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Key Ingredients of Machine Learning

Data

Let y = (y1,¥2,-..,yp) denote a data point, and D = {y1,y2...,yn}, a data set

Predictions

We are generally interested in predicting something based on the observed data set.
Given D what can we say about yn117?
Given D and yn41.1,YN+1.25- -, YN+1,D—1, What can we say about yn11 p?

Model

To make predictions, we need to make some assumptions. We can often express these
assumptions in the form of a model, with some parameters, 6

Given data D, we learn the model parameters 8, from which we can predict new data points.

The model can often be expressed as a probability distribution over data points



A few simple data sets
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A very simple model

Univariate Gaussian density
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This model has parameters 8 = {u, 0} which model the mean and standard deviation of
the data, respectively.



A slighly more complicated model

Multivariate Gaussian density (y € R”):

pvlu. D) = 2nslHexp {5ty — W)=y - )}
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This model has parameters 8 = {u, >} which model the mean and covariance matrix of
the data.



The multivariate Gaussian density
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Fitting the model to data

Assume the data were generated independently from the model.
We can measure the likelihood of the model:

N
p(D|0) = H (¥n|€)

Clearly, the third model is a better fit to the data than the others:

logp(D|@1) = —55.38
logp(D|03) = —238.29
logp(D]6s) = —22.14




The likelihood function

N
Data set D = {y1,...,yn}, the likelihood: p(D|u, ) = Hp(yn\p,, Y)) is a function of

n=1
the model parameters

The maximum likelihood (ML) procedure finds parameters 8 = {, 3} such that:

O\, = argmaxg p(D|0)




Finding Maximum Likelihood Estimate for a Gaussian

N
Data set D = {y1,...,yn}, likelihood: p(D|p, Z) = || p(ynlps, X)

n=1
Maximise likelihood < maximise log likelihood

Goal: find p and X that maximise log likelihood:

N
£ =log || plynler,) =D logp(ynlp, %)

n=1

N 1 _
=~ log 2mX] — 5 D yn— 1) S yn — p)
mn
Note: equivalently, minimise —L, which is quadratic in u
Procedure: take derivatives and set to zero:

1
g_fb =0 = = ~ En Yn (sample mean)
. 1
g_g -0 = Y= ~ En (Y — f1)(yn — f8)" (sample covariance)



Two very simple data sets

What are the maximum likelihood estimates of @ for these data sets?
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Does this make sense?



Bayesian Learning

Apply the basic rules of probability to learning from data.
Use probability distributions to represent uncertainty.

Data set: D = {y1,...,yn}
Model parameters: 0

Prior probabilities of model parameters: P(80)
Model of data given parameters (likelihood model): P(y|0)

If the data are independently and identically distributed
then: 2/
P(D|6) = H P(y,|0) |
Posterior probability of model parameters: of
P(D|0)P(0) 1]
P(0|D) =
P(D) N




Limitations of the Multivariate Gaussian

Gaussians are fundamental and widespread, but not every
distribution of interest is Gaussian.

e Some processes produce outliers.
e Some data has higher-order or non-linear structure.
e Not all random processes fit the central limit theorem.

e Even if data are Gaussian, if D is large the full multivariate Gaussian model may be
difficult to handle. There are D(D + 1)/2 parameters in the covariance matrix.



Factor Analysis

Factor analysis models high dimensional data y in terms of a linear transformation of some
smaller number of latent factors, x.

K

Linear generative model: y4 = Z ANgr v + €4
k=1
e 1}, are independent A/(0,1) Gaussian factors

e ¢, are independent AV(0, ¥44) Gaussian noise
o K <D

Properties:

e p(x) =N(0,I)andy = Ax+¢

e Since p(e) = N (0, V), we get that p(y|x) = N (Ax, ¥)

= [ p(x)p(y|x)dx = N (0, AA '+ T) where A is a D x K matrix, and ¥ is diagonal.

latent = hidden = unobserved = missing



Ways of thinking about Factor Analysis (FA)

FA models high dimensional data in terms of a linear transformation of some smaller
number of latent factors.

FA is a method for parameterizing a D X D covariance matrix X in terms of D x K + D
parameters, AA" + U. Since K can be chosen by the user, this means that factor
analysis can be applied to very high dimensional datasets.

FA is a method for modelling correlations among the observed variables.
FA is a linear regression model, where the inputs are assumed to be hidden.

FA is a method for doing dimensionality reduction. Given y we can represent it by the
mean of x. FA finds a low-dimensional projection of high dimensional data that captures
the correlation structure of the data.

pxly) = PEPYR) _ yrse 12 8A) where 8= AT(AAT 4+ )"




Factor Analysis

e ML learning for FA aims to fit A and ¥ given data. There is no closed form solution for
ML parameters.

e Number of free parameters (corrected for symmetries):

K(K—1) D(D+1)
2 < 2

DK + D —

e A Bayesian treatment would start with priors over A and W and infer their posterior

given the data.
p(DIA, ¥)p(A, )

p(D)

p(AﬂIﬂD) —



Latent Variable Models

Explain correlations in y by assuming some latent variables x

X ~ p(x[6)
Y|X ~ p(Y‘Xa Hy)
p(x,y|0,0,) = p(y|x,0,)p(x]0;)

p(y|0z,0y) = [ dx p(y|x,0,)p(x|0.)




Probabilistic Principal Components Analysis (pPCA)

Linear generative model: y; = ZAdk Tr + €4
k=1
e 1}, are independent A/ (0,1) Gaussian factors
e ¢4 are independent A/(0,0%) Gaussian noise
o K<D
e pPCA is factor analysis with isotropic noise: ¥ = o]
e pPCA finds same principal subspace as PCA, but is a well-defined probabilistic model.



Principal Components Analysis (PCA)

Noise variable becomes infinitesimal compared to the scale of the data: ¥ = lim 21

020

p(xly) = N(By, I — BA)
f=lim AT(AAT +0°1) 7" = (ATA) AT

Usually in PCA we choose columns of A to be orthonormal, i.e. AT A = I, therefore:

B=A"



Eigenvalues and Eigenvectors

A is an eigenvalue and x is an eigenvector of A if:

Ax = \x

and x is a unit vector (x'x = 1).
Interpretation: the operation of A in direction x is a scaling by A.

The K Principal Components are the K eigenvectors with the largest eigenvalues of the
data covariance matrix (i.e. K directions with the largest variance).

Note: > can be decomposed:
> =USU"
2

where S is diag(o%,...,0%) and U is a an orthonormal matrix.



Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod /demos/facerec/basic.html



Mutual Information and PCA

Problem: Given y, find x = Ay with columns of A unit vectors, s.t. I(x;y) is maximised
(assuming that P(y) is Gaussian).

I(x;y)=H(x)+ H(y) - Hx,y) = H(x)

So we want to maximise the entropy of x. What is the entropy of a Gaussian?

H(z) = —/dzp(z) In p(z) :%ln]Z]—l—g(l—i-anﬂ) (1)

Therefore we want the distribution of x to have largest volume (i.e. det of covariance
matrix).

Y, =A%, A" = AUS,U"A"
So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).



Gradient Methods for Learning FA

Write down negative log likelihood:

1

1
- log 27 (AN +T)| + in(AAT + )"y

Optimise w.r.t. A and ¥ (need matrix calculus) subject to constraints

We will soon see an easier way to learn latent variable models...



Appendix: Source Coding Under a Gaussian Model

Consider coding real valued numbers x under a Gaussian model of the data.

e How many bits should we use for each x7?

e Clearly we need to limit the precision of our code, otherwise
we will need infinitely many bits. Let's use precision A.

e Remember, from Shannon’s source coding theorem.

—log P(x) =~ —log|p(x)A] = —log p(x) — log A

2
- 1
($205) —|—§log27r+loga—logA

[(z)

e Note as A = 0 then [(z) = oc.

So we need [(x) bits to code x, which grows quadratically with distance from x to u.



Appendix: FA vs PCA

e PCA is rotationally invariant; FA is not

e FA is measurement scale invariant; PCA is not

e FA and pPCA define valid probabilistic models; PCA does not



