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Motivation

Many statistical inference problems result in intractable computations...

e Bayesian posterior over model parameters:

P(D|o)P(0)

P(OID) = =5y

e Computing posterior over hidden variables (e.g. for E step of EM):

P(V|H,0)P(H|0)
P(V10)

P(H|V,0) =

e Computing marginals in a multiply-connected graphical models:

P(x;|x; =€) = Z P(x|x; =e)
x\{z;,x;}

Solutions: Markov chain Monte Carlo, variational approximations N



Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},
organised into a vector s = (s1,...,SK)
real-valued observation vector y

parameters 6 = {{p,, m;}2X |, 0%}

s ~ Bernoulli
y|s ~ Gaussian

K K

p(s|m) = p(s1,...,sk|mT) = Hp(sz!m) — wai(l — ;)15
i=1 i=1
K
p(Y|517°"75K7M70—2) - N<ZSZI'LZ7JZI>
i=1
EM optimizes lower bound on likelihood: F(q,0) = <10gp(SaY’9)>q(s) _ <10gCI(S)>q(s)
where (), is expectation under g: (f(8))q = > f(s)q(s)

Exact E step: ¢(s) = p(s|y, 0) is a distribution over 2% states: intractable for large K



Example: Binary latent factor model

Model with K binary latent variables, s; € {0, 1},
organised into a vector s = (s1,...,SK)
real-valued observation vector y

parameters O = {{pu,, m; }2 |, 0%}

s ~ Bernoulli
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Figure 2: Left panel: Original source images used to generate data. Middle panel: Observed mmages
resulting from mixture of sources. Right panel: Recovered sources

from Lu et al (2004)



Review: The EM algorithm

Given a set of observed (visible) variables V', a set of unobserved (hidden / latent / missing)
variables H, and model parameters 6, optimize the log likelihood:

£(6) = log p(V16) = log [ p(H.VI6)dH,

Using Jensen's inequality, for any distribution of hidden variables q(H) we have:

p(H,V10)
q(H)

p(H,V0)
q(H)

L(0) = log/q(H) dH > /q(H) log dH = F(q,0),

defining the F(q, #) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q,0) wrt ¢ and @, and we can prove that
this will never decrease L.



The E and M steps of EM

The lower bound on the log likelihood:

H,V10)
q(H)

Fla.0) = [ atm) tog 2L V1) iy [ attnogp(.VI0)H +7¢(0)

where H(q) = —/q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, ) wrt the distribution over hidden variables given the parameters:

q[k](H) = arg(rlgl)ax f(q(H),Q[k_l]) :p(H|V,9[k_1]).
q

M step: maximize F(q,0) wrt the parameters given the hidden distribution:

!l .= argmax ]—"(q[k](H),G) = argmax /q[k](H) logp(H,V1|0)dH,
Z 7

which is equivalent to optimizing the expected complete-data log likelihood
logp(H, V|0), since the entropy of ¢(H) does not depend on 6.



Variational Approximations to the EM algorithm

Often p(H|V,0) is computationally intractable, so an exact E step is out of the question.

Assume some simpler form for ¢(H), e.g. ¢ € Q, the set of fully-factorized distributions
over the hidden variables: ¢(H) =[], ¢(H;)

E step (approximate): maximize F(q,6) wrt the distribution over hidden variables given

the parameters:

¢ (H) := argmax F(q(H),H[k_l]).
q(H)eQ

M step : maximize F(q,6) wrt the parameters given the hidden distribution:

!l .= argmax ]-"(q[k](H),H) = argmax /q[k](H) logp(H,V|0)dH
7 7

This maximizes a lower bound on the log likelihood.
Using the fully-factorized form of ¢ is sometimes called a mean-field approximation.
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Example: Binary latent factors model (cont)

F(q,0) = (log p(s,¥]0))¢s) — (log q(s))q(s)

log  p(s,y|0) +c

1
— Zfil silogm; +(1 — s;)log(l —m;) — Dlogo — Tﬂ(y _ Z Sz',UJi)T(y . Z sips:)

= Zfil silogm; +(1 — s;)log(l —m;)) — Dlogo

we therefore need (s;) and (s;s;) to compute F.

These are the expected sufficient statistics of the hidden variables.



Example: Binary latent factors model (cont)

Variational approximation:

- qu‘(si) = H AZH(1 — \;)Lsd)

1=1

where \; is a parameter of the variational approximation modelling the posterior mean of
s; (compare to m; which models the prior mean of s;).

Under this approximation we know (s;) = A; and (s;s;) = A\i\j + 0;5( A — A2).

i 1 —m
:Z)\ilog%—l— (1 —X\;)log (1 W.)

— Dlogo — — Z )\zl«l'q, — Z Aibt;)

1 o T D
T 9,2 (Az - )‘z')“’i Hi — D) log(27r)

)



Fixed point equations for the binary latent factors model

Taking derivatives w.r.t. \;:

oF s )\ 1
o = e —log = y = D Aib) i — 5k b
JFu
Setting to zero we get fixed point equations:
(e 1
Ni=f | log——+—(y = D Aimy) i — 5 h

JFi

where f(x) = 1/(1 + exp(—x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of X for each data point.
M step: re-estimate 6 given As.



KL divergence

Note that

E step maximize F(q,0) wrt the distribution over hidden variables, given the parameters:

¢ (H) := argmax ]:(q(H),H[k_”).
q(H)eQ

is equivalent to:

E step minimize KL(q||p(H|V,0)) wrt the distribution over hidden variables, given the
parameters:
q(H)

HIV, 01F-1)

qm(H) = argmin/q(H) log ( dH
p

q(H)eQ

So, in each E step, the algorithm is trying to find the best approximation to p in O.

This is related to ideas in information geometry.



Variational Approximations to Bayesian Learning

logp(V) = log//p(V,H|9)p(9) dH d6

p(V,H,0)
//q(H,H)log J(11.0) dH df

Vv

Constrain ¢ € Q s.t. q(H,0) = q(H)q(0).
This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



Variational Approximations and Graphical Models |

Let (H) = 1], ¢:(H;).
Variational approximation maximises F:
Fl@) = [ at)ogp(H.V)aH ~ [ oH)loga(t1)dH
Focusing on one term, g;, we can write this as:
Flq5) = /%(Hj)@OgP(Ha V)>qu<Hj)de+/qj(Hj)10gqj(Hj)de+C0”St
Where <->qu(Hj) denotes averaging w.r.t. ¢;(H;) for all ¢ # j

Optimum occurs when:



Variational Approximations and Graphical Models Il

Optimum occurs when:

. 1
d; (H;) = 7 exp (log p(H, V)>qu(Hj)

Assume graphical model: p(H, V) =[], p(X;|pa;)

logq;(H;) = <Zlogp(Xilpai)>Nq_(H_)+C0nst
7 J J

— <logP(Hj|Paj)>qu(Hj>+ Z <logp(Xk\pak)>qu(Hj)+const
kech;

This defines messages that get passed between nodes in the graph. Each node receives
messages from its Markov boundary: parents, children and parents of children.

Variational Message Passing (Winn and Bishop, 2004)



Expectation Propagation (EP)

Data (iid) D = {xV) ..., x"™)}, model p(x|0), with parameter prior p(6).

N
1 |
The parameter posterior is: p(0|D) = Wp(@) Hp(x(z)\H)
P i=1
N N
We can write this as product of factors over 6: p(0) Hp(x(7’>|0) = H f:(0)
' i=0
where fy(0) L p(0) and f;(0) L p(xD]0) and we will ignore the constants.
N ~
We wish to approximate this by a product of simpler terms: q(0) et H f:(0)
i=0

min KL i
q(6) (H fil®

min KL ( f:(6)] (6
fi(9)

min KL ( £;(8)] | 7:(0)||f:(0
min (f()gf()f(

(simple, non-iterative, inaccurate)

ﬂ :(6 ) (intractable)
)

)Hf](9)> (simple, iterative, accurate) «— EP
JFu



Expectation Propagation |I

Input fo(0)... fn(0) )
Initialize fo(0) = fo(0), fi(@) =1 for i >0, q(0) =[], f:(6)
repeat

for:=0...N do

Deletion: ¢(0)

=117

JFu
Projection: ff*"(6 )Harggcr%g)l KL(£i(0)9i(0)]f(8)q:(0))
Inclusion: ¢(8) «— £°V(0) q,(6)

end for
until convergence

The EP algorithm. Some variations are possible:

here we assumed that fy is in the

exponential family, and we updated sequentially over . The names for the steps (deletion,

projection, inclusion) are not the same as in (Minka, 2001)

e Tries to minimize the opposite KL to variational methods
° ﬁ(e) in exponential family — projection step is moment matching

e No convergence guarantee (although convergent forms can be developed)
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Appendix: The binary latent factors model for an i.i.d. data set

Assume a data set D = {y(l) . ,y(N)} of N points. Parameters 0 = {{p,, m;} 2|, 0%}

Use a factorised dlstrlbutlon

=TT = LT = TTITO) 130

n=111=1

p(D|9) = ﬂ y"™16)

p(y'™10) = z_:
F(q(s),8) = D Fulan(s"™),8) <logp(D|6)

Fulan(s'™),8) = <10gp(s<”>,y(”)l9)>qn(s<n))—<10gqn(s<”))>

We need to optimise w.r.t. the distribution over latent variables for each data point, so

E step: optimize ¢,(s(™) (i.e. A"™) for each n.
M step: re-estimate 0 given qn(s(”)'s.



Appendix: How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by a variety
of other methods.

One approach is to use the variational approximation as as a proposal distribution for
importance sampling.

But this will generally not work well. See exercise 33.6 in David MacKay's textbook.



