

Unsupervised Learning

Week 1: Introduction, Statistical Basics, and a bit of Information Theory

Zoubin Ghahramani

`zoubin@gatsby.ucl.ac.uk`

**Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science
University College London**

Autumn 2003

Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:

$$x_1, x_2, x_3, x_4, \dots$$

Supervised learning: The machine is also given **desired outputs** y_1, y_2, \dots , and its goal is to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to **build representations** of x that can be used for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce **actions** a_1, a_2, \dots which affect the state of the world, and receives **rewards (or punishments)** r_1, r_2, \dots . Its goal is to learn to act in a way that **maximises rewards** in the long term.

Goals of Supervised Learning

Classification: The desired outputs y_i are discrete class labels.
The goal is to classify new inputs correctly (i.e. to generalize).

Regression: The desired outputs y_i are continuous valued.
The goal is to predict the output accurately for new inputs.

Goals of Unsupervised Learning

To find useful representations of the data, for example:

- finding clusters
- dimensionality reduction
- finding the hidden causes or sources of the data
- modeling the data density

Uses of Unsupervised Learning

- data compression
- outlier detection
- classification
- make other learning tasks easier
- a theory of human learning and perception

Handwritten Digits

Google™ Advanced Search Preferences Language Tools Search Tips
unsupervised learning Google Search I'm Feeling Lucky

Web Images Groups Directory
Searched the web for **unsupervised learning**. Results 1 - 10 of about 55,500. Search took 0.18 seconds.

Category: Computers > Artificial Intelligence > Machine Learning

Recursive-Partitioning.com -- Supervised & **Unsupervised Learning**
... Check out Machine **Learning** Books at Amazon.com. Search and Categories. ...
Description: Recursive partitioning based supervised and **unsupervised learning** methods resources. Comprehensive...
Category: Computers > Artificial Intelligence > Machine Learning
www.recursive-partitioning.com/ - 18k - Cached - Similar pages

ACL'99 Workshop -- **Unsupervised Learning** in Natural Language ...
PROGRAM ACL'99 Workshop **Unsupervised Learning** in Natural Language Processing.
University of Maryland June 21, 1999. ...
Description: Workshop at the 37th Annual Meeting of the Association for Computational Linguistics. University...
Category: Computers > Artificial Intelligence > Machine Learning > Conferences
www.ai.stri.com/~kehler/unsup-acl-99.html - 5k Cached - Similar pages

Mixture modelling, Clustering, Intrinsic classification, ...
... Mixture modelling is also known as **unsupervised** concept **learning** (in Artificial Intelligence); intrinsic classification (in Philosophy), or, classification; ...
Description: Mixture modelling, Clustering, Intrinsic classification, **Unsupervised learning** and Mixture modeling....
Category: Computers > Artificial Intelligence > Machine Learning
www.cs.monash.edu.au/~dld/mixture.modelling.page.html - 26k Cached - Similar pages

Workshop in Bonn
Computer Vision Group , Computer Science , University Bonn Dagstuhl-Seminar on
Unsupervised Learning 21.3.-26.3. 1999. Schloss Dagstuhl, Wadern, Germany: ...
www-db.informatik.uni-bonn.de/dagstuhl/ - 13k - Cached - Similar pages

NIPS*98 Workshop - Integrating Supervised and **Unsupervised** ...
NIPS*98 Workshop "Integrating Supervised and **Unsupervised Learning**"
Friday, December 4, 1998. ORGANIZERS: ...
www.cs.cmu.edu/~mccallum/supunsup - 7k Cached - Similar pages

LearningInvariances
... **Unsupervised Learning** of Invariances. Laurenz Wiskott and Terrence J. Sejnowski. ... **Unsupervised Learning** of Invariances in Neural Visual Systems. ...
itb.biologie.hu-berlin.de/~wiskott/Projects/LearningInvariances.html - 6k Cached - Similar pages

NIPS Tutorial 1999
Probabilistic Models for **Unsupervised Learning** Tutorial presented at
the 1999 NIPS Conference by Zoubin Ghahramani and Sam Roweis. ...
www.gatsby.ucl.ac.uk/~zoubin/NIPStutorial.html - 4k Cached - Similar pages

[PS] www.cs.jhu.edu/~brill/acl-wkshp.ps
Similar pages

What does **unsupervised learning** learn?
Part1 - Part2 - Part3 - Part4 ... I do? What does **unsupervised**

Web Pages

Categorisation
Clustering
Relations between pages

Why a statistical approach?

- A probabilistic model of the data can be used to
 - make inferences about missing inputs
 - generate predictions/fantasies/imagery
 - make decisions which minimise expected loss
 - communicate the data in an efficient way
- Statistical modelling is equivalent to other views of learning:
 - information theoretic: finding compact representations of the data
 - physical analogies: minimising free energy of a corresponding statistical mechanical system

Information, Probability and Entropy

Information is the **reduction of uncertainty**. How do we measure uncertainty?

Some axioms (informal):

- if something is certain its uncertainty = 0
- uncertainty should be maximum if all choices are equally probable
- uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the **entropy** function:

$$H(X) = - \sum_{X=x} P(X = x) \log P(X = x)$$

measured in *bits* (**binary digits**) if the base 2 logarithm is used or *nats* (**natural digits**) if the natural (base e) logarithm is used.

Some Definitions and Intuitions

- Surprise (for event $X = x$): $-\log P(X = x)$
- Entropy = average surprise: $H(X) = -\sum_{X=x} P(X = x) \log_2 P(X = x)$
- Conditional entropy

$$H(X|Y) = -\sum_x \sum_y P(x, y) \log_2 P(x|y)$$

- Mutual information

$$I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X, Y)$$

- Kullback-Leibler divergence (relative entropy)

$$KL(P(X)\|Q(X)) = \sum_x P(x) \log \frac{P(x)}{Q(x)}$$

- Relation between Mutual information and KL: $I(X; Y) = KL(P(X, Y)\|P(X)P(Y))$
- Independent random variables: $P(X, Y) = P(X)P(Y)$
- Conditional independence $X \perp\!\!\!\perp Y|Z$ (X conditionally independent of Y given Z)
means $P(X, Y|Z) = P(X|Z)P(Y|Z)$ and $P(X|Y, Z) = P(X|Z)$

Shannon's Source Coding Theorem

A discrete random variable X , distributed according to $P(X)$ has **entropy** equal to:

$$H(X) = - \sum_x P(x) \log P(x)$$

Shannon's source coding theorem: n independent samples of the random variable X , with entropy $H(X)$, can be compressed into minimum expected code of length $n\mathcal{L}$, where

$$H(X) \leq \mathcal{L} < H(X) + \frac{1}{n}$$

If each symbol is given a code length $l(x) = -\log_2 Q(x)$ then the expected per-symbol length \mathcal{L}_Q of the code is

$$H(X) + KL(P\|Q) \leq \mathcal{L}_Q < H(X) + KL(P\|Q) + \frac{1}{n},$$

where the **relative-entropy** or **Kullback-Leibler divergence** is

$$KL(P\|Q) = \sum_x P(x) \log \frac{P(x)}{Q(x)} \geq 0$$

Learning: A Statistical Approach II

- Goal: to represent the beliefs of learning agents.
- Cox Axioms lead to the following:

If plausibilities/beliefs are represented by real numbers, then the only reasonable and consistent way to manipulate them is Bayes rule.

- Frequency vs belief interpretation of probabilities
- The Dutch Book Theorem:

If you are willing to bet on your beliefs, then unless they satisfy Bayes rule there will always be a set of bets ("Dutch book") that you would accept which is guaranteed to lose you money, no matter what outcome!

Desiderata (or Axioms) for Computing Plausibilities / Degrees of Belief

Paraphrased from E. T. Jaynes, using the notation $p(A|B)$ is the plausibility of statement A given that you know that statement B is true.

- Degrees of plausibility are represented by real numbers
- Qualitative correspondence with common sense, e.g.
 - If $p(A|C') > p(A|C)$ but $p(B|A \& C') = p(B|A \& C)$ then $p(A \& B|C') \geq p(A \& B|C)$
- Consistency:
 - If a conclusion can be reasoned in more than one way, then every possible way must lead to the same result.
 - All available evidence should be taken into account when inferring a plausibility.
 - Equivalent states of knowledge should be represented with equivalent plausibility statements.

Accepting these desiderata leads to **Bayes Rule** being the only way to manipulate plausibilities.

Bayes Rule

Probabilities are non-negative $P(x) \geq 0 \forall x$.

Probabilities normalise: $\sum_x P(x) = 1$ for discrete distributions and $\int p(x)dx = 1$ for probability densities.

The **joint probability** of x and y is: $P(x, y)$.

The **marginal probability** of x is: $P(x) = \sum_y P(x, y)$.

The **conditional probability** of x given y is: $P(x|y) = P(x, y)/P(y)$

$$P(x, y) = P(x)P(y|x) = P(y)P(x|y) \quad \Rightarrow \quad$$

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Bayesian Learning

Data \mathcal{D} , model class \mathcal{M} , model parameters θ . The likelihood and parameter priors are combined into the posterior for a particular model, **batch** and **online**:

$$p(\theta|\mathcal{D}, \mathcal{M}) = \frac{p(\mathcal{D}|\theta, \mathcal{M})p(\theta|\mathcal{M})}{p(\mathcal{D}|\mathcal{M})} \quad p(\theta|\mathcal{D}, x, \mathcal{M}) = \frac{p(x|\theta, \mathcal{D}, \mathcal{M})p(\theta|\mathcal{D}, \mathcal{M})}{p(x|\mathcal{D}, \mathcal{M})}$$

Predictions are made by integrating over the posterior:

$$p(x|\mathcal{D}, \mathcal{M}) = \int d\theta \, p(x|\theta, \mathcal{M}) \, p(\theta|\mathcal{D}, \mathcal{M}).$$

To compare models, we again use Bayes' rule and the prior on models

$$p(\mathcal{M}|\mathcal{D}) \propto p(\mathcal{D}|\mathcal{M}) \, p(\mathcal{M})$$

This also requires an integral over θ :

$$p(\mathcal{D}|\mathcal{M}) = \int d\theta \, p(\mathcal{D}|\theta, \mathcal{M}) \, p(\theta|\mathcal{M})$$

For interesting models, these integrals may be difficult to compute.

Bayesian Learning: A coin toss example

Coin toss: One parameter q — the odds of obtaining *heads*

So our space of models is the set $q \in [0, 1]$.

Learner A believes all values of q are equally plausible;

Learner B believes that it is more plausible that the coin is “fair” ($q \approx 0.5$) than “biased”.

A

B

These priors beliefs can be described by the Beta distribution:

$$p(q|\alpha_1, \alpha_2) = \frac{q^{(\alpha_1-1)}(1-q)^{(\alpha_2-1)}}{B(\alpha_1, \alpha_2)} = \text{Beta}(q|\alpha_1, \alpha_2)$$

for A: $\alpha_1 = \alpha_2 = 1.0$ and B: $\alpha_1 = \alpha_2 = 4.0$.

Bayesian Learning: The coin toss (cont)

Two possible outcomes:

$$p(\text{heads}|q) = q \quad p(\text{tails}|q) = 1 - q \quad (1)$$

Imagine we observe a single coin toss and it comes out heads

The probability of the observed data (likelihood) is:

$$p(\text{heads}|q) = q \quad (2)$$

Using Bayes Rule, we multiply the prior, $p(q)$ by the likelihood and renormalise to get the posterior probability:

$$\begin{aligned} p(q|\text{heads}) &= \frac{p(q)p(\text{heads}|q)}{p(\text{heads})} \propto q \text{ Beta}(q|\alpha_1, \alpha_2) \\ &\propto q q^{(\alpha_1-1)} (1-q)^{(\alpha_2-1)} = \text{Beta}(q|\alpha_1 + 1, \alpha_2) \end{aligned}$$

Bayesian Learning: The coin toss (cont)

Prior

A

B

Posterior

Some Terminology

Maximum Likelihood (ML) Learning: Does not assume a prior over the model parameters. Finds a parameter setting that maximises the likelihood of the data: $P(\mathcal{D}|\theta)$.

Maximum a Posteriori (MAP) Learning: Assumes a prior over the model parameters $P(\theta)$. Finds a parameter setting that maximises the posterior: $P(\theta|\mathcal{D}) \propto P(\theta)P(\mathcal{D}|\theta)$.

Bayesian Learning: Assumes a prior over the model parameters. Computes the posterior distribution of the parameters: $P(\theta|\mathcal{D})$.

Learning about a coin II

Consider two alternative models of a coin, “fair” and “bent”. A priori, we may think that “fair” is more probable, eg:

$$p(\text{fair}) = 0.8, \quad p(\text{bent}) = 0.2$$

For the bent coin, (a little unrealistically) all parameter values could be equally likely, where the fair coin has a fixed probability:

We make 10 tosses, and get: T H T H T T T T T T

Learning about a coin. . .

The **evidence** for the fair model is: $p(\mathcal{D}|\text{fair}) = (1/2)^{10} \simeq 0.001$
and for the bent model:

$$p(\mathcal{D}|\text{bent}) = \int dq p(\mathcal{D}|q, \text{bent})p(q|\text{bent}) = \int dq q^2(1-q)^8 = \text{B}(3, 9) \simeq 0.002$$

The posterior for the models, by Bayes rule:

$$p(\text{fair}|\mathcal{D}) \propto 0.0008, \quad p(\text{bent}|\mathcal{D}) \propto 0.0004,$$

ie, two thirds probability that the coin is fair.

How do we make predictions? By weighting the predictions from each model by their probability. Probability of Head at next toss is:

$$\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{3}{12} = \frac{5}{12}.$$

[In contrast, the usual **frequentist** analysis might look something like this: Look at the observed data under the sampling distribution given the null hypothesis (fair) – the probability of the observed data, or something more extreme is $7/64$; this is larger than 0.1 so we do not reject the null hypothesis, and our prediction for future tosses is simply 0.5.]

Simple Statistical Modelling: modelling correlations

Assume:

- we have a data set $Y = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$
- each data point is a vector of D features:
$$\mathbf{y}_i = [y_{i1} \dots y_{iD}]$$
- the data points are i.i.d. (independent and identically distributed).

One of the simplest forms of unsupervised learning: model the **mean** of the data and the **correlations** between the D features in the data

We can use a multi-variate Gaussian model:

$$p(\mathbf{y}|\mu, \Sigma) = |2\pi\Sigma|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2}(\mathbf{y} - \mu)^\top \Sigma^{-1}(\mathbf{y} - \mu) \right\}$$

ML Estimation of a Gaussian

Data set $Y = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$, likelihood: $p(Y|\mu, \Sigma) = \prod_{n=1}^N p(\mathbf{y}_n|\mu, \Sigma)$

Maximize likelihood \Leftrightarrow maximize log likelihood

Goal: find μ and Σ that maximise log likelihood:

$$\begin{aligned}\mathcal{L} &= \log \prod_{n=1}^N p(\mathbf{y}_n|\mu, \Sigma) = \sum_n \log p(\mathbf{y}_n|\mu, \Sigma) \\ &= -\frac{N}{2} \log |2\pi\Sigma| - \frac{1}{2} \sum_n (\mathbf{y}_n - \mu)^\top \Sigma^{-1} (\mathbf{y}_n - \mu)\end{aligned}\tag{3}$$

Note: equivalently, minimise $-\mathcal{L}$, which is *quadratic* in μ

Procedure: take derivatives and set to zero:

$$\frac{\partial \mathcal{L}}{\partial \mu} = 0 \quad \Rightarrow \quad \hat{\mu} = \frac{1}{N} \sum_n \mathbf{y}_n \quad (\text{sample mean})$$

$$\frac{\partial \mathcal{L}}{\partial \Sigma} = 0 \quad \Rightarrow \quad \hat{\Sigma} = \frac{1}{N} \sum_n (\mathbf{y}_n - \hat{\mu})(\mathbf{y}_n - \hat{\mu})^\top \quad (\text{sample covariance})$$

Note

modelling correlations

maximising likelihood of a Gaussian model

minimising a squared error cost function

minimizing data coding cost in bits (assuming Gaussian distributed)

Error functions, noise models, and likelihoods

- **Squared error:** $(y - \mu)^2$
Gaussian noise assumption, y is real-valued
- **Absolute error:** $|y - \mu|$
Exponential noise assumption, y real or positive
- **Binary cross entropy error:**
 $-y \log p - (1 - y) \log(1 - p)$
Binomial noise assumption, y binary
- **Cross entropy error:** $\sum_i y_i \log p_i$
Multinomial noise assumption, y is discrete (binary unit vector)

Three Limitations

- What about higher order statistical structure in the data? \Rightarrow **nonlinear and hierarchical models**
- What happens if there are **outliers**? \Rightarrow **other noise models**
- There are $D(D + 1)/2$ parameters in the multi-variate Gaussian model. What if D is very large? \Rightarrow **dimensionality reduction**

End Notes

For some matrix identities and matrix derivatives see:

www.gatsby.ucl.ac.uk/~roweis/notes/matrixid.pdf

Also, see Tom Minka's notes on matrix algebra at CMU.

<http://lib.stat.cmu.edu/~minka/papers/matrix.html>