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Three kinds of graphical models
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Why do we need graphical models?

• Graphs are an intuitive way of representing and visualising the relationships between
many variables. (Examples: family trees, electric circuit diagrams, neural networks)

• A graph allows us to abstract out the conditional independence relationships between
the variables from the details of their parametric forms. Thus we can ask questions like:
“Is A dependent on B given that we know the value of C ?” just by looking at the
graph.

• Graphical models allow us to define general message-passing algorithms that
implement Bayesian inference efficiently. Thus we can answer queries like “What
is P (A|C = c)?” without enumerating all settings of all variables in the model.



Conditional Independence

Conditional Independence:

X⊥⊥Y |V ⇔ p(X|Y, V ) = p(X|V )

when p(Y, V ) > 0. Also

X⊥⊥Y |V ⇔ p(X,Y |V ) = p(X|V )p(Y |V )

In general we can think of conditional independence between sets of variables:

X⊥⊥Y|V ⇔ {X⊥⊥Y |V, ∀X ∈ X and ∀Y ∈ Y}

Marginal Independence:

X⊥⊥Y ⇔ X⊥⊥Y |∅ ⇔ p(X,Y ) = p(X)p(Y )



Factor Graphs
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The circles in a factor graph represent random variables.
The filled dots represent factors in the joint distribution.

(a) P (A,B,C,D,E) = 1
Zg1(A,C)g2(B,C,D)g3(C,D,E)

(b) P (A,B,C,D,E) = 1
Zg1(A,C)g2(B,C)g3(C,D)g4(B,D)g5(C,E)g6(D,E)

The gi are non-negative functions of their arguments, and Z is a normalization constant.
Two nodes are neighbors if they share a common factor.

Fact: X⊥⊥Y |V if every path between X and Y contains some node V ∈ V
Corollary: Given the neighbors of X, the variable X is conditionally independent of all
other variables: X⊥⊥Y |ne(X), ∀Y /∈ {X ∪ ne(X)}



What is an Undirected Graphical Model?

In an Undirected Graphical Model (or Markov Network), the joint probability over all
variables can be written in a factored form:

P (x) =
1
Z

∏
j

gj(xCj)

where x = [x1, . . . , xK], and
Cj ⊆ {1, . . . ,K}

are subsets of the set of all variables, and xS ≡ [xk : k ∈ S].

This type of probabilistic model can be represented graphically.

Graph Definition: Let each variable be a node. Connect nodes i and k if there exists a
set Cj such that both i ∈ Cj and k ∈ Cj. These sets form the cliques of the graph (fully
connected subgraphs).

Note: Undirected Graphical Models are also called Markov Networks.



Undirected Graphical Models (Markov Networks)

A

C

B

D

E

P (A,B,C,D,E) =
1
Z
g1(A,C)g2(B,C,D)g3(C,D,E)

Fact: X⊥⊥Y |V if every path between X and Y contains some node V ∈ V

Corollary: Given the neighbors of X, the variable X is conditionally independent of all
other variables: X⊥⊥Y |ne(X), ∀Y /∈ {X ∪ ne(X)}

Markov Blanket: V is a Markov Blanket for X iff X⊥⊥Y |V for all Y /∈ {X ∪ V}.

Markov Boundary: minimal Markov Blanket ≡ ne(X) for undirected graphs



Examples of Undirected Graphical Models

• Markov Random Fields (used in Computer Vision)

• Exponential Language Models (used in Speech and Language Modelling)

p(s) =
1
Z
p0(s) exp

{∑
i

λifi(s)

}

• Products of Experts (widely applicable)

p(x) =
1
Z

∏
j

pj(x|θj)

• Boltzmann Machines (a kind of Neural Network/Ising Model)



Clique Potentials and Undirected Graphs (Markov Networks)

Definition: a clique is a fully connected subgraph. By clique we usually mean maximal
clique (i.e. not contained within another clique)
Ci will denote the set of variables in the ith clique.
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1. Identify cliques of graph G

2. For each clique Ci assign a non-negative function gi(xCi) which measures
“compatibility”.

3. p(x1, . . . , xK) = 1
Z

∏
i gi(xCi) where Z =

∑
x1···xK

∏
i gi(xCi) is the normalization

If V lies in all paths between X and Y in G, then X⊥⊥Y |V in p.



Hammersley–Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive functions
on cliques of G is a Markov Field relative to G.

Definition: The distribution p is a Markov Field relative to G if G does not imply any
conditional independence relationships that are not true in p.
(We are usually interested in the minimal such graph.)

Proof: We need to show that if p is a product of functions on cliques of G then a variable
is conditionally independent of its non-neighbors in G given its neighbors in G. That is:
ne(x`) is a Markov Blanket for x`:

p(x`, xm, . . .) =
1
Z

∏
i

gi(xCi) =
1
Z

∏
i:`∈Ci

gi(xCi)
∏

j:`/∈Cj

gj(xCj)

=
1
Z
f1

(
x`,ne(x`)

)
f2

(
ne(x`), xm

)
=

1
Z ′
p(x`|ne(x`)) p(xm|ne(x`))

This shows that: p(x`, xm|ne(x`)) = p(x`|ne(x`)) p(xm|ne(x`))⇔ x`⊥⊥xm|ne(x`).



Comparing Undirected Graphs and Factor Graphs
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(a) (b) (c)

All nodes in (a), (b), and (c) have exactly the same neighbors and therefore these three
graphs represent exactly the same conditional independence relationships.

(c) also represents the fact that the probability factors into a product of pairwise functions.

Consider the case where each variables is discrete and can take on K possible values. Then
the functions in (a) and (b) are tables with O(K3) cells, whereas in (c) they are O(K2).



Problems with Undirected Graphs and Factor Graphs

Many useful independencies are unrepresented — two variables are connected merely
because some other variable depends on them:

Rain Sprinkler

Ground wet

Rain Sprinkler

Ground wet

This highlights the difference between marginal independence and conditional
independence.

R and S are marginally independent (i.e. given nothing), but they are conditionally
dependent given G

“Explaining Away”: Observing that the spinkler is on, explains away the fact that the
ground was wet, therefore we don’t need to believe that it rained.



Directed Acyclic Graphical Models (Bayesian Networks)
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A DAG Model / Bayesian network corresponds to a factorization of the joint probability
distribution:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

In general:

p(X1, . . . , Xn) =
n∏
i=1

p(Xi|Xpa(i))

where pa(i) are the parents of node i.



Directed Acyclic Graphical Models (Bayesian Networks)
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Semantics: X⊥⊥Y |V if V d-separates X from Y .

Definition: V d-separates X from Y if every undirected path between X and Y is blocked
by V. A path is blocked if there is a node W on the path such that either:

1. W has converging arrows along the path (→W ←) and neither W nor its descendants
are in V, or

2. W does not have converging arrows along the path (→W → or ←W →) and W ∈ V.

Note that converging arrows along the path only refers to what happens on that path.

Corollary: Markov Boundary for X: {parents(X)∪children(X)∪parents-of-children(X)}.



The “Bayes-ball” algorithm

A

C

B

D

E

Game: can you get a ball from X to Y without being blocked by V?

Depending on the direction the ball came from and the type of node, the ball can pass
through (from a parent to all children, from a child to all parents), bounce back (from
any parent to all parents, or from any child to all children), or be blocked.

• An unobserved (hidden) node (W /∈ V) passes balls through but also bounces back
balls from children.

• An observed (given) node (W ∈ V) bounces back balls from parents but blocks balls
from children.



From Directed Trees to Undirected Trees
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p(1, 2, . . . , 7) = p(3)p(1|3)p(2|3)p(4|3)p(5|4)p(6|4)p(7|4)

=
p(1, 3)p(2, 3)p(3, 4)p(4, 5)p(4, 6)p(4, 7)

p(3)p(3)p(4)p(4)p(4)

=
product of cliques

product of clique intersections

= g(1, 3)g(2, 3)g(3, 4)g(4, 5)g(4, 6)g(4, 7) =
∏
i

gi(Ci)



Belief Propagation (in Singly Connected Bayesian Networks)

Definition: S.C.B.N. has an undirected underlying graph which is a tree, ie there is only
one path between any two nodes.

Goal: For some node X we want to compute p(X|e) given evidence e.
Since we are considering S.C.B.N.s:

• every node X divides the evidence into upstream e+
X and downstream e−X

• every edge X → Y divides the evidence into upstream e+
XY and downstream e−XY .



The three key ideas behind Belief Propagation

Idea 1: Our belief about the variable X can be found by combining upstream and
downstream evidence:

p(X|e) =
p(X, e)
p(e)

=
p(X, e+

X, e
−
X)

p(e+
X, e

−
X)

∝ p(X|e+
X) × p(e−X|X, e

+
X)︸ ︷︷ ︸

X d-separates e−X from e+
X

= p(X|e+
X)p(e−X|X) = π(X)λ(X)

Idea 2: The upstream and downstream evidence can be computed via a local message
passing algorithm between the nodes in the graph.

Idea 3: “Don’t send back to a node (any part of) the message it sent to you!”



Belief Propagation
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top-down causal support:
πX(Ui) = p(Ui|e+

UiX
)

bottom-up diagnostic support:
λYj(X) = p(e−XYj|X)

To update the belief about X:

BEL(X) =
1
Z
λ(X)π(X)

λ(X) =
∏
j

λYj(X)

π(X) =
∑

U1···Un

p(X|U1, . . . , Un)
∏
i

πX(Ui)



Belief Propagation (cont.)
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top-down causal support:
πX(Ui) = p(Ui|e+

UiX
)

bottom-up diagnostic support:
λYj(X) = p(e−XYj|X)

Bottom-up propagation, message X sends to Ui:

λX(Ui) =
∑
X

λ(X)
∑
Uk:k 6=i

p(X|U1, . . . , Un)
∏
k 6=i

πX(Uk)

Top-down propagation, message X sends to Yj:

πYj(X) =
1
Z

[∏
k 6=j

λYk(X)
] ∑
U1···Un

p(X|U1, . . . , Un)
∏
i

πX(Ui) =
1
Z

BEL(X)
λYj(X)

Z is the normaliser ensuring
∑
X πYj(X) = 1



Belief Propagation in multiply connected Bayesian Networks

The Junction Tree algorithm: Form an undirected graph from your directed graph such
that no additional conditional independence relationships have been created (this step is
called “moralization”). Lump variables in cliques together and form a tree of cliques—this
may require a nasty step called “triangulation”. Do inference in this tree.

Cutset Conditioning: or “reasoning by assumptions”. Find a small set of variables which,
if they were given (i.e. known) would render the remaining graph singly connected. For each
value of these variables run belief propagation on the singly connected network. Average
the resulting beliefs with the appropriate weights.

Loopy Belief Propagation: just use BP although there are loops. In this case the terms
“upstream” and “downstream” are not clearly defined. No guarantee of convergence, but
often works well in practice.



Learning with Hidden Variables: The EM Algorithm
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Assume a model parameterised by θ with
observable variables Y and hidden variables X

Goal: maximise parameter log likelihood given observables.

L(θ) = ln p(Y |θ) = ln
∑
X

p(Y,X|θ)

• E-step: first infer p(X|Y, θold), then
• M-step: find θnew using complete data learning

The E-step requires solving the inference problem: finding explanations, X,
for the data, Y , given the current model, θ (using e.g. BP).

How about structure learning?



Expressive Power of Directed and Undirected Graphs

No Directed Graph (Bayesian
network) can represent these and
only these independencies

No matter how we direct the arrows there will always be two non-adjacent parents sharing
a common child =⇒ dependence in Directed Graph but independence in Undirected Graph.

No Undirected Graph or Factor
Graph can represent these and
only these independencies


