk i is, or is not still running after t units time. 
 
In what follows, assume that at least one of these m-disks is still running.  
So, given x, we know that θ ≥ t.  
 
Our goal is to calculate the mle θ̂  

= argmaxΘ L(θ ; t,x,y) = argmaxΘ log L(θ ; t,x,y)   (as log is monotone) 
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The data x data are incomplete relative to data y.  We don’t know the 
failure times for the m observed disks, though we have one-sided 
censoring for each. 
   
That is, for xi = 0, the ith disk has already failed though we don’t know 
its value. For xi = 1, we may imagine, instead of halting the trial, letting 
the ith disk continue to run until it would fail.    

 
Denote these missing data correspond to x by z = (z1, …., zm).   
Thus, we have that   zi > (≤) t as xi =1 (xi = 0). 
Let ẑ  = max(z1,…., zm): ẑ  is sufficient and the mle for θ  w.r.t. the data z. 
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Let us try to use the EM algorithm to compute the mle for θ given the 
incomplete (observed) data (x,y), using the complete data (x,y,z).  
 
Now, for applying the EM algorithm we recall that:  

log L(θ; t,x,y) = log L(θ; t,x,y,z) – log h(z | t,x,y,θ). 

But as t is ancillary and as x is function of z and t;  
z is sufficient for θ w.r.t. data (z,x,t), 

so     L(θ; t,x,y,z) = L(θ; y,z). 

Evidently, the mle and the sufficient statistic for the complete data is:  
argmaxΘ p(t,x,y,z | θ) = max ( ŷ, ẑ ) = θ̂* 

as  p(y,z| θ̂*, θ) = [1/θ̂*]n+m  for all θ ≥ θ̂* 

    =    0    for all θ < θ̂* 
independent of θ, for all θ consistent with the data, as properly summarized by the 
sufficient statistic θ̂* for the data. 
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For the  E-step in EM   

Q(θ | t,x,y,θ̂j) =   ∫Z [log L(θ; y,z)] h(z | t,x,y,θ̂j) dz  

      =  Et,x,y,θ̂j
 [log L(θ; y,z)] 

      =  Et,x,y,θ̂j
 [log [1/θ]n+m] for θ ≥ θ̂* 

where θ̂* = max ( ŷ, ẑ ),  

which depends upon x only through ẑ  and upon y only through ŷ.    

That is,      log L(θ; y,z)] =  log [1/θ]n+m 

is constant in (x,y) for each  θ ≥ θ̂* 

So, for the E-step it appears that we require only to know 

Et,x,y,θ̂j
 [θ̂*] 
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Observe that, as the zi are conditionally iid given θ, and as xi is a 

function only of zi and the ancillary quantity t, 

E(zi | t,x,y,θ̂j)  =  E(zi | t,x,θ̂j)   
=  E(zi | t,xi,θ̂j) 

   (1/2)(t+θ̂j)   if xi=1 (still running at time t) 
=       

    (1/2)t         if xi=0 (not running at time t) 
 

Thus,   Et,x,y,θ̂j
 [θ̂*] = max[ ŷ, (1/2)(t+θ̂j) ],  

as we have assumed that at least one xi = 1, i.e., at least one of the m-
disks is still spinning when we look at time t.  
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For the M-step in EM then we get:  

θ̂j+1 = argmaxΘ Q(θ | t,x,y,θ̂j)      

= max[ ŷ, (1/2)(t+θ̂j)]   

Thus, the EM algorithm iterates: 

θ̂j+1 = max[ ŷ, (1/2)(t+θ̂j)]   

and for each choice of θ̂0 > 0,  
limj→∞  θ̂j+1 = max[ ŷ,t]. 

 
That is, the EM algorithm takes t to be sufficient for x, given that at least 
one of the m-disks is still spinning when we look at time t.   
 

EM behaves here just as if ẑ  = t. 
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Let 1 ≤ k ≤ m be the number of disks still spinning at time t, i.e. k = Σi xi.   
 
A more careful analysis of the likelihood function L(θ; t,x,y) reveals that: 
 L(θ; t,x,y)  = p(y,x | t,θ)  

=  χ[ ŷ ,∞)(θ) ×××× n
θ
1  ×××× km

t
t −

θ),max(  × (1− k
t

t )),max( θ  

So that: 
    θ̂ = argmaxΘ L(θ; t,x,y)  =  max[ ŷ , kmn

mn
−+

+ t]  
 
and unless kmn

mn
−+

+ t  ≤ ŷ ,  

    θ̂  >  limj→∞ θ̂j+1 = max[ ŷ,t],   

which is a larger value than the EM algorithm gives. 
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What goes wrong in the EM algorithm is that in computing the E-step, 
we have not attended to the important fact that the log likelihood 
function does not exist when zi  > θ.   
 
When computing Et,x,y,θ̂j

 [log L(θ; y,z)] at the j+st E-step, say, we use the 

fact that, given xi = 1 and θ = θ̂j, then zi is Uniform U[t, θ̂j], with a conditional 
expected value of (t+θ̂j)/2.    However, for each parameter value θ, t < θ < θ̂j   
with with positive θ̂j-probability,  

Pt,xiθ̂j
(zi: p(zi | t,xi,θ) = 0 ) > 0 

and the expected log-likelihood for the E-step fails to exist for such θ! 
 
The lesson to be learned from this example is this: 

Before using the EM-algorithm, make sure that the log-likelihood 
function exists, so that the E-step is properly defined.
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