Unsupervised Learning

Week 1: Introduction, Statistical Basics, and a bit of Information Theory

Zoubin Ghahramani
zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science
University College London

Autumn 2003
Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:

\[x_1, x_2, x_3, x_4, \ldots \]

Supervised learning: The machine is also given desired outputs \(y_1, y_2, \ldots \), and its goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build representations of \(x \) that can be used for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce actions \(a_1, a_2, \ldots \) which affect the state of the world, and receives rewards (or punishments) \(r_1, r_2, \ldots \). Its goal is to learn to act in a way that maximises rewards in the long term.
Goals of Supervised Learning

Classification: The desired outputs y_i are discrete class labels. The goal is to classify new inputs correctly (i.e. to generalize).

Regression: The desired outputs y_i are continuous valued. The goal is to predict the output accurately for new inputs.
Goals of Unsupervised Learning

To find useful representations of the data, for example:

- finding clusters
- dimensionality reduction
- finding the hidden causes or sources of the data
- modeling the data density

Uses of Unsupervised Learning

- data compression
- outlier detection
- classification
- make other learning tasks easier
- a theory of human learning and perception
Web Pages

Categorisation

Clustering

Relations between pages

Supervised & Unsupervised Learning

ACL’99 Workshop -- Unsupervised Learning in Natural Language...

Mixture modelling, Clustering, Intrinsic classification,...

Workshop in Bonn

NIPS’98 Workshop - Integrating Supervised and Unsupervised ...

Learning Invariances

NIPS Tutorial 1999

What does unsupervised learning learn?
Why a statistical approach?

• A probabilistic model of the data can be used to
 – make inferences about missing inputs
 – generate predictions/fantasies/imagery
 – make decisions which minimise expected loss
 – communicate the data in an efficient way

• Statistical modelling is equivalent to other views of learning:
 – information theoretic: finding compact representations of the data
 – physical analogies: minimising free energy of a corresponding statistical mechanical system
Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?

Some axioms (informal):

- if something is certain its uncertainty $= 0$

- uncertainty should be maximum if all choices are equally probable

- uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the entropy function:

$$H(X) = - \sum_{X=x} P(X = x) \log P(X = x)$$

measured in bits (binary digits) if the base 2 logarithm is used or nats (natural digits) if the natural (base e) logarithm is used.
Some Definitions and Intuitions

• Surprise (for event $X = x$): $- \log P(X = x)$
• Entropy = average surprise: $H(X) = - \sum_{X=x} P(X = x) \log_2 P(X = x)$
• Conditional entropy

$$H(X|Y) = - \sum_x \sum_y P(x, y) \log_2 P(x|y)$$

• Mutual information

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X, Y)$$

• Kullback-Leibler divergence (relative entropy)

$$KL(P(X)||Q(X)) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$

• Relation between Mutual information and KL: $I(X; Y) = KL(P(X, Y)||P(X)P(Y))$
• Independent random variables: $P(X, Y) = P(X)P(Y)$
• Conditional independence $X \perp \!\!\!\!\!\!\!\!\!\! Y|Z$ (X conditionally independent of Y given Z)

means $P(X, Y|Z) = P(X|Z)P(Y|Z)$ and $P(X|Y, Z) = P(X|Z)$
Shannon’s Source Coding Theorem

A discrete random variable X, distributed according to $P(X)$ has entropy equal to:

$$H(X) = -\sum_x P(x) \log P(x)$$

Shannon’s source coding theorem: n independent samples of the random variable X, with entropy $H(X)$, can be compressed into minimum expected code of length $n\mathcal{L}$, where

$$H(X) \leq \mathcal{L} < H(X) + \frac{1}{n}$$

If each symbol is given a code length $l(x) = -\log_2 Q(x)$ then the expected per-symbol length \mathcal{L}_Q of the code is

$$H(X) + KL(P\|Q) \leq \mathcal{L}_Q < H(X) + KL(P\|Q) + \frac{1}{n},$$

where the relative-entropy or Kullback-Leibler divergence is

$$KL(P\|Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} \geq 0$$
Learning: A Statistical Approach II

- Goal: to represent the beliefs of learning agents.
- Cox Axioms lead to the following:

 If plausibilities/beliefs are represented by real numbers, then the only reasonable and consistent way to manipulate them is Bayes rule.

- Frequency vs belief interpretation of probabilities

- The Dutch Book Theorem:

 If you are willing to bet on your beliefs, then unless they satisfy Bayes rule there will always be a set of bets (“Dutch book”) that you would accept which is guaranteed to lose you money, no matter what outcome!
Paraphrased from E. T. Jaynes, using the notation $p(A|B)$ is the plausibility of statement A given that you know that statement B is true.

- Degrees of plausibility are represented by real numbers
- Qualitative correspondence with common sense, e.g.
 - If $p(A|C') > p(A|C)$ but $p(B|A&C') = p(B|A&C)$ then $p(A&B|C') \geq p(A&B|C)$

- Consistency:
 - If a conclusion can be reasoned in more than one way, then every possible way must lead to the same result.
 - All available evidence should be taken into account when inferring a plausibility.
 - Equivalent states of knowledge should be represented with equivalent plausibility statements.

Accepting these desiderata leads to **Bayes Rule** being the only way to manipulate plausibilities.
Bayes Rule

Probabilities are non-negative \(P(x) \geq 0 \) \(\forall x \).

Probabilities normalise: \(\sum_x P(x) = 1 \) for discrete distributions and \(\int p(x)dx = 1 \) for probability densities.

The joint probability of \(x \) and \(y \) is: \(P(x, y) \).

The marginal probability of \(x \) is: \(P(x) = \sum_y P(x, y) \).

The conditional probability of \(x \) given \(y \) is: \(P(x|y) = P(x, y)/P(y) \)

\[
P(x, y) = P(x)P(y|x) = P(y)P(x|y) \quad \Rightarrow \quad P(y|x) = \frac{P(x|y)P(y)}{P(x)}
\]
Bayesian Learning

Data \mathcal{D}, model class \mathcal{M}, model parameters θ. The likelihood and parameter priors are combined into the posterior for a particular model, batch and online:

$$p(\theta|\mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D}|\theta, \mathcal{M}) p(\theta|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})}$$

$$p(\theta|\mathcal{D}, x, \mathcal{M}) = \frac{p(x|\theta, \mathcal{D}, \mathcal{M}) p(\theta|\mathcal{D}, \mathcal{M})}{p(x|\mathcal{D}, \mathcal{M})}$$

Predictions are made by integrating over the posterior:

$$p(x|\mathcal{D}, \mathcal{M}) = \int d\theta \ p(x|\theta, \mathcal{M}) \ p(\theta|\mathcal{D}, \mathcal{M}).$$

To compare models, we again use Bayes’ rule and the prior on models

$$p(\mathcal{M}|\mathcal{D}) \propto p(\mathcal{D}|\mathcal{M}) \ p(\mathcal{M})$$

This also requires an integral over θ:

$$p(\mathcal{D}|\mathcal{M}) = \int d\theta \ p(\mathcal{D}|\theta, \mathcal{M}) \ p(\theta|\mathcal{M})$$

For interesting models, these integrals may be difficult to compute.
Bayesian Learning: A coin toss example

Coin toss: One parameter q — the odds of obtaining heads
So our space of models is the set $q \in [0, 1]$.

Learner A believes all values of q are equally plausible;
Learner B believes that it is more plausible that the coin is “fair” ($q \approx 0.5$) than “biased”.

These priors beliefs can be described by the Beta distribution:

$$p(q|\alpha_1, \alpha_2) = \frac{q^{(\alpha_1-1)}(1-q)^{(\alpha_2-1)}}{B(\alpha_1, \alpha_2)} = \text{Beta}(q|\alpha_1, \alpha_2)$$

for A: $\alpha_1 = \alpha_2 = 1.0$ and B: $\alpha_1 = \alpha_2 = 4.0$.
Bayesian Learning: The coin toss (cont)

Two possible outcomes:

\[
p(\text{heads}|q) = q \quad p(\text{tails}|q) = 1 - q
\]

Imagine we observe a single coin toss and it comes out heads

The probability of the observed data (likelihood) is:

\[
p(\text{heads}|q) = q
\]

Using Bayes Rule, we multiply the prior, \(p(q) \) by the likelihood and renormalise to get the posterior probability:

\[
p(q|\text{heads}) = \frac{p(q)p(\text{heads}|q)}{p(\text{heads})} \propto q \ Beta(q|\alpha_1, \alpha_2)
\]

\[
\propto q q^{(\alpha_1-1)}(1 - q)^{\alpha_2-1} = \text{Beta}(q|\alpha_1 + 1, \alpha_2)
\]
Bayesian Learning: The coin toss (cont)

Prior

A

B

Posterior
Some Terminology

Maximum Likelihood (ML) Learning: Does not assume a prior over the model parameters. Finds a parameter setting that maximises the likelihood of the data: $P(D|\theta)$.

Maximum a Posteriori (MAP) Learning: Assumes a prior over the model parameters $P(\theta)$. Finds a parameter setting that maximises the posterior: $P(\theta|D) \propto P(\theta)P(D|\theta)$.

Bayesian Learning: Assumes a prior over the model parameters. Computes the posterior distribution of the parameters: $P(\theta|D)$.
Learning about a coin II

Consider two alternative models of a coin, “fair” and “bent”. A priori, we may think that “fair” is more probable, eg:

\[p(\text{fair}) = 0.8, \quad p(\text{bent}) = 0.2 \]

For the bent coin, (a little unrealistically) all parameter values could be equally likely, where the fair coin has a fixed probability:

We make 10 tosses, and get: T H T H T T T T T T
Learning about a coin.

The evidence for the fair model is: \(p(D|\text{fair}) = (1/2)^{10} \approx 0.001 \) and for the bent model:

\[
p(D|\text{bent}) = \int dq \, p(D|q, \text{bent})p(q|\text{bent}) = \int dq \, q^2(1 - q)^8 = B(3, 9) \approx 0.002
\]

The posterior for the models, by Bayes rule:

\[
p(\text{fair}|D) \propto 0.0008, \quad p(\text{bent}|D) \propto 0.0004,
\]

ie, two thirds probability that the coin is fair.

How do we make predictions? By weighting the predictions from each model by their probability. Probability of Head at next toss is:

\[
\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{3}{12} = \frac{5}{12}.
\]

[In contrast, the usual frequentist analysis might look something like this: Look at the observed data under the sampling distribution given the null hypothesis (fair) – the probability of the observed data, or something more extreme is 7/64; this is larger than 0.1 so we do not reject the null hypothesis, and our prediction for future tosses is simply 0.5.]
Simple Statistical Modelling: modelling correlations

Assume:

- we have a data set $Y = \{y_1, \ldots, y_N\}$
- each data point is a vector of D features: $y_i = [y_{i1} \ldots y_{iD}]$
- the data points are i.i.d. (independent and identically distributed).

One of the simplest forms of unsupervised learning: model the mean of the data and the correlations between the D features in the data.

We can use a multi-variate Gaussian model:

$$p(y|\mu, \Sigma) = |2\pi\Sigma|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (y - \mu)\Sigma^{-1}(y - \mu) \right\}$$
ML Estimation of a Gaussian

Data set $Y = \{y_1, \ldots, y_N\}$, likelihood: $p(Y|\mu, \Sigma) = \prod_{n=1}^{N} p(y_n|\mu, \Sigma)$

Maximize likelihood \Leftrightarrow maximize log likelihood

Goal: find μ and Σ that maximise log likelihood:

$$L = \log \prod_{n=1}^{N} p(y_n|\mu, \Sigma) = \sum_{n} \log p(y_n|\mu, \Sigma)$$

$$= -\frac{N}{2} \log |2\pi \Sigma| - \frac{1}{2} \sum_{n} (y_n - \mu)^\top \Sigma^{-1} (y_n - \mu) \quad (3)$$

Note: equivalently, minimise $-L$, which is *quadratic* in μ

Procedure: take derivatives and set to zero:

$$\frac{\partial L}{\partial \mu} = 0 \quad \Rightarrow \quad \hat{\mu} = \frac{1}{N} \sum_{n} y_n \quad \text{(sample mean)}$$

$$\frac{\partial L}{\partial \Sigma} = 0 \quad \Rightarrow \quad \hat{\Sigma} = \frac{1}{N} \sum_{n} (y_n - \hat{\mu})(y_n - \hat{\mu})^\top \quad \text{(sample covariance)}$$
modelling correlations
\[\iff \]
maximising likelihood of a Gaussian model
\[\iff \]
minimising a squared error cost function
\[\iff \]
minimizing data coding cost in bits (assuming Gaussian distributed)
Error functions, noise models, and likelihoods

- **Squared error:** \((y - \mu)^2\)
 Gaussian noise assumption, \(y\) is real-valued

- **Absolute error:** \(|y - \mu|\)
 Exponential noise assumption, \(y\) real or positive

- **Binary cross entropy error:**

 \[-y \log p - (1 - y) \log(1 - p)\]

 Binomial noise assumption, \(y\) binary

- **Cross entropy error:** \(\sum_i y_i \log p_i\)
 Multinomial noise assumption, \(y\) is discrete (binary unit vector)
Three Limitations

• What about higher order statistical structure in the data? ⇒ nonlinear and hierarchical models

• What happens if there are outliers? ⇒ other noise models

• There are $D(D + 1)/2$ parameters in the multi-variate Gaussian model. What if D is very large? ⇒ dimensionality reduction
For some matrix identities and matrix derivatives see:
www.gatsby.ucl.ac.uk/∼roweis/notes/matrixid.pdf

Also, see Tom Minka’s notes on matrix algebra at CMU.
http://lib.stat.cmu.edu/∼minka/papers/matrix.html