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Review: probabilistic modelling

Data D, model M: what do we know about 27

Bayesian prediction with unknown parameters 6:

P(z|D, M) = /P(x,é’ﬂ),/\/l) df Marginalization

:/P(x\H,D,M)f(Q\D,MZdH Product rule

from Bayes’ rule

Also marginalize any hidden variables:

P(z|D, M) = /ZP(CE, hl6,D, M) P(6,H|D, M) df
h

H



Regression example

h, height/cm
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w, width/cm

Linear regression model

Three parameters:
0 = {slope m, shift ¢, noise o}

h=mw+c+n~N(0,oc?)

P(h|lw, D, M) =

/P(h\w,@,M)P(@\D,M) a6



“Review’”’ continued

The EM algorithm uses sums or integrals for its sufficient statistics:

.MdMMWFi/dePMWﬁMM

Lecture 11 will be on model comparison:

pwmo:/mmaMﬁwm@M

Inference only needs mechanical use of marginalization, the product
rule and Bayes' rule. . . provided we can do all the sums and integrals



The trouble with sums

100 binary variables x; € {0,1}, could be:
— assignments of 100 data points in a mixture of 2 Gaussians
— a tiny patch of pixel labels in computer vision
— a tiny patch of idealized magnetic iron

There are 2'% possible states
The age of the universe ~ 23 picoseconds

Sum might decompose (e.g. belief propagation)
. . . otherwise must approximate




The trouble with integrals

= o e Only some integrals have analytic solutions
 STANDARD MATHEMATICA'S
MATHEMATICAL

%BRLAME Numerlcal quadrature is feasible in low

Multivariate integrals occasionally decompose into standard integrals:
— Linear Gaussian models
— Exponential family models with conjugate priors

Discretization or quadrature are infeasible in high dimensions:
— Only allow each variable to take on 2 settings
— There are 219 possible joint settings. . .



Regression example (2)

h, height/cm

w, width/cm

Non-linear regression

Many parameters:
§ = {curve, noise}

P(hlw, D, M) =

/ P(hjw, 0, M)P(6|D, M) df



Statistical sampling

What is the average height h of people p in Cambridge C?

Bpeclh(®)] = 157 >_ h(p)
pEC
1
§ (5) , for random survey of S people {p S)} cC

What is the distribution over unknown x?

p(alD) = [ P(al6. D)P(OID) 46 = Epiyo)[P(s]6. D)
S
~ %Zp(xw(s), D), 0 ~ P(6|D)

This technique is also known as simple Monte Carlo
Estimates are unbiased, variance ~ 1/5 “independent of dimension”



A dumb approximation of

1 O0<z<1 and O<y<l1

0O otherwise

P(x7y) _{

T = 4//]1((:132+y2) < 1)P(az,y) dx dy

octave:1> N=12; a=rand(N,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> N=1e7; a=rand(N,2); 4x*mean(sum(a.*a,2)<1)
ans = 3.1418



Monte Carlo and Insomnia

Enrico Fermi (1901-1954) took great
delight in astonishing his colleagues
with his remakably accurate predictions
of experimental results. . . he revealed
that his “guesses’ were really derived
from the statistical sampling techniques
that he used to calculate with whenever
insomnia struck in the wee morning
hours!

— The beginning of the Monte Carlo method,

N. Metropolis



Sampling from distributions

Draw points from the unit area under the curve

Draw probability mass to left of point, u ~ Uniform[0,1]
Sample z(u) = ¢ !(u), where ¢(z) = [*__ P(2) da’

Problem: often can’t even normalize P, e.g. P(6|D) < P(D|0)P(0)
Will call unnormalized version P* (as in MacKay's textbook).



Rejection sampling

Sampling underneath a P*(x) o< P(x) curve is also valid

Draw underneath a simple
curve cQ*(x) > P*(x):
— Draw =z ~ Q(x)
— height A ~ Uniform|0, cQ*(x)]

Discard the point if above P~*,
ie. if h > P*(x)



Importance sampling

Computing P*(x) and Q*(x), then throwing x away seems wasteful
Instead rewrite the integral as an expectation under ():

[ t@p@ o= | f<:c>P(?cz<x> dz, (@) > 0if P) > 0)

s ()
Z <s> ; ) 0 O(x)

Unbiased; but light-tailed QQ(x) can give the estimator infinite variance
. .and you might not notice.

Importance sampling applies when the integral is not an expectation.



Importance sampling (2)

Previous slide assumed we could evaluate P(x) = P*(x)/Zp

5 (209
/f Z—i %Zf(x@))P*g ;, 2 ~ Q(x)

This estimator is consistent but biased

Exercise: Prove that Zp/Zg ~ + > w'®



Summary so far

e Sums and integrals, often expectations, occur frequently in statistics
e Monte Carlo approximates expectations with a sample average

e Rejection sampling draws samples from fiddly distributions

e Importance sampling applies Monte Carlo to any sum/integral

o If Q(x) is a poor global fit:

— rejection samplers almost always reject (large ¢ needed)
— importance sampling is dangerous (large or infinite variance)

In high dimensions finding a good Q(x) is hard. What then?



