Image Searching and Modelling

Part IB Paper 8
Information Engineering Elective

Lecture 2: Maximum Likelihood, Optimization, and Outlier Removal

Zoubin Ghahramani
zoubin@eng.cam.ac.uk

Department of Engineering
University of Cambridge

Easter Term
Outline

• How do we find ML parameters
 – Solving for optimum (when possible)
 – Optimization and gradient ascent
 – [Newton-Raphson optimization]

• Novelty detection and outlier removal

• Bayesian learning: example binary data and the Beta distribution
How do we find maximum likelihood (ML) parameters?

\[\theta_{\text{ML}} = \arg\max_{\theta} p(\mathcal{D}|\theta) = \arg\max_{\theta} \ln p(\mathcal{D}|\theta) \]

Let’s define

\[\mathcal{L}(\theta) \overset{\text{def}}{=} \ln p(\mathcal{D}|\theta) \]

This is simply a function of \(\theta \).

At a local optimum (maximum):

\[\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0, \quad \text{and} \quad \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2} < 0. \]

In multiple dimensions:

\[\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0, \quad \text{and} \quad H = \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta \partial \theta^\top} \]

where the Hessian \(H \) is negative definite.

\[H_{ij} \overset{\text{def}}{=} \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_i \partial \theta_j} \]
Aside: positive definite and negative definite matrices

A symmetric matrix M is positive definite:

- iff $\forall x \neq 0$, $x^T M x > 0$

- iff all eigenvalues of M are > 0

For negative definite: replace $>$ with $<$.
Solving for the optimum

Solve \(\frac{\partial L(\theta)}{\partial \theta} = 0 \) and check that it’s a maximum.

Multivariate Bernoulli Case:

Let \(\mathcal{D} = \{x_1, x_2, \ldots, x_N\} \) be a data set of images and \(x_n = (x_{n1}, x_{n2}, \ldots, x_{nD}) \) denote \(D \) binary features of the image, with \(x_{nd} \in \{0, 1\} \).

\[
P(x_n|\theta) = \prod_{d=1}^{D} \theta_d^{x_{nd}} (1 - \theta_d)^{(1-x_{nd})}
\]

\[
P(\mathcal{D}|\theta) = \prod_{n=1}^{N} P(x_n|\theta) = \prod_{n} \prod_{d} \theta_d^{x_{nd}} (1 - \theta_d)^{(1-x_{nd})}
\]

\[
L(\theta) = \ln P(\mathcal{D}|\theta) = \sum_{nd} x_{nd} \ln \theta_d + (1 - x_{nd}) \ln(1 - \theta_d)
\]

\[
\frac{\partial L(\theta)}{\partial \theta_d} = \sum_n x_{nd} \frac{\theta_d}{\theta_d - (1-x_{nd})} = 0 \quad \Rightarrow \quad \theta_d = \frac{\sum_n x_{nd}}{N}
\]

This is very intuitive: ML parameter estimate is the frequency of 1s.
Example

\[
\mathcal{D} = \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]

\[\Rightarrow \quad \theta_{\text{ML}} = \begin{pmatrix}
\frac{2}{3} & \frac{2}{3} & 0
\end{pmatrix}
\]

We can similarly solve for the maximum likelihood parameters of a Gaussian.
What do we do when we can’t analytically solve \(\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0 \)

Iterative optimization algorithms

- Gradient ascent (steepest ascent)
- Newton’s method
Gradient ascent (steepest ascent)

Input: initial $\theta^{(0)}$, stepsize η, convergence tolerance ϵ

Repeat:

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \eta \frac{\partial L(\theta)}{\partial \theta} \bigg|_{\theta=\theta^{(t)}}$$

Until: $L(\theta^{(t+1)}) - L(\theta^{(t)}) < \epsilon$
Aside: Newton’s Method

Use Taylor expansion to get local quadratic approximation to $\mathcal{L}(\theta)$:

$$
\mathcal{L}(\theta) \approx \mathcal{L}(\theta^{(t)}) + (\theta - \theta^{(t)}) \frac{\partial \mathcal{L}(\theta)}{\partial \theta} \bigg|_{\theta^{(t)}} + \frac{1}{2} (\theta - \theta^{(t)})^2 \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2} \bigg|_{\theta^{(t)}}
$$

Find maximum of this quadratic function by taking derivs wrt θ:

$$
\frac{\partial \mathcal{L}}{\partial \theta} + (\theta - \theta^{(t)}) \frac{\partial^2 \mathcal{L}}{\partial \theta^2} = 0
$$

$$
\theta = \theta^{(t)} - \left(\frac{\partial^2 \mathcal{L}}{\partial \theta^2} \right)^{-1} \left(\frac{\partial \mathcal{L}}{\partial \theta} \right)
$$

Newton’s Method

Input: initial $\theta^{(0)}$, convergence tolerance ϵ

Repeat:

$$
\theta^{(t+1)} \leftarrow \theta^{(t)} - \left(\frac{\partial^2 \mathcal{L}}{\partial \theta^2} \bigg|_{\theta^{(t)}} \right)^{-1} \left(\frac{\partial \mathcal{L}}{\partial \theta} \bigg|_{\theta^{(t)}} \right)
$$

Until: $|\mathcal{L}(\theta^{(t+1)}) - \mathcal{L}(\theta^{(t)})| < \epsilon$
Outlier removal and novelty detection

Which is an outlier?

\[
\begin{array}{cccccccc}
\mathbf{x}_1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
\mathbf{x}_2 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
\mathbf{x}_3 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
\mathbf{x}_4 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
\mathbf{x}_5 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
\theta_{\text{ML}} & 1 & 0.8 & 0.2 & 0.6 & 0.6 & 0.8 & 0.8 \\
\end{array}
\]

\[
P(\mathbf{x}_3|\theta_{\text{ML}}) \approx 0.001
\]

\[
P(\mathbf{x}_4|\theta_{\text{ML}}) \approx 0.037
\]