4F13: Machine Learning

Lecture 3-4: Unsupervised Learning

Zoubin Ghahramani

zoubin@eng.cam.ac.uk

Department of Engineering University of Cambridge

Michaelmas, 2006

http://learning.eng.cam.ac.uk/zoubin/ml06/

Key Ingredients of Machine Learning

Data

Let $\mathbf{y} = (y_1, y_2, \dots, y_D)$ denote a data point, and $\mathcal{D} = {\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N}$, a data set Predictions

We are generally interested in predicting something based on the observed data set.

Given \mathcal{D} what can we say about \mathbf{y}_{N+1} ?

```
Given \mathcal{D} and y_{N+1,1}, y_{N+1,2}, \ldots, y_{N+1,D-1}, what can we say about y_{N+1,D}?
```

Model

To make predictions, we need to make some *assumptions*. We can often express these assumptions in the form of a model, with some parameters, θ

Given data \mathcal{D} , we learn the model parameters $\boldsymbol{\theta}$, from which we can predict new data points.

The model can often be expressed as a *probability distribution over data points*

A few simple data sets

A very simple model

This model has parameters $\theta = \{\mu, \sigma\}$ which model the mean and standard deviation of the data, respectively.

A slighly more complicated model

Multivariate Gaussian density ($\mathbf{y} \in \mathbb{R}^D$):

$$p(\mathbf{y}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = |2\pi\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}$$

This model has parameters $\theta = \{\mu, \Sigma\}$ which model the mean and covariance matrix of the data.

The multivariate Gaussian density

Fitting the model to data

Assume the data were generated independently from the model. We can measure the likelihood of the model:

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{y}_n|\boldsymbol{\theta})$$

Clearly, the third model is a better fit to the data than the others:

$$\log p(\mathcal{D}|\boldsymbol{\theta}_1) = -55.38$$

$$\log p(\mathcal{D}|\boldsymbol{\theta}_2) = -238.29$$

$$\log p(\mathcal{D}|\boldsymbol{\theta}_2) = -22.14$$

The likelihood function

Data set $\mathcal{D} = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$, the likelihood: $p(\mathcal{D}|\boldsymbol{\mu}, \Sigma) = \prod_{n=1}^N p(\mathbf{y}_n | \boldsymbol{\mu}, \Sigma)$ is a function of the model parameters

The maximum likelihood (ML) procedure finds parameters $\theta = {\mu, \Sigma}$ such that:

 $\boldsymbol{\theta}_{\mathrm{ML}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta})$

Finding Maximum Likelihood Estimate for a Gaussian

Data set
$$\mathcal{D} = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$$
, likelihood: $p(\mathcal{D}|\boldsymbol{\mu}, \Sigma) = \prod_{n=1}^N p(\mathbf{y}_n | \boldsymbol{\mu}, \Sigma)$

Maximise likelihood \Leftrightarrow maximise log likelihood **Goal:** find μ and Σ that maximise log likelihood:

$$\mathcal{L} = \log \prod_{n=1}^{N} p(\mathbf{y}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_n \log p(\mathbf{y}_n | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= -\frac{N}{2} \log |2\pi\boldsymbol{\Sigma}| - \frac{1}{2} \sum_n (\mathbf{y}_n - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\mathbf{y}_n - \boldsymbol{\mu})$$

Note: equivalently, minimise $-\mathcal{L}$, which is *quadratic* in μ **Procedure:** take derivatives and set to zero:

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}} = 0 \quad \Rightarrow \quad \hat{\boldsymbol{\mu}} = \frac{1}{N} \sum_{n} \mathbf{y}_{n} \quad \text{(sample mean)}$$
$$\frac{\partial \mathcal{L}}{\partial \Sigma} = 0 \quad \Rightarrow \quad \hat{\Sigma} = \frac{1}{N} \sum_{n} (\mathbf{y}_{n} - \hat{\boldsymbol{\mu}}) (\mathbf{y}_{n} - \hat{\boldsymbol{\mu}})^{\top} \quad \text{(sample covariance)}$$

Two very simple data sets

What are the maximum likelihood estimates of θ for these data sets?

Does this make sense?

Bayesian Learning

Apply the basic rules of probability to learning from data. Use probability distributions to represent uncertainty.

Data set: $\mathcal{D} = \{\mathbf{y}_1, \dots, \mathbf{y}_N\}$ Model parameters: $\boldsymbol{\theta}$

Prior probabilities of model parameters: $P(\theta)$ Model of data given parameters (likelihood model): $P(\mathbf{y}|\theta)$

If the data are independently and identically distributed then: $N = \frac{N}{10}$

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{n} P(\mathbf{y}_n|\boldsymbol{\theta})$$

Posterior probability of model parameters:

$$P(\boldsymbol{\theta}|\mathcal{D}) = \frac{P(\mathcal{D}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathcal{D})}$$

Limitations of the Multivariate Gaussian

Gaussians are fundamental and widespread, but not every distribution of interest is Gaussian.

- Some processes produce outliers.
- Some data has higher-order or non-linear structure.
- Not all random processes fit the central limit theorem.
- Even if data are Gaussian, if D is large the full multivariate Gaussian model may be difficult to handle. There are D(D+1)/2 parameters in the covariance matrix.

Factor Analysis

Factor analysis models high dimensional data y in terms of a linear transformation of some smaller number of latent factors, x.

Properties:

- $p(\mathbf{x}) = \mathcal{N}(0, I)$ and $\mathbf{y} = \Lambda \mathbf{x} + \epsilon$
- Since $p(\epsilon) = \mathcal{N}(0, \Psi)$, we get that $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\Lambda \mathbf{x}, \Psi)$
- $p(\mathbf{y}) = \int p(\mathbf{x}) p(\mathbf{y}|\mathbf{x}) d\mathbf{x} = \mathcal{N}(0, \Lambda \Lambda^\top + \Psi)$ where Λ is a $D \times K$ matrix, and Ψ is diagonal.

latent = hidden = unobserved = missing

Ways of thinking about Factor Analysis (FA)

- FA models high dimensional data in terms of a linear transformation of some smaller number of latent factors.
- FA is a method for parameterizing a D×D covariance matrix Σ in terms of D×K+D parameters, ΛΛ^T + Ψ. Since K can be chosen by the user, this means that factor analysis can be applied to very high dimensional datasets.
- FA is a method for modelling correlations among the observed variables.
- FA is a linear regression model, where the inputs are assumed to be hidden.
- FA is a method for doing dimensionality reduction. Given y we can represent it by the mean of x. FA finds a low-dimensional projection of high dimensional data that captures the correlation structure of the data.

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{x})p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y})} = \mathcal{N}(\beta \mathbf{y}, I - \beta \Lambda) \quad \text{where} \quad \beta = \Lambda^{\top} (\Lambda \Lambda^{\top} + \Psi)^{-1}$$

Factor Analysis

- ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for ML parameters.
- Number of free parameters (corrected for symmetries):

$$DK + D - \frac{K(K-1)}{2} < \frac{D(D+1)}{2}$$

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior given the data.

$$p(\Lambda, \Psi | \mathcal{D}) = \frac{p(\mathcal{D} | \Lambda, \Psi) p(\Lambda, \Psi)}{p(\mathcal{D})}$$

Latent Variable Models

Explain correlations in ${\bf y}$ by assuming some latent variables ${\bf x}$

$$\mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta}_x)$$
$$\mathbf{y}|\mathbf{x} \sim p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_y)$$
$$p(\mathbf{x}, \mathbf{y}|\boldsymbol{\theta}_x, \boldsymbol{\theta}_y) = p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_y)p(\mathbf{x}|\boldsymbol{\theta}_x)$$
$$p(\mathbf{y}|\boldsymbol{\theta}_x, \boldsymbol{\theta}_y) = \int d\mathbf{x} \ p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}_y)p(\mathbf{x}|\boldsymbol{\theta}_x)$$

Probabilistic Principal Components Analysis (pPCA)

Linear generative model: $y_d = \sum_{k=1}^K \Lambda_{dk} x_k + \epsilon_d$

- x_k are independent $\mathcal{N}(0,1)$ Gaussian factors
- ϵ_d are independent $\mathcal{N}(0, \sigma^2)$ Gaussian noise
- $\bullet K \! < \! D$
- pPCA is factor analysis with isotropic noise: $\Psi=\sigma^2 I$
- pPCA finds same principal subspace as PCA, but is a well-defined probabilistic model.

Principal Components Analysis (PCA)

Noise variable becomes infinitesimal compared to the scale of the data: $\Psi = \lim_{\sigma^2 \to 0} \sigma^2 I$

$$p(\mathbf{x}|\mathbf{y}) = \mathcal{N}(\beta \mathbf{y}, I - \beta \Lambda)$$
$$\beta = \lim_{\sigma^2 \to 0} \Lambda^\top (\Lambda \Lambda^\top + \sigma^2 I)^{-1} = (\Lambda^\top \Lambda)^{-1} \Lambda^\top$$

Usually in PCA we choose columns of Λ to be orthonormal, i.e. $\Lambda^{\top}\Lambda = I$, therefore:

 $\beta = \Lambda^\top$

Eigenvalues and Eigenvectors

 λ is an eigenvalue and x is an eigenvector of A if:

 $A\mathbf{x} = \lambda \mathbf{x}$

and x is a unit vector $(\mathbf{x}^{\top}\mathbf{x} = 1)$.

Interpretation: the operation of A in direction x is a scaling by λ .

The K Principal Components are the K eigenvectors with the largest eigenvalues of the data covariance matrix (i.e. K directions with the largest variance).

Note: Σ can be decomposed:

$$\Sigma = USU^{\top}$$

where S is diag $(\sigma_1^2, \ldots, \sigma_D^2)$ and U is a an orthonormal matrix.

Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html

Mutual Information and PCA

Problem: Given y, find $\mathbf{x} = A\mathbf{y}$ with columns of A unit vectors, s.t. $I(\mathbf{x}; \mathbf{y})$ is maximised (assuming that $P(\mathbf{y})$ is Gaussian).

$$I(\mathbf{x}; \mathbf{y}) = H(\mathbf{x}) + H(\mathbf{y}) - H(\mathbf{x}, \mathbf{y}) = H(\mathbf{x})$$

So we want to maximise the entropy of \mathbf{x} . What is the entropy of a Gaussian?

$$H(\mathbf{z}) = -\int d\mathbf{z} \ p(\mathbf{z}) \ln p(\mathbf{z}) = \frac{1}{2} \ln |\Sigma| + \frac{D}{2} (1 + \ln 2\pi)$$
(1)

Therefore we want the distribution of x to have largest volume (i.e. det of covariance matrix).

$$\Sigma_x = A \Sigma_y A^\top = A U S_y U^\top A^\top$$

So, A should be aligned with the columns of U which are associated with the largest eigenvalues (variances).

Gradient Methods for Learning FA

Write down negative log likelihood:

$$\frac{1}{2}\log|2\pi(\Lambda\Lambda^{\top}+\Psi)| + \frac{1}{2}\mathbf{y}^{\top}(\Lambda\Lambda^{\top}+\Psi)^{-1}\mathbf{y}$$

Optimise w.r.t. Λ and Ψ (need matrix calculus) subject to constraints

We will soon see an easier way to learn latent variable models...

Appendix: Source Coding Under a Gaussian Model

Consider coding real valued numbers x under a Gaussian model of the data.

- How many bits should we use for each x?
- Clearly we need to limit the precision of our code, otherwise we will need infinitely many bits. Let's use precision Δ .
- Remember, from Shannon's source coding theorem.

$$l(x) = -\log P(x) \approx -\log[p(x)\Delta] = -\log p(x) - \log \Delta$$
$$= \frac{(x-\mu)^2}{2\sigma^2} + \frac{1}{2}\log 2\pi + \log \sigma - \log \Delta$$

• Note as $\Delta \Rightarrow 0$ then $l(x) \Rightarrow \infty$.

So we need l(x) bits to code x, which grows quadratically with distance from x to μ .

Appendix: FA vs PCA

- PCA is rotationally invariant; FA is not
- FA is measurement scale invariant; PCA is not
- FA and pPCA define valid probabilistic models; PCA does not