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Learning

Imagine a machine or organism that experiences over its
lifetime a series of sensory inputs:

xl? x27 x37 :C47 ¢t

Supervised learning: The machine is also given desired
outputs y1, v, ..., and its goal is to learn to produce the
correct output given a new input.

Unsuper vised learning: The goal of the machine is to
build representations from x that can be used for
reasoning, decision making, predicting things,
communicating etc.

Reinforcement learning: The machine can also
produce actions ay, ag, . .. Which affect the state of the
world, and receives rewards (or punishments) r{,r9, . ...
Its goal is to learn to act in a way that maximises rewards

in the long term. ( ai
r



Goals of Unsuper vised Learning

To find useful representations of the data, for example:

e finding clusters, e.g. k-means, ART

e dimensionality reduction, e.g. PCA, Hebbian
learning, multidimensional scaling (MDS)

e building topographic maps, e.g. elastic networks,
Kohonen maps

e finding the hidden causes or sources of the data

e modeling the data density

We can quantify what we mean by “useful” later.



Uses of Unsuper vised Learning

data compression

outlier detection

classification

make other learning tasks easier

a theory of human learning and perception



Probabilistic Models

e A probabilistic model of sensory inputs can:

— make optimal decisions under a given loss
function

— make inferences about missing inputs

— generate predictions/fantasies/imagery

— communicate the data in an efficient way

e Probabilistic modeling is equivalent to other views of
learning:

— Information theoretic:
finding compact representations of the data

— physical analogies: minimising free energy of a
corresponding statistical mechanical system



Bayes rule

D — data set
M — models (or parameters)

The probability of a model M given data set D is:

DIM)P(M)
P(D)

pMmD) = 2L

P(D| M) is the evidence (or likelihood )
P(M) is the prior probability of M
P(M|D) is the posterior probability of M
P(D)= [ P(DIM)P(M) dM

Under very weak and reasonable assumptions, Bayes
rule is the only rational and consistent way to manipulate
uncertainties/beliefs (Polya, Cox axioms, etc).



Bayes, MAP and ML

Bayesian Learning : TN XJL:AA

Assumes a prior over the model parameters.Computes
the posterior distribution of the parameters: P(6|D).

Maximum a Posteriori jh
(MAP) Learning : X

Assumes a prior over the model parameters P(6).

Finds a parameter setting that
maximises the posterior: P(6|D)x P(0) P(D|0).

Maximum Likelihood K _ﬂw
(ML) Learning : X B
Does not assume a prior over the model parameters.

Finds a parameter setting that
maximises the likelihood of the data: P(D|6).



Modeling Correlations

Consider a set of variables yy, ... ,yp.

A very simple model:
means p; = (y;) and

correlations X; = (y;y;) — (i) (y;)

This corresponds to fitting a Gaussian to the data

P(y) = |27 Z exp {—%(y —p) 'y - u)}

There are D(D + 1)/2 parameters in this model

What if D is large?



Factor Analysis

Linear generative model:

K

ya = > Ngr zp +€g
b1

e 1; are independent A/(0, 1) Gaussian factors

e ¢; are independent N (0, ¥ ;) Gaussian noise
e K <D

So, Y is Gaussian with:

/P P(y|x)dx = N'(0, AAT + )
where A isa D x K matrix, and W is diagonal.
Dimensionality Reduction: Finds a low-dimensional

projection of high dimensional data that captures most of
the correlation structure of the data.



Factor Analysis: Notes

ML learning finds A and ¥ given data

parameters (with correction from symmetries):

K(K—1) D(D+1
DK +D — (2 %<(2+)

no closed form solution for ML params

Bayesian treatment would integrate over all A and ¥
and would find posterior on number of factors;
however it is intractable.



Network Interpretations

e () (V) e (V)
units

hidden @ oL @
units A

encoder
“recognition”

e @ @
units

e autoencoder neural network

e if trained to minimise MSE, then we get PCA

e if MSE + output noise, we get PPCA

e if MSE + output noises + reg. penalty, we get FA



Graphical Models

A directed acyclic graph (DAG) in which each node
corresponds to a random variable.

i (x3 P(X) = P(x1)P(xalx;)

\‘Q@\ X5) P(x3|x1,x2)
x4 P(x4]x2) P(x5|x3,%4)

Definitions: children, parents, descendents, ancestors

Key quantity: joint probability distribution over nodes.
P({x1,X9,...,%xp}) = P(X)

(1) The graph specifies a factorization of this joint pdf:
P(X) = ]| P(xilpatx))
i

(2) Each node stores a conditional distribution over its
own value given the values of its parents.

(1) & (2) completely specify the joint pdf numerically.

Semantics: Given its parents, each node is
conditionally independent from its non-descendents

(Also known as Bayesian Networks, Belief Networks,
Probabilistic Independence Networks.)



Two Unkno wn Quantities

In general, two quantities in the graph may be unknown:

e parameter values in the distributions P(x;|pa(x;))

e hidden (unobserved) variables not present in the data

Assume you knew one of these:
e Known hidden variables, unknown parameters

= this is complete data learning (decoupled
problems)

6=

e Known parameters, unknown hidden variables
= this is called inference (often the crux)

@ (2
\@\

But what if both were unknown simultaneously...



Learning with Hidden Variables:
The EM Algorithm

1
0, 93
%

Assume a model parameterised by 6 with observable
variables Y and hidden variables X

Goal: maximise log likelihood of observables.

£(0) = P(Y]0) =In Y P(Y, X|0)
X

e E-step: firstinfer P(X|Y,0,,), then
e M-step: find 6, using complete data learning
The E-step requires solving the inference problem:

finding explanations, X, for the data, Y
given the current model 6.



EM algorithm & F-function

Any distribution Q(X') over the hidden variables defines a
lower bound on In P(Y'|0) called F(Q, 0):

In P(Y|0) In» P(X,Y|0) = IHZQ P(X,Y'|6)
X

Q(X)
> Q(X F(Q,0

E-step: Maximise F w.r.t. () with 6 fixed
Q*(X) = P(X]Y,0)

M-step: Maximise F w.r.t. 6 with () fixed
6" = max > QX)) P(X,Y10)

NB: max of F(Q, ) is max of In P(Y'|0)



Two Intuitions about EM

|. EM decouples the parameter s

B, The E-step “fills in” values for the hidden vari-
@ ables. With no hidden variables, the likeli-

hood is a simpler function of the parameters.
62 63

0 pends only on the values of the variables at
4
@ that node and its parents.

Il. EM is coor dinate ascent in F

The M-step for the parameters at each n-
ode can be computed independently, and de-

F(@,e)

[

Qo



EM for Factor Analysis

F(Q,0) = / Q(x)In P(x,y|0)dx — / Q(x) In Q(x)dx

E-step: Maximise F w.r.t. () with 6 fixed

Q*(x) = P(x|ly,0)=N(By,I— B\
B = AT(AAT +0)7!

M-step: Maximise F w.r.t. 6 with () fixed:

1
In P(x,y|0) = —3 (x'x+ (y— Ax) U (y— Ax) + In |[¥]) + ¢

e The E-step reduces to computing the Gaussian
posterior distribution over the hidden variables.

e The M-step reduces to solving a weighted linear
regression problem.



Inference in Graphical Models

9 (D)

Singly connected nets
The belief propagation
algorithm.

Multipl y connected nets
The junction tree algorithm.

These are efficient ways of applying Bayes rule using the
conditional independence relationships implied by the
graphical model.



How Factor Analysis is
Related to Other Models

Principal Components Analysis (PCA): Assume
no noise on the observations: ¥ = lim,_yg €l

Independent Components Analysis (ICA): Assume
the factors are non-Gaussian (and no noise).

Mixture of Gaussians : A single discrete-valued
factor: zj, = 1 and z; = 0 for all 7 # k.

Mixture of Factor Analysers: Assume the data has
several clusters, each of which is modeled by a
single factor analyser.

Linear Dynamical Systems : Time series model in
which the factor at time ¢ depends linearly on the
factor at time ¢t — 1, with Gaussian noise.



A Generative Model for Generative Models

SBN, mix : mixture
Bolt .
I\/?acfrr:r?ensn red-dim : reduced
dimension
Factorial HMM dyn : dynamics
dyn )
Cooperative
Vector
Quantization . .
nonlin ;: nonlinear
\ dyn HMM switch : switching
Mixture of /
Gaussians _
(VQ) _ mix
red-dim _
Mixture of
HMMs
mix
Mixture of

Gaussian

Factor Analyzers
red-dim
dyn

Factor Analysis —
d Switching

(PCA)
State-space
_ dyn Models
nonlin
Linear
ICA

Dynamical
Systems (SSMs) m
dyn _
noniin Mixture of
LDSs
Nonlinear -
Gaussian h on m_earI
Belief Nets ynamica
Systems




Mixture of Gaussians and K-Means

Goal: finding clusters in data.

To generate data from this model, assuming K clusters:

e Pick cluster k € {1,... , K} with probability 7,

e Generate data according to a Gaussian with
mean p;. and covariance ;.

Ply) = P(y|lr = k)

T N(y|pk, Xg)

2
£

E-step: Compute responsibilities for each data vec. y(?)

T N (y '|Mk,2k)
Zg 17 N( |N€a )

r = Pz = kly"W) =
M-step : Estimate 7., ;. and X using data weighted by
the responsibilities.

The k-means algorithm for clustering is a special case of
EM for mixture of Gaussians where ;. = lim¢_sq el



Mixture of Factor Analysers

Assumes the model has several clusters
(indexed by a discrete hidden variable ).
Each cluster is modeled by a factor analyser:

M
P(y) = 3 Ple=m)Plylz =m)
where

P(y|lz =m) = N(u,,, A Ay, | - U)

e it's a way of fitting a mixture of Gaussians
to high-dimensional data

e clustering and dimensionality reduction

e Bayesian learning can infer a posterior over the
number of clusters and their intrinsic
dimensionalities.



Independent Components Analysis

e P(x;) is non-Gaussian.

e Equivalently P(x;) is Gaussian and

K

ya =D Napg(zr) + €4
=1

where ¢(-) is a nonlinearity.

e For K = D, and observation noise assumed to be
zero, inference and learning are easy (standard ICA).
Many extensions possible (e.g. with noise = IFA).



Hidden Markov Models/Linear Dynamical Systems

e Hidden states {x;}, outputs {y:}
Joint probability factorises:

PSfrag replacements

T
P({x} {y}) = ][ P(x¢xt—1)P(ye/xs)

t=1

e you can think of this as:
Markov chain with stochastic measurements.
Gauss-Markov process in a pancake.

or
Mixture model with states coupled across time.
Factor analysis through time.




HMM Generative Model

e plain-vanilla HMM =
“probabilistic function of a Markov chain”:

1. Use a 1st-order Markov chain to generate a
hidden state sequence (path):

Plx1=j) =
Plxii1 = jloy =1) =Ty

2. Use a set of output prob. distributions A;(-) (one
per state) to convert this state path into a
sequence of observable symbols or vectors

P(y: = ylor = 5) = Aj(y)
e Notes:
— Even though hidden state seq. is 1st-order Markov, the
output process is not Markov of any order

[ex. 1111121111311121111131... ]

— Discrete state, discrete output models can approximate any
continuous dynamics and observation mapping even if
nonlinear; however lose ability to interpolate



LDS Generative Model

e Gauss-Markov continuous state process:

Xt 11 = AXp + Wy
observed through the “lens” of a
noisy linear embedding:
yt = Cx¢ + vy

e Noises wo and v, are temporally white and
uncorrelated with everything else

e Think of this as “matrix flow in a pancake”

(Also called state-space models, Kalman filter models.)



EM applied to HMMs and LDSs

SO S

Given a sequence of T observations {Y7,... ,Yp}

E-step. Compute the posterior probabilities:

e HMM: Forward-backward algorithm: P({z}|{y})
¢ LDS: Kalman smoothing recursions: P({x}/{y})

M-step . Re-estimate parameters:

e HMM: Count expected frequencies.
e LDS: Weighted linear regression.

Notes:
1. forward-backward and Kalman smoothing recursions

are special cases of belief propagation.

2. online (causal) inference P(x¢|{Y7,...,Y:}) is done
by the forward algorithm or the Kalman filter.

3. what sets the (arbitrary) scale of the hidden state?
Scale of () (usually fixed at I).



Trees/Chains

HOTE

Tree-structured = each node has exactly one parent.
Discrete nodes or linear-Gaussian.

Hybrid systems are possible: mixed discrete &
continuous nodes. But, to remain tractable, discrete
nodes must have discrete parents.

Exact & efficient inference is done by belief
propagation (generalised Kalman Smoothing).

Can capture multiscale structure (e.g. images)



Polytrees/La yered Networks

more complex models for which junction-tree
algorithm would be needed to do exact inference

discrete/linear-Gaussian nodes are possible

case of binary units is widely studied:
Sigmoid Belief Networks

but usually intractable



Intractability

For many probabilistic models of interest, exact inference
IS not computationally feasible.
This occurs for two (main) reasons:

e distributions may have complicated forms
(non-linearities in generative model)

e “explaining away” causes coupling from observations
observing the value of a child induces dependencies
amongst its parents (high order interactions)

Y =Xy +2 X, + Xg+ X4+ 3 Xs

We can still work with such models by using approximate
Inference techniques to estimate the latent variables.



Appr oximate Inference

Sampling : — - -

approximate true distribution over hidden variables
with a few well chosen samples at certain values

Linearization : b

approximate the transformation on the hidden
variables by one which keeps the form of the
distribution closed (e.g. Gaussians and linear)

Recognition Models: %

approximate the true distribution with an
approximation that can be computed easily/quickly
by an explicit bottom-up inference model/network

Variational Methods :
approximate the true distribution with an approximate
form that is tractable; maximise a lower bound on the
likelihood with respect to free parameters in this form




Sampling

Gibbs Sampling

To sample from a joint distribution P(x1,z9,... ,zyN):
Start from some initial state x" = (2,29, ... ,z%):
Then iterate the following procedure:

o Pick zf*! from P(zy|ak, & 2%, ... k)

e Pick z5*! from P(xo|zh™, ok 2k ... k)

.

e Pick 25 from P(zy|aftt, ob ™t ob T o 2k
This procedure goes from x* — x**1, creating a Markov

chain which converges to P(x)

Gibbs sampling can be used to estimate the expectations
under the posterior distribution needed for E-step of EM.

It is just one of many Markov chain Monte Carlo (MCMC)
methods. Easy to use if you can easily update subsets of
latent variables at a time.

Key guestions: how many iterations per sample?
how many samples?



Particle Filter s

i U]

/51—1 S
pix,41Z,) =@ 2D <z
+ predict
plelZ_4) — __é.._._ _— -
[ \ (n)
plz, %} s measure
Y
plx, 12, )
SEHI]Kt[n]
. 1
Assume you have n weighted samples S, ; = {si_)l, . ,s@l} from

P(x:-1|Z:-1), with normalised weights wfi)l
1. generate a new sample set S; ; by sampling with replacement
from S;_; with probabilities proportional to w,fz_)l
2. for each element of S’ predict , using the stochastic dynamics,
by sampling s\’ from P(x,|x;_1 = s!’})
3. Using the measurement model, weight each new sample by

7 = P(z,|x, = s!")

(the likelihoods) and normalise so that ) . w,ﬁi) = 1.

Samples need to be weighted by the ratio of the distribution we draw
them from to the true posterior (this is importance sampling).

An easy way to do that is draw from prior and weight by likelihood.

(Also known as CONDENSATION algorithm.)



Linearization

Extended Kalman Filtering and Smoothing

VU

X1 = f(X¢, ug) + Wy

yt = g(x¢,uz) + vy

Linearise about the current estimate, i.e. given x;, uy.

of

X¢1 A f(Xe,ue) + B, (x¢ = X¢) + Wy

dyg

yi & g(X,ug) + ——

— %) +
o, (x¢ — %X¢t) + V¢

A

Xt

Run the Kalman smoother (belief propagation for
linear-Gaussian systems) on the linearised system. This
approximates non-Gaussian posterior by a Gaussian.



Recognition Models

e a function approximator is trained in a supervised
way to recover the hidden causes (latent variables)
from the observations

e this may take the form of explicit recognition network
(e.g. Helmholtz machine) which mirrors the
generative network (tractability at the cost of
restricted approximating distribution)

e inference is done in a single bottom-up pass
(no iteration required)



Variational Inference

Goal: maximise In P(Y'|6).

Any distribution Q(X) over the hidden variables defines a
lower bound on In P(Y'|6):

P(X,Y|6)
Q(X)

n P(Y]6) > 3 Q(X)In - F(Q,)
X

Constrain Q(X) to be of a particular tractable form (e.qg.
factorised) and maximise JF subject to this constraint

e E-step: Maximise F w.r.t. () with @ fixed, subject to
the constraint on (), equivalently minimise:

QX)
P(X[Y)

ImnP(Y|0) — F(Q,0) = ZQ(X)]H
X
= KL(Q||P)

The inference step therefore tries to find () closest to
the exact posterior distribution.

e M-step: Maximise F w.r.t. 6 with () fixed

(related to mean-field approximations)



Beyond Maximum Likelihood:
Finding Model Structure and Avoiding Overfitting

M=1 M=2 M=3

40 40 40
[
20 20 20
[ ]
0 e 0 > 0 >
-20 -20 -20
0 5 10 0 5 10 0 5 10

M=4 M=5 M=06
40 40 40
20 20 20
0 0 0
-20 -20 -20




Model Selection Questions

How many clusters in this data set?

What is the intrinsic dimensionality of the data?
What is the order of my autoregressive process?
How many sources in my ICA model?

How many states in my HMM?

Is this input relevant to predicting that output?

Is this relationship linear or nonlinear?



Bayesian Learning and Ockham’s Razor

data Y, models M;... ,M,, parameter sets 6; ... .6,
(let's ignore hidden variables X for the moment; they will just

introduce another level of averaging/integration)

Total Evidence:

P(Y) = Z P(Y|M;)P(M;)
J
Model Selection:

P(Y|M;)P(M;)
P(Y)

P(M;|Y) =
P(Y|M;) = /H_P(YW@',MDP(@AM@)

e P(Y|M,) is the probability that randomly selected
parameter values from model class M; would
generate data set Y.

e Model classes that are too simple will be very
unlikely to generate that particular data set.

e Model classes that are too complex can generate
many possible data sets, so again, they are unlikely
to generate that particular data set at random.



P(Data)

Ockham’s Razor

m too simple
\ Just right”
f \ too complex
: e
Y
Data Sets

(adapted from D.J.C. MacKay)



Overfitting




Practical Bayesian Approaches

Laplace approximations
Large sample approximations (e.g. BIC)
Markov chain Monte Carlo methods

Variational approximations



Laplace Approximation
data set Y, models M;... ,M,, parameter sets 6, ... ,0,

Model Selection:

P(M;]Y) oc P(M;)P(Y | M;)

For large amounts of data (relative to number of
parameters, d) the parameter posterior is approximately

Gaussian around the MAP estimate 6;:

P(92|Y, Mz) ~ (27‘(’)_7(1|A|% exp {—%(91 — éZ)TA(HZ — él)}
P(Y|\M;) =
YiM) P(6;]Y, M;)
Evaluating the above expression for In P(Y|M;) at 6;:
d

. A 1
In P(Y|M;) =~ In P(6;|M;) +In P(Y|0;, M;) + =In 27 — §ln |A|

2
where A is the negative Hessian of the log posterior.

This can be used for model selection.
(Note: Ais size d x d.)



BIC

The Bayesian Information Criterion (BIC) can be obtained
from the Laplace approximation

d

. A 1
In P(Y|M;) = In P(6;|M;) +In P(Y|6;, M;) + 5111 2m — iln |A|

by taking the large sample limit:

dln

In P(Y|M;) ~ In P(Y|0;, M;) +=In N

where N is the number of data points.

Properties:

Quick and easy to compute
It does not depend on the prior

We can use the ML estimate of 8 instead of the MAP
estimate

It assumes that in the large sample limit, all the
parameters are well-determined (i.e. the model is
identifiable; otherwise, d should be the number of
well-determined parameters)

It is equivalent to the MDL criterion



MCMC

Assume a model with parameters 6, hidden variables X
and observable variables Y

Goal: to obtain samples from the (intractable) posterior
distribution over the parameters, P(6|Y")

Approach: to sample from a Markov chain whose
equilibrium distribution is P(6|Y).

One such simple Markov chain can be obtained by Gibbs
sampling, which alternates between:

e Step A: Sample from parameters given hidden
variables and observables: 8 ~ P(0|X,Y)

e Step B: Sample from hidden variables given
parameters and observables: X ~ P(X|60,Y)

Note the similarity to the EM algorithm!



Variational Bayesian Learning

Lower bound the evidence:

L=nP(Y)

— In / P(Y,6)d6
> [Q@)mn s

’e)dﬁ
= /Q(@) —111P<Y’(9) + In

Q)

P(6)]
Q(0)]

do

0)

F(Q(0),

Assumes the factorisation:
PO, X|Y) =~ Q(0)Q(X)

> [ao)| [econ” )
QX))

(also known as “ensemble learning”)

dX] + In

P(6)
Q(0)

| ao



Variational Bayesian Learning

EM-like optimisation:
“E-step” : Maximise F w.r.t. Q(X) with Q(6) fixed
“M-step” : Maximise F w.r.t. Q(#) with Q(X) fixed

Finds an approximation to the posterior over parameters
Q(0) =~ P(0|Y) and hidden variables Q(X) ~ P(X|Y)

e Maximises a lower bound on the log evidence

e Convergence can be assessed by monitoring F

e Global approximation

e F transparently incorporates model complexity
penalty (i.e. coding cost for all the parameters of the
model) so it can be compared across models

e Optimal form of Q(0) falls out of free-form variational
optimisation (i.e. not assumed to be Gaussian)

e Often simple maodification of the EM algorithm



Summary

Why probabilistic models?

Factor analysis and beyond

Inference and the EM algorithm
Generative Model for Generative Models
A few models in detail

Approximate inference

Practical Bayesian approaches



Appendix



Desiderata (or Axioms) for

Computing Plausibilities

Paraphrased from E.T. Jaynes, using the notation p(A|B)
IS the plausibility of statement A given that you know that
statement B is true.

e Degrees of plausibility are represented by real
numbers

e Qualitative correspondence with common sense, e.g.

— 1f p(A|C") > p(A|C) but p(B|A&C") = p(B|A&C)
then p(A&B|C") > p(A&B|C)

e Consistency:

— If a conclusion can be reasoned in more than one
way, then every possible way must lead to the
same result.

— All available evidence should be taken into
account when inferring a plausibility.

— Equivalent states of knowledge should be
represented with equivalent plausibility
statements.

Accepting these desiderata leads to Bayes Rule being
the only way to manipulate plausibilities.



Learning with Complete Data

GZQ @
64

Assume a data set of I.i.d. observations
D={vyW, ... Y™} and a parameter vector 0.

Goal is to maximise likelihood: P(D|6) = H P(Y

Equivalently, maximise log likelihood:

=Y Py
1=1

Using the graphical model factorisation:

HP ] pa(])’e)
So: lelnp Wyl 6))
=1 j

In other words, the parameter estimation problem breaks
into many independent, local problems (uncoupled).



Building a Junction Tree

Start with the recursive factorization from the DAG:

P(X) =[] P(xilpa(xi)

Convert these local conditional probabilities into
potential functions over both x; and all its parents.

This is called moralising the DAG since the parents
get connected. Now the product of the potential
functions gives the correct joint

When evidence is absorbed, potential functions must
agree on the prob. of shared variables: consistency.

This can be achieved by passing messages between
potential functions to do local marginalising and
rescaling.

Problem: a variable may appear in two
non-neighbouring cliques. To avoid this we need to
triangulate the original graph to give the potential
functions the running intersection property.

Now local consistency will imply global consistency.



Bayesian Networks: Belief Propagation

Each node n divides the evidence, e, in the graph into
two disjoint sets: e*(n) and e~ (n)

Assume a node n with parents {p1,... ,p} and
{c1,... ¢4}
i k
P(nle) > Pulpy,... o) [ Poilet(p) | %
{P1yee i } =1




ICA Nonlinearity

Generative model:

1

X - g(w) 10r
y = Cx—+v s
2 o
where w and v are zero- T4
mean Gaussian noises 9
with covariances I and R s 2ao 128 4
respectively.

The density of x can be written in terms of g(-),
N(07 1) |g_1(x)

Pe(®) = 1o 1(2))

1
7 cosh(z)

g(w) =1In (tan (Z (1 + erf(w/ﬂ))))

generates vectors x in which each component is
distributed exactly according to 1/(7 cosh(z)).

For example, if p;(z) = we find that setting:

So, ICA can be seen either as a linear generative model
with non-Gaussian priors for the hidden variables, or as a
nonlinear generative model with Gaussian priors for the
hidden variables.



HMM Example

e Character sequences (discrete outputs)

"
?G’H.\ ) | L8 | A E
P S O oMy %

9 v

e Geyser data (continuous outputs)

State output functions
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LDS Example

e Population model:
state < population histogram
first row of A < Dbirthrates
subdiagonal of A < 1-deathrates
Q < immigration/emmigration
C < noisy indicators

Noisy Measurement
=
3




Viterbi Decoding

The numbers v;(t) in forward-backward gave the
posterior probability distribution over all states at any
time.

By choosing the state 74 (t) with the largest
probability at each time, we can make a “best” state
path. This is the path with the

maximum expected number of correct states.

But it is not the single path with the highest likelihood
of generating the data.
In fact it may be a path of probability zero!

To find the single best path, we do Viterbi decoding
which is just Bellman’s dynamic programming
algorithm applied to this problem.

The recursions look the same, except with
max instead of > _.

There is also a modified Baum-Welch training based
on the Viterbi decode.



HMM Pseudocode

e Forward-backward including scaling tricks

gi(t) = A;(ye)

a(1) = . xq(1) p(1) =Y a(l) a(l)=a(1)/p(1)

a(t) = (T'xa(t—1).xq(t) p(t) =) at) at)=a(t)/p) =27

B(r) =1

Bt)=Tx (Bt+1).xq(t+1))/p(t+1) [t=(r—1):1]
£=0
E=E4+T. x(a(t)* (B(t+1).xq(t+1)))/pt+1) [t=1:(1—1)]
7 = (. % B)

for each sequence, run forward backward to get v and ¢, then

T=T+¢ i =i+v(1) 5=6+ ) )
t

Aily) =) (1) or A=A+ yn()

tly:=y

ﬁjzj}j/zm fr:ff/z:fr Aj = 4;/5;
k



LDS Pseudocode

e Kalman filter/smoother including scaling tricks

xT = xg VTt =V,
pe =N (Cx*,CV'C' +R) |y, t=1:7]
K=V'TC(CV'C' +R)"!
x; =x + K(y; — Cx™) V,=(I-KC)V*
X+ = AXt V+ — AVtAI ‘|‘ Q
X, = X, V,=V.
VT =AV;A'+Q [t=(r—1):1]
J=VA/(VH)!
Xy = X4 + J(Xep1 — Axy) V,=V,+ IV — VHI

e EM parameter updates
0=10 6=0 ~v=0 a=0 xg =0

for each sequence, run Kalman smoother to get x;, X;, V; and V;

Xo = Xo + X1/N Vi =ViA(AV,L A + Q)Y

b=0+Y yiX, B=B+> %X +VI' a=a+ ) vyl
t t=2 t

7:74_ )A(t)/\(:j—i_vt 77':77-"_5\(7—5\(2_4—\77— ’_)/1:71_’_5\(15\(/1_*_.\’\[1
t

C=0dy" A=By =)

R =(a—Cd)/7y Q= (y—m—Ap)/(w - N)
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