
Unsupervised Learning

Propagation on Factor Graphs

Zoubin Ghahramani
zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science

University College London

Term 1, Autumn 2005



Factor Graphs

In a factor graph, the joint probability distribution is written as a product of factors.
Consider a vector of variables x = (x1, . . . , xn)

p(x) = p(x1, . . . , xn) =
1
Z

∏
j

fj(xSj
)

where Z is the normalisation constant, Sj denotes the subset of {1, . . . , n} which participate
in factor fj and xSj

= {xi : i ∈ Sj}.

A

C

B

DE

variables nodes: we draw open circles for each variable xi in the distribution.
function nodes: we draw filled dots for each function fj in the distribution.



Propagation in Factor Graphs

Let n(x) denote the set of function nodes that are neighbors of x.
Let n(f) denote the set of variable nodes that are neighbors of f .

We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and viceversa.

message from variable x to local function f :

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x)

message from local function f to variable x:

µf→x(x) =
∑
x\x

f(x)
∏

y∈n(f)\{x}

µy→f(y)





Propagation in Factor Graphs

n(x) denotes the set of function nodes that are neighbors of x.
n(f) denotes the set of variable nodes that are neighbors of f .

message from variable x to local function f :

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x)

message from local function f to variable x:

µf→x(x) =
∑
x\x

f(x)
∏

y∈n(f)\{x}

µy→f(y)


If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈n(x)

µh→x(x)



Propagation in Factor Graphs

x3

x1

x2
x4

f1

f2

f3

initialise all messages to be 1

an example schedule of messages resulting in computing p(x4):

message direction message value
x1 → f1 1(x1)
x3 → f2 1(x3)
f1 → x2

∑
x1

f1(x1, x2)1(x1)
f2 → x2

∑
x3

f2(x3, x2)1(x3)

x2 → f3

(∑
x1

f1(x1, x2)
) (∑

x3
f2(x3, x2)

)
f3 → x4

∑
x2

f3(x2, x4)
(∑

x1
f1(x1, x2)

) (∑
x3

f2(x3, x2)
)



Elimination Rules for Factor Graphs

• eliminating observed variables

If a variable xi is observed, i.e. its value is given, then it is a constant in all functions
that include xi.

We can eliminate xi from the graph by removing the corresponding node and modifying
all neighboring functions to treat it as a constant.



Elimination Rules for Factor Graphs

• eliminating hidden variables

If a variable xi is hidden and we are not interested in it we can eliminate it from the
graph by summing over all its values.

∑
xi

p(x) =
1
Z

∑
xi

∏
j

fj(xSj
)

=
1
Z

∏
j /∈n(xi)

fj(xSj
)

∑
xi

∏
k∈n(xi)

fk(xSk
)


=

1
Z

∏
j /∈n(xi)

fj(xSj
) fnew(xSnew)

where fnew(xSnew) =
∑

xi

∏
k∈n(xi)

fk(xSk
) and Snew =

⋃
k∈n(xi)

Sk \ {i}.

This causes all its neighboring function nodes to merge into one new function node.


