
Assignment 2: Latent Variable Models

Unsupervised Learning

Zoubin Ghahramani

Due: Mon Nov 1, 2004

Note: The Matrix Inversion Lemma

(A+XBX>)−1 = A−1 −A−1X(B−1 +X>A−1X)−1X>A−1

is a useful tool to know, and may be useful for some of these questions.

[10 points] Part I. Posterior over Factors in Factor Analysis

In Factor Analysis:
p(x) = N(0, I)

p(y|x) = N(Λx,Ψ)

Derive the expression for the mean and covariance of p(x|y). Hint: write out the joint
distribution p(x,y) and treat y as a constant.

[10 points] Part II. Principal Components Analysis

In Probabilistic Principal Components Analysis

p(x) = N(0, I)

p(y|x) = N(Λx, σ2I)

and the principal components are assumed to be orthonormal: Λ>Λ = I. Derive the mean
and covariance of p(x|y) in the PCA limit, σ2 → 0.

[80 points] Part III. EM for Binary Data

Consider a data set of binary (black and white) images. Each image is arranged into a
vector of pixels by concatenating the columns of pixels in the image. The data set has N
images {y(1), . . . ,y(N)} and each image has D pixels, where D is (number of rows × number
of columns) in the image. For example, image y(n) consists of a vector (y(n)

1 , . . . , y
(n)
D ) where

y
(n)
d ∈ {0, 1} for all n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.

Recall that a Bernoulli random variable has the following form P (y = 1|p) = p and
P (y = 0|p) = 1− p which we can write as P (y|p) = py(1− p)(1−y).

A D-dimensional multivariate Bernoulli variable has the following form

P (y|p) =
D∏
d=1

pydd (1− pd)(1−yd)

where both y and p are D-dimensional vectors



5% Explain why a multivariate Gaussian is not an appropriate model for this data set of
images.

Assume that the images were modelled as independently and identically distributed samples
from a multivariate Bernoulli with parameter vector p = (p1, . . . , pD).

5% How many bits would it take on average to code this data set?

5% What is the equation for the maximum likelihood (ML) estimate of p (recall assign-
ment 1)? Note that you can solve for p directly.

10% Assuming independent Beta priors on the parameters pd

P (pd) =
Γ(α+ β)
Γ(α)Γ(β)

pα−1
d (1− pd)β−1

and P (p) =
∏
d P (pd) What is the maximum a posteriori (MAP) estimate of p? Hint:

maximise the log posterior with respect to p.

Download the data set binarydigits.txt which contains N = 100 images with D = 64
pixels each, in an N×D matrix. These pixels can be displayed as 8×8 images by rearranging
them. Display the data set in Matlab by running bindigit.m (almost no Matlab knowledge
required to do this).

10% Write code to learn the ML parameters of a multivartiate Bernoulli from this data set
and display these paramteres as an 8 × 8 image. Hand in your code and the learned
parameter vector. (Matlab code is preferred, but C or Java are acceptable).

5% Modify your code to learn MAP parameters with α = β = 3. What is the new learned
parameter vector for this data set? Explain why this might be better or worse than
the ML estimate.

Mixture Models:

10% Write down the likelihood for a model consisting of a mixture of K multivariate
Bernoulli distributions. Use the parameters π1, . . . , πK to denote the mixing propor-
tions (0 ≤ πk ≤ 1;

∑
k πk = 1) and arrange the K Bernoulli parameter vectors into a

matrix P with elements pkd denoting the probability that pixel d takes value 1 under
mixture component k.

Just like in a mixture of Gaussians we can think of this model as a latent variable model,
with a discrete hidden variable s(n) ∈ {1, . . . ,K} where P (s(n) = k|π) = πk.

5% Write down the expression for the responsibility of mixture component k for data
vector y(n), i.e. rnk ≡ P (s(n) = k|y(n),π,P)



20% Implement the EM algorithm for a mixture of K multivariate Bernoullis. The algo-
rithm should take as input K, a matrix Y containing the data set, and a number of
iterations. The algorithm should run for that number of iterations or until the log
likelihood converges (does not increase by more than a very small amount). Beware
of numerical problems as likelihoods can get very small, it is better to deal with log
likelihoods. Also be careful with numerical problems when computing responsibilities
— it might be necessary to multiply the top and bottom of the equation for responsi-
bilities by some constant to avoid problems. Hand in code and a high level explanation
of what you algorithm does.

15% Run your algororithm on the data set for varying K = 2, 3, 4. Verify that the log
likelihood increases at each step of EM. Report the log likelihoods obtained (measured
in bits) and display the parameters found.

10% Comment on how well the algorithm works, whether it finds good clusters (look at the
responsibilities and try to interpret them), and how you might improve the model.


