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Three main kinds of graphical models
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factor graph undirected graph directed graph

e Nodes correspond to random variables

e Edges represent statistical dependencies between the variables



Why do we need graphical models?

e Graphs are an intuitive way of representing and visualising the relationships between
many variables. (Examples: family trees, electric circuit diagrams, neural networks)

e A graph allows us to abstract out the conditional independence relationships between
the variables from the details of their parametric forms. Thus we can ask questions like:
“Is A dependent on B given that we know the value of C' 7" just by looking at the

graph.
e Graphical models allow us to define general message-passing algorithms that

implement Bayesian inference efficiently. Thus we can answer queries like “What
is P(A|C = ¢)?" without enumerating all settings of all variables in the model.

Graphical models = statistics x graph theory x computer science.



Conditional Independence

Conditional Independence:

XYWV < pX[Y,V)=p(X][V)
when p(Y, V) > 0. Also

XLYV & pX,Y|V)=pX[V)pY|V)
In general we can think of conditional independence between sets of variables:
XYY < {XULY|VY, VX e X and VY € YV}

Marginal Independence:

XY & X1UY|0 & pX,Y)=pX)pY)



Conditional and Marginal Independence (Examples)

Amount of Speeding Fine 1l Type of Car | Speed

Lung Cancer 1L Yellow Teeth | Smoking

(Position, Velocity);+1 1L (Position, Velocity);_1 | (Position, Velocity);, Acceleration;

Child's Genes . Grandparents' Genes | Parents’ Genes
Ability of Team A L Ability of Team B

not ( Ability of Team A L Ability of Team B | Outcome of A vs B Game )

(approximately)



Factor Graphs

Two types of nodes:
e The circles in a factor graph

represent random variables (e.g. A).

e The filled dots represent factors in
the joint distribution (e.g. g1(+)).

(a) P(A,B,C,D,E) = Zgl(A C)g2(B,C, D)gs(C, D, E)
(b) P(A B C D E) Zgl(A C)QQ(B C) (Cv D)g4(B,D)g5(C, E)g6(D7E)

The g; are non-negative functions of their arguments, and Z is a normalization constant.
E.g. in (a), if all variables are discrete and take valuesin A x BxC xD x &:

Z=> 33> g(A=0a,C=0c)g(B=bC=c¢,D=d)gs(C=c,D=d,E=e)

acA beB ceC deD ec&

Two nodes are neighbors if they share a common factor.



Factor Graphs

(a)
The circles in a factor graph represent random variables.
The filled dots represent factors in the joint distribution.

(a) P(A,B,C, D, E) = 91(A,C)ga(B,C, D)g3(C, D, E)
(b) P(A,B,C,D,E) = Zgl(A C)g2(B, C)g3(C, D)ga(B, D)g5(C, E)gs(D, E)

Two nodes are neighbors if they share a common factor.
Definition: A path is a sequence of neighboring nodes.
Fact: X LY |V if every path between X and Y contains some node V' € V

Corollary: Given the neighbors of X, the variable X is conditionally independent of all
other variables: X 1l Y|ne(X), VY ¢ {X Une(X)}



Proving Conditional Independence

Conditional independence:
XYV < pX[Y,V)=pX|V)

Assume:
1
P(X,)Y,V) = Egl(X’ V)ga(Y, V)

Then summing (2) over X we get:

P(Y,V) 291 (X, V)lg2(Y, V)

Dividing (2) by (3)) we get:

q1(X, V)
ZX gl(X V)

P(X]Y,V) =

(4)

Since the rhs. of (4]) doesn't depend on Y/, it follows that X is independent of Y given V.

Therefore factorizaton ([2) implies conditional independence ((1)).



Undirected Graphical Models

In an Undirected Graphical Model, the joint probability over all variables can be written in
a factored form:

1
P(x) = ZH%’(XCJ-)
J
where x = (x1,...,Zk), and
C; C{1,...,K}

are subsets of the set of all variables, and xg = (z : k € 5).

Graph Definition: Let each variable be a node. Connect nodes 7 and k if there exists a
set C; such that both i € C; and k € ;. These sets form the cliques of the graph (fully
connected subgraphs).

Note: Undirected Graphical Models are also called Markov Networks.
Very similar to factor graphs.



Undirected Graphical Models

1
P(A, B, C, D, E) = Egl(A, C)QQ(B, C, D)gg(C, D, E)

Fact: X 1LY |V if every path between X and Y contains some node V €V

Corollary: Given the neighbors of X, the variable X is conditionally independent of all
other variables: X 1l Y|ne(X), VY ¢ {X Une(X)}

Markov Blanket: V is a Markov Blanket for X iff X LY |V forall Y ¢ {X UV}

Markov Boundary: minimal Markov Blanket = ne(X) for undirected graphs and factor
graphs



Comparing Undirected Graphs and Factor Graphs

(a) (c)

All nodes in (a), (b), and (c) have exactly the same neighbors and therefore these three
graphs represent exactly the same conditional independence relationships.

(c) also represents the fact that the probability factors into a product of pairwise functions.

Consider the case where each variables is discrete and can take on K possible values. Then
the functions in (a) and (b) are tables with O(K?) cells, whereas in (c) they are O(K?).



Problems with Undirected Graphs and Factor Graphs

In UGs and FGs, many useful independencies are unrepresented—two variables are connected
merely because some other variable depends on them:

(Coams”

This highlights the difference between marginal independence and conditional
independence.

R and S are marginally independent (i.e. given nothing), but they are conditionally
dependent given GG

“Explaining Away": Observing that the spinkler is on, explains away the fact that the
ground was wet, therefore we don't need to believe that it rained.



Directed Acyclic Graphical Models (Bayesian Networks)
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A DAG Model / Bayesian network corresponds to a factorization of the joint probability
distribution:

p(A, B,C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)

In general:
n

1=1

where pa(t) are the parents of node <.



Directed Acyclic Graphical Models (Bayesian Networks)

Semantics: X 1LY |V if V d-separates X from Y|

Definition: V d-separates X from Y if every undirected path? between X and Y is
blocked by V. A path is blocked by V if there is a node W on the path such that either:

1. W has converging arrows along the path (— W <—)ﬂ and neither W nor its descendants

are in V, or
2. W does not have converging arrows along the path (— W — or «— W —)and W € V.

Corollary: Markov Boundary for X: {parents(X)Uchildren(X )Uparents-of-children(X)}.

1See also the “Bayes Ball" algorithm in the Appendix
2An undirected path ignores the direction of the edges.
3Note that converging arrows along the path only refers to what happens on that path. Also called a collider.




From Directed Trees to Undirected Trees
os e

p(901,£132,---,$7) = p($3)p(3€1|£C3)p(£132|$3)p($4\$3)p($5|$4)p($6|$4)p($7!9€4)

_ p(x1, 23)p(w2, 3)p(T3, 4)P(T4, T5)D(T4, T6)P(T4, T7)
p(z3)p(z3)p(xa)p(T4)p(4)

product of cliques

~ product of clique intersections

— 91(51317 333)92(5132, $3)93($3, $4)g4($4, 5135)95(3347 376)96(3747 $7) =

= 1] ()

)



Belief Propagation (in singly connected DAGs)

Definition: A DAG is singly connected if its underlying undirected graph is a tree, ie there
is only one undirected path between any two nodes.

L 0 L0
’ ’
(NX O

Goal: For some node X we want to compute p(X|e) given evidence e.
Since we are considering singly connected graphs:

e every node X divides the evidence into upstream e} and downstream e

e every edge X — Y divides the evidence into upstream e};y and downstream e .



The three key ideas behind Belief Propagation

Idea 1: Our belief about the variable X can be found by combining upstream and
downstream evidence:

pX.e) _ pX.kex) i

p(Xle) = = o x o p(Xlex)  x o plex|X ex)
p(e) plex,ex) N

X d-separates ey from el

p(X|ex)plex|X) = m(X)A(X)

Idea 2: The upstream and downstream evidence can be computed via a local message
passing algorithm between the nodes in the graph.

Idea 3: “Don't send back to a node (any part of) the message it sent to you!”



Belief Propagation
top-down upstream evidence:
...... \ 7TX<UZ) — p(Uzle—(ZX)
®/ bottom-up downstream evidence:
M ;;»\/ A, (X) = plexy |1X)

To update the belief about X given the evidence:

BEL(X) = p(Xe) = ~A(X)(X)

Z
AMX) = H Ay, (X)

(X)) = ) pX|Ur,....,Un) ][ ex(U))



Belief Propagation (cont.)

R R

top-down upstream evidence:
""" \ mx(Us) = p(Uilef; x)
®/ bottom-up downstream evidence:
M E;»\/ A, (X) = plexy 1 X)

Bottom-up propagation, message X sends to U;:
Ax(Ui) = Y MX) Y p(X|U,....Un) [ [ 7x(Uk)
X Uj:k#i ki

Top-down propagation, message X sends to Y:
1 BEL(X)

v (X) = %[HM(X)] > P[0 U [T rx () =

g Z Av.(X)

Z is the normaliser ensuring >\ my, (X) =1



Belief Propagation in multiply connected Bayesian Networks

The Junction Tree algorithm: Form an undirected graph from your directed graph such
that no additional conditional independence relationships have been created (this step is
called “moralization”). Lump variables in cliques together and form a tree of cliques—this
may require a nasty step called “triangulation”. Do inference in this tree.

Cutset Conditioning: or “reasoning by assumptions”. Find a small set of variables which,
if they were given (i.e. known) would render the remaining graph singly connected. For each
value of these variables run belief propagation on the singly connected network. Average
the resulting beliefs with the appropriate weights.

Loopy Belief Propagation: just use BP although there are loops. In this case the terms
“upstream” and “downstream” are not clearly defined. No guarantee of convergence, but
often works well in practice.



Learning with Hidden Variables: The EM Algorithm

6,
(5

6,

0
2% @ Assume a model parameterised by 6 with

observable variables Y and hidden variables X
MO

Goal: maximise parameter log likelihood given observables.
L(0) =p(Y|0) = > p(Y, X|0)
X

o E-step: first infer p(X|Y, 0,14), then

e M-step: find 0,,., using complete data learning

The E-step requires solving the inference problem: finding explanations, X,
for the data, Y, given the current model, 6 (using e.g. BP).

How about structure learning?



Expressive Power of Directed and Undirected Graphs

No Directed Graph (Bayesian
network) can represent these and
only these independencies

No matter how we direct the arrows there will always be two non-adjacent parents sharing
a common child = dependence in Directed Graph but independence in Undirected Graph.

Q No Undirected Graph or Factor

Graph can represent these and
only these independencies



Appendix: Clique Potentials and Undirected Graphs

Definition: a clique is a fully connected subgraph. By clique we usually mean maximal
clique (i.e. not contained within another clique)

C; denotes the set of variables in the i*" clique.
1
p(xla - 737K) — EHgZ(XCz)

where Z = leme [1; 9i(xc,) is the normalization.

Associated with each clique C); is a non-negative function

gi(xci) which measures “compatibility” between settings A C|g(40)
of the variables. 0 O 0.2

0 1 0.6
Example: Let C; = {A,C}, A€ {0,1},C € {0,1} 1 O 0.0
What does this mean? 1 1 1.2




Appendix: Hammersley—Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive functions
on cliques of G is a Markov Field relative to G.

Definition: The distribution p is a Markov Field relative to G if all conditional independence
relations represented by GG are true of p.

GG represents the following Cl relations: If V' € V lies on all paths between X and Y in G,
then X 1LY |V.

Proof: We need to show that if p is a product of functions on cliques of G then a variable
is conditionally independent of its non-neighbors in GG given its neighbors in G. That is:
ne(xy) is a Markov Blanket for zy. Let x,, ¢ {z, Une(x,)}

povn ) = [Loitxe) =5 T aitxe) TT aitxc,)

el J£gC,
Z%fl (0, ne(x)) fo(ne(xy), zm) = %p(ﬂ?e! ne(xr)) p(zm|ne(wr))

It follows that:  p(zy, .| ne(xy)) = p(ae| ne(xy)) p(x,,| ne(xy)) < xpllx,,|ne(zy).



Appendix: The “Bayes-ball”’ algorithm
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Game: can you get a ball from X to Y without being blocked by 17

Depending on the direction the ball came from and the type of node, the ball can pass
through (from a parent to all children, from a child to all parents), bounce back (from
any parent to all parents, or from any child to all children), or be blocked.

e An unobserved (hidden) node (W ¢ V) passes balls through but also bounces back

balls from children.

e An observed (given) node (W &€ V) bounces back balls from parents but blocks balls
from children.



Appendix: Understanding BP equations

p(X|e) = BEL(X) AX)7(X) = plex]| X)p(X|ek)
plex|X) = A(X) = [L; Av;(X) =11, Plexy,|X)
p(Xlex)=7(X) = Xy, pX|U,....Un) [];7x(U;)
= Yy, XU U Tip(Uileds x)

Z is a normalization constant.
All equations follow from the conditional independencies in the graph.



