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Review: probabilistic modelling

Data D, model M; what do we know about x?

Bayesian prediction with unknown parameters θ:

P (x|D,M) =
∫

P (x, θ|D,M) dθ Marginalization

=
∫

P (x|θ,D,M)P (θ|D,M)︸ ︷︷ ︸
from Bayes’ rule

dθ Product rule

Also marginalize any hidden variables:

P (x|D,M) =
∫ ∑

h

P (x, h|θ,D,M)
∑
H

P (θ, H|D,M) dθ

· · ·



Regression example
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Linear regression model

Three parameters:

θ={slope m, shift c, noise σ}

h = mw + c + η ∼ N (0, σ2)

P (h|w,D,M) =∫
P (h|w, θ,M)P (θ|D,M) dθ



“Review” continued

The EM algorithm uses sums or integrals for its sufficient statistics:

E[s(h, v)|θ] =
∫

s(h, v)P (h|v, θ) dh

Lecture 11 will be on model comparison:

P (D|M) =
∫

P (D|θ,M)P (θ|M) dθ

Inference only needs mechanical use of marginalization, the product

rule and Bayes’ rule. . . provided we can do all the sums and integrals



The trouble with sums

100 binary variables xi ∈ {0, 1}, could be:

– assignments of 100 data points in a mixture of 2 Gaussians

– a tiny patch of pixel labels in computer vision

– a tiny patch of idealized magnetic iron

There are 2100 possible states

The age of the universe ≈ 298 picoseconds

Sum might decompose (e.g. belief propagation)

. . . otherwise must approximate



The trouble with integrals

Only some integrals have analytic solutions

Numerical quadrature is feasible in low

dimensions (1, 2 or 3)

Multivariate integrals occasionally decompose into standard integrals:

– Linear Gaussian models

– Exponential family models with conjugate priors

Discretization or quadrature are infeasible in high dimensions:

– Only allow each variable to take on 2 settings

– There are 2100 possible joint settings. . .



Regression example (2)
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Non-linear regression

Many parameters:

θ = {curve, noise}

P (h|w,D,M) =∫
P (h|w, θ,M)P (θ|D,M) dθ



Statistical sampling
What is the average height h of people p in Cambridge C?

Ep∈C[h(p)] ≡ 1
|C|

∑
p∈C

h(p)

≈ 1
S

S∑
s=1

h
(
p(s)

)
, for random survey of S people {p(s)} ∈ C

What is the distribution over unknown x?

p(x|D) =
∫

P (x|θ,D)P (θ|D) dθ = EP (θ|D)[P (x|θ,D)]

≈ 1
S

S∑
s=1

P (x|θ(s),D), θ(s) ∼ P (θ|D)

This technique is also known as simple Monte Carlo
Estimates are unbiased, variance ∼ 1/S “independent of dimension”



A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4
∫∫

I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> N=12; a=rand(N,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> N=1e7; a=rand(N,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418



Monte Carlo and Insomnia

Enrico Fermi (1901–1954) took great

delight in astonishing his colleagues

with his remakably accurate predictions

of experimental results. . . he revealed

that his “guesses” were really derived

from the statistical sampling techniques

that he used to calculate with whenever

insomnia struck in the wee morning

hours!

—The beginning of the Monte Carlo method,

N. Metropolis



Sampling from distributions
Draw points from the unit area under the curve

P (x)

x
x

(2)
x

(3)
x

(1)
x

(4)

Draw probability mass to left of point, u ∼ Uniform[0,1]

Sample x(u) = c−1(u), where c(x) =
∫ x

−∞P (x′) dx′

Problem: often can’t even normalize P , e.g. P (θ|D) ∝ P (D|θ)P (θ)
Will call unnormalized version P ∗ (as in MacKay’s textbook).



Rejection sampling
Sampling underneath a P ∗(x) ∝ P (x) curve is also valid

coptQ
∗(x)

P ∗(x)

cQ∗(x)

xx(1)

(xj , hj)

(xi, hi)

Draw underneath a simple

curve cQ∗(x) ≥ P ∗(x):
– Draw x ∼ Q(x)
– height h ∼ Uniform[0, cQ∗(x)]

Discard the point if above P ∗,

i.e. if h > P ∗(x)



Importance sampling

Computing P ∗(x) and Q∗(x), then throwing x away seems wasteful

Instead rewrite the integral as an expectation under Q:∫
f(x)P (x) dx =

∫
f(x)

P (x)
Q(x)

Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1
S

S∑
s=1

f(x(s))
P (x(s))
Q(x(s))

, x(s) ∼ Q(x)

Unbiased; but light-tailed Q(x) can give the estimator infinite variance

. . . and you might not notice.

Importance sampling applies when the integral is not an expectation.



Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P ∗(x)/ZP∫
f(x)P (x) dx ≈ ZQ

ZP

1
S

S∑
s=1

f(x(s))
P ∗(x(s))
Q∗(x(s))︸ ︷︷ ︸

w(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
��1

S

S∑
s=1

f(x(s))
w(s)

�
�
��1

S

∑
s′ w

(s′)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
s w(s)



Summary so far

• Sums and integrals, often expectations, occur frequently in statistics

• Monte Carlo approximates expectations with a sample average

• Rejection sampling draws samples from fiddly distributions

• Importance sampling applies Monte Carlo to any sum/integral

• If Q(x) is a poor global fit:

– rejection samplers almost always reject (large c needed)

– importance sampling is dangerous (large or infinite variance)

In high dimensions finding a good Q(x) is hard. What then?


