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Key Ingredients of Machine Learning

Data

Let y = (y1, y2, . . . , yD) denote a data point, and D = {y1,y2 . . . ,yN}, a data set

Predictions

We are generally interested in predicting something based on the observed data set.

Given D what can we say about yN+1?

Given D and yN+1,1, yN+1,2, . . . , yN+1,D−1, what can we say about yN+1,D?

Model

To make predictions, we need to make some assumptions. We can often express these
assumptions in the form of a model, with some parameters, θ

Given data D, we learn the model parameters θ, from which we can predict new data points.

The model can often be expressed as a probability distribution over data points



A few simple data sets
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A more interesting data set:

Here D = 2, y ∈ IR2.
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A very simple model

Univariate Gaussian density (y ∈ IR):

p(y|µ, σ) =
1√

2πσ2
exp

{
−(y − µ)2

2σ2

}
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Univariate Gaussian density

This model has parameters θ = {µ, σ} which model the mean and standard deviation of
the data, respectively.



A slighly more complicated model

Multivariate Gaussian density (y ∈ IRD):

p(y|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}
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This model has parameters θ = {µ,Σ} which model the mean and covariance matrix of
the data.



The multivariate Gaussian density
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Fitting the model to data
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Assume the data were generated independently from the model.
We can measure the likelihood of the model:

p(D|θ) =
N∏

n=1

p(yn|θ)

Clearly, the third model is a better fit to the data than the others:

log p(D|θ1) = −55.38

log p(D|θ2) = −238.29

log p(D|θ2) = −22.14



The likelihood function

Data set D = {y1, . . . ,yN}, the likelihood: p(D|µ,Σ) =
N∏

n=1

p(yn|µ,Σ) is a function of

the model parameters

The maximum likelihood (ML) procedure finds parameters θ = {µ,Σ} such that:

θML = argmaxθ p(D|θ)
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Finding Maximum Likelihood Estimate for a Gaussian

Data set D = {y1, . . . ,yN}, likelihood: p(D|µ,Σ) =
N∏

n=1

p(yn|µ,Σ)

Maximise likelihood ⇔ maximise log likelihood
Goal: find µ and Σ that maximise log likelihood:

L = log
N∏

n=1

p(yn|µ,Σ) =
∑

n

log p(yn|µ,Σ)

= −N

2
log |2πΣ| − 1

2

∑
n

(yn − µ)>Σ−1(yn − µ)

Note: equivalently, minimise −L, which is quadratic in µ
Procedure: take derivatives and set to zero:

∂L
∂µ

= 0 ⇒ µ̂ =
1
N

∑
n

yn (sample mean)

∂L
∂Σ

= 0 ⇒ Σ̂ =
1
N

∑
n

(yn − µ̂)(yn − µ̂)> (sample covariance)



Two very simple data sets

What are the maximum likelihood estimates of θ for these data sets?
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Does this make sense?



Bayesian Learning

Apply the basic rules of probability to learning from data.
Use probability distributions to represent uncertainty.

Data set: D = {y1, . . . ,yN}
Model parameters: θ

Prior probabilities of model parameters: P (θ)
Model of data given parameters (likelihood model): P (y|θ)

If the data are independently and identically distributed
then:

P (D|θ) =
N∏

n=1

P (yn|θ)

Posterior probability of model parameters:

P (θ|D) =
P (D|θ)P (θ)

P (D)
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Limitations of the Multivariate Gaussian

Gaussians are fundamental and widespread, but not every
distribution of interest is Gaussian.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

• Some processes produce outliers.

• Some data has higher-order or non-linear structure.

• Not all random processes fit the central limit theorem.

• Even if data are Gaussian, if D is large the full multivariate Gaussian model may be
difficult to handle. There are D(D + 1)/2 parameters in the covariance matrix.



Factor Analysis

Factor analysis models high dimensional data y in terms of a linear transformation of some
smaller number of latent factors, x.

YDY1 Y2
�

X1 KX

Λ
Linear generative model: yd =

K∑
k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0,Ψdd) Gaussian noise
• K <D

Properties:

• p(x) = N (0, I) and y = Λx + ε

• Since p(ε) = N (0,Ψ), we get that p(y|x) = N (Λx,Ψ)

• p(y) =
∫

p(x)p(y|x)dx = N (0,ΛΛ>+Ψ) where Λ is a D×K matrix, and Ψ is diagonal.

latent = hidden = unobserved = missing



Ways of thinking about Factor Analysis (FA)

• FA models high dimensional data in terms of a linear transformation of some smaller
number of latent factors.

• FA is a method for parameterizing a D×D covariance matrix Σ in terms of D×K +D
parameters, ΛΛ> + Ψ. Since K can be chosen by the user, this means that factor
analysis can be applied to very high dimensional datasets.

• FA is a method for modelling correlations among the observed variables.

• FA is a linear regression model, where the inputs are assumed to be hidden.

• FA is a method for doing dimensionality reduction. Given y we can represent it by the
mean of x. FA finds a low-dimensional projection of high dimensional data that captures
the correlation structure of the data.

p(x|y) =
p(x)p(y|x)

p(y)
= N (βy, I − βΛ) where β = Λ>(ΛΛ> + Ψ)−1



Factor Analysis

YDY1 Y2
�

X1 KX

Λ
µ = 0

Σ ≈ ΛΛ> + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for
ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior
given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)



Latent Variable Models

Explain correlations in y by assuming some latent variables x

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

x ∼ p(x|θx)

y|x ∼ p(y|x,θy)

p(x,y|θx,θy) = p(y|x,θy)p(x|θx)

p(y|θx,θy) =
∫

dx p(y|x,θy)p(x|θx)



Probabilistic Principal Components Analysis (pPCA)

YDY1 Y2
�

X1 KX

Λ

Linear generative model: yd =
K∑

k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0, σ2) Gaussian noise
• K <D
• pPCA is factor analysis with isotropic noise: Ψ = σ2I
• pPCA finds same principal subspace as PCA, but is a well-defined probabilistic model.



Principal Components Analysis (PCA)

YDY1 Y2
�

X1 KX

Λ

Noise variable becomes infinitesimal compared to the scale of the data: Ψ = lim
σ2→0

σ2I

p(x|y) = N (βy, I − βΛ)

β = lim
σ2→0

Λ>(ΛΛ> + σ2I)−1 = (Λ>Λ)−1Λ>

Usually in PCA we choose columns of Λ to be orthonormal, i.e. Λ>Λ = I, therefore:

β = Λ>



Eigenvalues and Eigenvectors

λ is an eigenvalue and x is an eigenvector of A if:

Ax = λx

and x is a unit vector (x>x = 1).

Interpretation: the operation of A in direction x is a scaling by λ.

The K Principal Components are the K eigenvectors with the largest eigenvalues of the
data covariance matrix (i.e. K directions with the largest variance).

Note: Σ can be decomposed:
Σ = USU>

where S is diag(σ2
1, . . . , σ

2
D) and U is a an orthonormal matrix.



Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html



Mutual Information and PCA

Problem: Given y, find x = Ay with columns of A unit vectors, s.t. I(x;y) is maximised
(assuming that P (y) is Gaussian).

I(x;y) = H(x) + H(y)−H(x,y) = H(x)

So we want to maximise the entropy of x. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D

2
(1 + ln 2π) (1)

Therefore we want the distribution of x to have largest volume (i.e. det of covariance
matrix).

Σx = AΣyA
> = AUSyU

>A>

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).



Gradient Methods for Learning FA

Write down negative log likelihood:

1
2

log |2π(ΛΛ> + Ψ)|+ 1
2
y>(ΛΛ> + Ψ)−1y

Optimise w.r.t. Λ and Ψ (need matrix calculus) subject to constraints

We will soon see an easier way to learn latent variable models...



Appendix: Source Coding Under a Gaussian Model

Consider coding real valued numbers x under a Gaussian model of the data.

• How many bits should we use for each x?

• Clearly we need to limit the precision of our code, otherwise
we will need infinitely many bits. Let’s use precision ∆.

• Remember, from Shannon’s source coding theorem.

l(x) = − log P (x) ≈ − log[p(x)∆] = − log p(x)− log ∆

=
(x− µ)2

2σ2
+

1
2

log 2π + log σ − log ∆

• Note as ∆ ⇒ 0 then l(x) ⇒∞.
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So we need l(x) bits to code x, which grows quadratically with distance from x to µ.



Appendix: FA vs PCA

• PCA is rotationally invariant; FA is not

• FA is measurement scale invariant; PCA is not

• FA and pPCA define valid probabilistic models; PCA does not


