
Assignment 5: Variational and Sampling Methods

Unsupervised Learning

Zoubin Ghahramani

Due: End of Term (Friday Dec 17, 2004)

The term ends on Dec 17, 2004. I will not be here so please hand in assignments to
the Gatsby Unit (4th floor either Alexandra Boss or Mary Hardie). I am willing to
accept assignments handed in by Friday Jan 14, 2005 at the latest, but these will
receive a 30% penalty. Anything after Jan 14th will not be marked and get 0%.

Consider the binary latent factor model discussed in the class notes on variational learning. This
is a model with a vector s of K binary latent variables, s = (s1, . . . , sK), a real-valued observed
vector y and parameters θ = {{µi, πi}Ki=1, σ

2}. The model is described by:

p(s|π) = p(s1, . . . , sK |π) =
K∏
i=1

p(si) =
K∏
i=1

πsii (1− πi)(1−si)

p(y|s1, . . . , sK ,µ, σ
2) = N

(∑
i

siµi, σ
2I

)
where y us a D-dimensional vector and I is the D×D identity matrix. Assume you have a data set
of N i.i.d. observations of y, i.e. Y = {y(1), . . . ,y(N)}. More details are provided in Appendix A.

General Matlab hint: wherever possible, avoid looping over the data points. Many (but not
all) of these functions can be written using matrix operations. In Matlab it’s much faster.

Warning: Each question depends on earlier questions. Start as soon as possible.

Hand in: Derivations, code and plots.

5% Gibbs sampling relies on computing conditional probabilities of certain variables given all
other variables (read section 29.5 in MacKay’s textbook if you haven’t done so already).
Derive the conditional probability:

p(s
(n)
i |s

(n)
1 , . . . , s

(n)
i−1, s

(n)
i+1, . . . , s

(n)
K ,y(n),θ)

for the binary latent variable model, which you will need for Gibbs sampling. Describe an
algorithm for drawing samples from this distribution using the rand function in Matlab which
gives you uniformly distributed random numbers between 0 and 1.

20% In this exercise you will implement the fully factored (a.k.a. mean-field) variational ap-
proximation described in the course notes. That is, for each data point y(n), the code will
approximate the posterior distribution over the hidden variables by a distribution:

qn(s(n)) =
K∏
i=1

λ
s
(n)
i
in (1− λin)(1−s(n)

i)

and find the λ(n)’s that maximize Fn holding θ fixed. Specifically, you should write a Matlab
function:

[lambda,F] = MeanField(Y,mu,sigma,pie,lambda0,maxsteps)

where lambda is N ×K, F is the lower bound on the likelihood, Y is the N ×D data matrix,
mu is the D ×K matrix of means, pie is the 1×K vector of priors on s, lambda0 are initial
values for lambda and maxsteps are maximum number of steps of the fixed point equations.
You might also want to set a convergence criterion so that if F changes by less than some very
small number ε the iterations halt.

20% Using the conditional probability derived in the first question you will now implement Gibbs
sampling to approximate the posterior distribution over the hidden states given the data.
Specifically, write a function:

[S] = Gibbs(Y, mu, sigma, pie, S0, nsamples)

where S is a N ×K× nsamples array of samples over the hidden variables, S0 is an N ×K
matrix of initial settings for the hidden variables.

5% We have derived the M step for this model in terms of the quantities: Y, ES = Eq[s], which
is an N ×K matrix of expected values, and ESS, which is an N ×K ×K array of expected
values Eq[ss

>] for each n. The full derivation is provided in Appendix B. Write two or three
sentences discussing how the solution relates to linear regression and why.

5% Using the above, we have implemented a function:

[mu, sigma, pie] = MStep(Y,ES,ESS)

This can be implemented either taking in ESS = a K ×K matrix summing over N the ESS

array as defined above, or taking in the full N × K × K array. This code can be found in
Appendix C and can also be found on the web site. Study this code and figure out what the
computational complexity of the code is in terms of N , K and D for the case where ESS is
K×K. Write out and justify the computational complexity; don’t assume that any of N , K,
or D is large compared to the others.

9% Examine the data images.jpg shown on the web site (Do not look at genimages.m yet!).
This shows 100 greyscale 4× 4 images generated by randomly combining several features and
adding a little noise. Try to guess what these features are by staring at the images. How
many are there? Would you expect factor analysis to do a good job modelling this data? How
about ICA? mixture of Gaussians? Explain your reasoning.

18% Put the E step and M step code together into a function:

[mu, sigma, pie] = LearnBinFactors(Y,K,iterations,gibbsflag)

where K is the number of binary factors, iterations is the maximum number of iterations
of EM, and gibbsflag = 1 means use Gibbs sampling, otherwise, use mean field. For the
mean field algorithm, make sure F always increases (this is a good debugging tool).

10% Run your algorithm for learning the binary latent factor model on the data set generated
by genimages.m. What features mu does the algorithm learn (rearrange them into 4 × 4
images)? How do the Gibbs and variational algorithms differ? Which do you prefer? Note

that nsamples might have to be large for Gibbs sampling to work well. How could you improve
the algorithm and the features it finds? Explain any choices you make along the way and the
rationale behind them (e.g. what to set K, how to initialize parameters, hidden states, and
lambdas).

8% Make sure you understand the idea of convergence of Markov chains (29.8 and 29.9 in MacKay’s
book). Given the parameters you have learned in the previous problem, and given just the
first data point in the data set y(1), i.e. N = 1, run your Gibbs sampling code with various
initial conditions of the hidden state S0. In particular, you might want to try starting with
S0 as all 1’s, as all 0’s, or somewhere in between. Plot various statistics of S (such as the sum
over all K states, which should range between 0 and K, or the cumulative average over all K
states) as a function of sampling iteration for Gibbs sampling for a large number of samples.
Can you assess (visually) how long it takes for the Gibbs sampler to converge? How is this
affected by increases and decreases in sigma? Why? Support your arguments.

+8% Bonus: For the same setting of the parameters as in the previous problem and again given
just the first data point in the data set y(1), i.e. N = 1, run the variational approximation.
Convergence of a variational approximation results when the value of λ’s as well as F stops
changing. Plot F and log(F(t)-F(t-1)) as a function of iteration number t for MeanField.
How rapidly does it converge? Plot F for three widely varying sigmas. How is this affected
by increases and decreases of sigma? Why? Support your arguments.

+20% Bonus: Given known values of σ2 and π, and a sample of s and y, what is the conjugate prior
for the µs? Implement a sampling procedure for µ given σ2, π, s and y. You might want to
use Gibbs sampling or Metropolis. Show some samples from the posterior distribution of mu.

+5% Bonus: Describe a Bayesian method for selecting K, the number of hidden binary variables.
Does your method pose any computational difficulties and if so how would you tackle them?

Appendix: M-step for Assignment 6

Iain Murray
December 2003

A Background

The generative model under consideration has a vector of K binary latent variables s. Each D-
dimensional data point y(n) is generated using a new hidden vector, s(n). Each s(n) is identically
and independently distributed according to:

P
(
s(n)|π

)
=

K∏
i=1

π
s
(n)
i
i (1− πi)(1−s(n)

i). (1)

Once s(n) has been generated, the data point is created according to the Gaussian distribution:

p
(
y(n)

∣∣ s(n),µ, σ2
)

= (2πσ2)−D/2 exp

− 1

2σ2

(
y(n) −

K∑
i=1

s
(n)
i µi

)>(
y(n) −

K∑
i=1

s
(n)
i µi

) . (2)

When this process is repeated we end up obtaining a set of visible data Y = {y(1), . . . ,y(N)}
generated by a set of N binary vectors S = {s(1), . . . , s(N)} and some model parameters θ =
{µ, σ2,π}, which are constant across all the data. Given just Y , both S and θ are unknown.
We might want to find the set of parameters that maximise the likelihood function P (Y |θ); “the
parameters that make the data probable”. EM is an approach towards this goal which takes our
knowledge about the uncertain S into account.

In the EM algorithm we optimise the objective function

F(q,θ) = 〈log p (S, Y |θ)〉q(S) − 〈log q (S)〉q(S)

=
∑
n

〈
log p

(
s(n),y(n)

∣∣θ)〉
q(s(n)) −

∑
n

〈
log q

(
s(n)
)〉

q(s(n)) , (3)

alternately increasing F by changing the distribution q (S) in the “E-step”, and the parameters in
the “M-step”. This document gives a derivation and Matlab implementation of the M-step. In this
assignment you will implement two approximate E-steps and apply this EM algorithm to a data
set.

B M-step derivation

Here we maximise F with respect to each of the parameters using differentiation. This only requires
the term with θ dependence:∑

n

〈
log p

(
s(n),y(n)

∣∣θ)〉
q(s(n)) =

∑
n

〈
log p

(
y(n)|s(n),θ

)
+ logP

(
s(n)|θ

)〉
q(s(n)) (4)

Substituting the given distributions from equations 2 and 1 gives:

=− ND

2
log 2π −ND log σ

− 1

2σ2

[
N∑
n=1

y(n)>y(n) +
∑
i,j

µ>i µj

N∑
n=1

〈
s

(n)
i s

(n)
j

〉
q(s(n))

− 2
∑
i

µ>i

N∑
n=1

〈
s

(n)
i

〉
q(s(n))

y(n)

]

+
K∑
i=1

[
logπi

N∑
n=1

〈
s

(n)
i

〉
q(s(n))

+ log (1− πi)

(
N −

N∑
n=1

〈
s

(n)
i

〉
q(s(n))

)]
.

(5)

From which we can obtain all the required parameter settings:

∂F
∂πi

=
1

πi

N∑
n=1

〈
s

(n)
i

〉
q(s(n))

+
1

1− πi

[
N∑
n=1

〈
s

(n)
i

〉
q(s(n))

−N

]
= 0 (6)

⇒ π = 1
N

∑N
n=1

〈
s(n)
〉
q(s(n)) , (7)

∂F
∂µi

= − 1

σ2

N∑
n=1

[∑
j

〈
s

(n)
i s

(n)
j

〉
q(s(n))

−
〈
s

(n)
i

〉
q(s(n))

y(n)

]
∑
j

N∑
n=1

〈
s

(n)
i s

(n)
j

〉
q(s(n))

µj =
N∑
n=1

〈
s

(n)
i

〉
q(s(n))

y(n)

(8)

⇒ µj =
∑

i

[∑N
n=1

〈
s(n)s(n)>〉

q(s(n))

]−1

ji

∑N
n=1

〈
s

(n)
i

〉
q(s(n))

y(n) (9)

and

∂F
∂σ

=0⇒
σ2 = 1

ND

[∑N
n=1 y(n)>y(n) +

∑
i,j µ

>
i µj

∑N
n=1

〈
s

(n)
i s

(n)
j

〉
q(s(n))

−2
∑

iµ
>
i

∑N
n=1

〈
s

(n)
i

〉
q(s(n))

y(n)

] . (10)

Note that the required sufficient statistics of q (S) are
〈
s(n)
〉
q(s(n)) and

∑N
n=1

〈
s(n)s(n)>〉

q(s(n)). In

the code these are known as ES and ESS.

All of the sums above can be interpreted as matrix multiplication or trace operations. This means
that each of the boxed parameters above can neatly be computed in one line of Matlab.

C M-step code

MStep.m

% [mu , s igma , p i e] = MStep (Y , ES , ESS)
%
% I n p u t s :
%−−−−−−−−−−−−−−−−−

5 % Y NxD data m a t r i x
% ES NxK E q [s]
% ESS KxK sum o v e r data p o i n t s o f E q [s s ’] (NxKxK)
% i f E q [s s ’] i s p r o v i d e d , the sum o v e r N i s done f o r you .
%

10 % Outputs :
%−−−−−−−−
% mu DxK m a t r i x o f means i n p (y | { s i } ,mu , s igma)
% sigma 1 x1 s t a n d a r d d e v i a t i o n i n same
% p i e 1 xK v e c t o r o f p a r a m e t e r s s p e c i f y i n g g e n e r a t i v e d i s t r i b u t i o n f o r s

15 %

funct ion [mu , s igma , p i e] = MStep (Y , ES , ESS)

[N,D] = s i z e (Y) ;
20 i f (s i z e (ES,1)˜=N) , e r r o r (’ ES must have t he same number o f rows as Y ’) ; end ;

K = s i z e (ES , 2) ;
i f (i s e q u a l (s i z e (ESS) , [N,K,K])) , ESS = s h i f t d i m (sum(ESS , 1) , 1) ; end ;
i f (˜ i s e q u a l (s i z e (ESS) , [K,K]))

e r r o r (’ ESS must be s q u a r e and have t he same number o f columns as ES ’) ;
25 end ;

mu = (inv (ESS)∗ES ’∗Y) ’ ;
s igma = s q r t ((t race (Y’∗Y)+ t race (mu’∗mu∗ESS)−2∗ t race (ES ’∗Y∗mu)) / (N∗D)) ;
p i e = mean(ES , 1) ;

