
PAPER 8 Image Processing - 2007 Sample Exam Question

Below is a 5-part question. The actual exam question will have 3 parts.

1. Consider a set of N images S = {x1, . . . ,xN} where each image is rep-
resented as a vector of M real-valued features, e.g. xn = (xn1, . . . , xnM )
and xnm ∈ <.

Assume you use a Gaussian model for these images:

p(xn|µ) =
M∏

m=1

p(xnm|µm)

where p(xnm|µm) is Gaussian with mean µm and variance 1.

(a) Write down the likelihood of the vector µ = (µ1, . . . , µM ) for data
set S.

(b) Derive the maximum likelihood estimate of µm.

(c) Assume a Gaussian prior on µm with zero mean and unit variance
denoted p(µm) = N (0, 1). Derive the posterior distribution p(µm|S).

(d) Describe some limitations of the above model for modelling features
of images.

(e) Given two data sets of images, S and S ′, for example representing
images of two concepts (e.g. “sheep” and “clouds”), describe an au-
tomatic method (algorithm and equations if needed) for determining
whether an image x fits better with S and S ′.
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SOLUTIONS

1. Answers to different parts...

(a)

P (S|µ) =
N∏

n=1

M∏
m=1

(2π)−1/2 exp{−1
2
(xnm − µm)2}

= (2π)−
NM

2 exp

{
−1

2

∑
nm

(xnm − µm)2
}

(b) Take log likelihood as a function of µm dropping all constants:

L(µm) = −1
2

∑
n

(xnm − µm)2

Maximize this as a function of µm, by taking derivatives and setting
to zero:

∂L(µm)
∂µm

=
∑

n

(xnm − µm) = 0

Solving for µm we get:

µm =
1
N

∑
n

xnm

which is the sample mean of the mth image feature.

(c)
p(µm|S) ∝ p(S|µm)p(µm)

Again, dropping constants that don’t depend on µm we get;

p(µm|S) ∝ exp{−1
2

∑
n

(xnm − µm)2} exp{−1
2
µ2

m}

Clearly this is a Gaussian in µm. It suffices to compute the mean
and variance of this Gaussian by matching terms to the expression
for a standard Gaussian:

exp{− 1
2s2

(µm − u)2}

The variance is s2 = 1
N+1 and the mean is u = 1

N+1

∑
n xnm. [Note

that for no data points, this posterior is equal to the prior, which it
obviously should be].

(d) This model has numerous limitations: (a) the features are all in-
dependent, no correlations between features are modelled! (b) the
noise variance is fixed at 1, rather than being learned; (c) feature
distributions may be poorly modelled by the Gaussian distribution.
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(e) There are several correct answers to this: (a) you could find the
nearest neighbor to all elements of these two sets and judge x to fit
with the set containing the nearest neighbor; (b) you could compute
the mean of S and of S ′, and find which of these two means x is
closer to; (c) you could learn a probabilistic model from S, and from
S ′ with parameters µ and µ′ respectively, and see which gives x
higher probability; i.e. select S if:

p(x|µ) > p(x|µ′)?

(d) you could do the same as in (c) but integrating over parameters:

p(x|S) > p(x|S ′)?

(e) you could build a classifier to classify S from S ′ [if you’ve somehow
learned about this].
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