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Abstract

We present a principled Bayesian framework
for modeling partial memberships of data
points to clusters. Unlike a standard mix-
ture model which assumes that each data
point belongs to one and only one mixture
component, or cluster, a partial membership
model allows data points to have fractional
membership in multiple clusters. Algorithms
which assign data points partial memberships
to clusters can be useful for tasks such as clus-
tering genes based on microarray data (Gasch
& Eisen, 2002). Our Bayesian Partial Mem-
bership Model (BPM) uses exponential fam-
ily distributions to model each cluster, and a
product of these distibtutions, with weighted
parameters, to model each datapoint. Here
the weights correspond to the degree to which
the datapoint belongs to each cluster. All
parameters in the BPM are continuous, so
we can use Hybrid Monte Carlo to perform
inference and learning. We discuss relation-
ships between the BPM and Latent Dirichlet
Allocation, Mixed Membership models, Ex-
ponential Family PCA, and fuzzy clustering.
Lastly, we show some experimental results
and discuss nonparametric extensions to our
model.

1. Introduction

The idea of partial membership is quite intuitive and
practically useful. Consider, for example, an individ-
ual with a mixed ethnic background, say, partly Asian
and partly European. It seems sensible to represent
that individual as partly belonging to two different
classes or sets. Such a partial membership represen-
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tation may be relevant to predicting that individual’s
phenotype, or their food preferences. We clearly need
models that can coherently represent partial member-
ship.

Note that partial membership is conceptually very dif-
ferent from uncertain membership. Being certain that
a person is partly Asian and partly European, is very
different than being uncertain about a person’s ethnic
background. More information about the person, such
as DNA tests, could resolve uncertainty, but cannot
make the person change his ethnic membership.

Partial membership is also the cornerstone of fuzzy
set theory. While in traditional set theory, items ei-
ther belong to a set or they don’t, fuzzy set theory
equips sets with a membership function µk(x) where
0 ≤ µk(x) ≤ 1 denotes the degree to which x partially
belongs to set k.

In this paper we describe a fully probabilistic approach
to data modelling with partial membership. Our ap-
proach makes use of a simple way of representing par-
tial membership using continuous latent variables. We
define a model which can cluster data but which fun-
damentally assumes that data points can have par-
tial membership in the clusters. Each cluster is repre-
sented by an exponential family distribution with con-
jugate priors (reviewed in section 3). Our model can
be seen as a continuous latent variable relaxation of
clustering with finite mixture models, and reduces to
mixture modelling under certain settings of the hyper-
parameters. Unlike Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) and Mixed Membership models (Ero-
sheva et al., 2004), which also capture partial mem-
bership in the form of attribute-specific mixtures, our
model does not assume a factorization over attributes
and provides a general way of combining exponential
family distributions with partial membership. The
complete specification of our model is provided in sec-
tion 4. Learning and inference are carried out using
Markov chain Monte Carlo (MCMC) methods. We
show in particular that because all the parameters in



Statistical Models for Partial Membership

our model are continuous, it is possible to employ a full
hybrid Monte Carlo (HMC) algorithm, which uses gra-
dients of the log probability, for inference (section 5).

Our Bayesian Partial Membership (BPM) model bears
interesting relationships to several well-known mod-
els in machine learning and statistics, including LDA
(Blei et al., 2003), mixed membership models (Ero-
sheva et al., 2004), exponential family PCA (Collins
et al., 2002), and Discrete Components Analysis (Bun-
tine & Jakulin, 2006). We discuss these relations in
section 6, where we also relate our model to fuzzy k-
means. In section 7, we present both synthetic and
real-world experimental results using image data and
voting patterns of US senators. We conclude with fu-
ture work in section 8.

2. A Partial Membership Model

We can derive our method for modeling partial mem-
berships from a standard finite mixture model. In a
finite mixture model the probability of a data point,
xn given Θ, which contains the parameters for each of
the K mixture components (clusters) is:

p(xn|Θ) =
K∑

k=1

ρkpk(xn|θk) (1)

where pk is the probability distribution of mixture
component k, and ρk is the mixing proportion (frac-
tion of data points belonging to) for component k1.

Equation 1 can be rewritten using indicator variables
πn = [πn1πn2 . . . πnK ] as follows:

p(xn|Θ) =
∑
πn

p(πn)
K∏

k=1

pk(xn|θk)πnk (2)

where πnk ∈ {0, 1} and
∑

k πnk = 1. Here we can
notice that if πnk = 1 this means that data point n
belongs to cluster k (also p(πnk = 1) = ρk). Therefore
the πnk denote memberships of data points to clusters.

In order to obtain a model for partial memberships we
can relax the constraint πnk ∈ {0, 1} to now allow πnk

to take any continuous value in the range [0, 1]. How-
ever, in order to compute the probability of the data
under this continuous relaxation of a finite mixture
model, we need to modify equation 2 as follows:

p(xn|Θ) =
∫

πn

p(πn)
1
c

K∏
k=1

pk(xn|θk)πnkdπn (3)

1This notation differs slightly from standard notation
for mixture models.

Figure 1. Left: A mixture model with two Gaussian mix-
ture components, or clusters, can generate data from the
two distributions shown. Right: Partial membership model
with the same two clusters can generate data from all the
distributions shown (there are actually infinitely many),
which lie between the two original clusters.

The modifications include integrating over all values
of πn instead of summing, and since the product over
clusters K from equation 2 no longer normalizes we
put in a normalizing constant c, which is a function of
πn and Θ. Equation 3 now gives us a model for partial
membership.

We illustrate the difference between our partial mem-
bership model and a standard mixture model in figure
1. Here we can see contours of the Gaussian distri-
butions which can generate data in the mixture model
(left) and the partial membership model (right), where
both models are using the same two Gaussian clusters.
As an example, if one of these clusters represents the
ethnicity “White British” and the other cluster repre-
sents the ethnicity “Pakistani”, then the figure illus-
trates that the partial membership model will be able
to capture someone of mixed ethnicity, whose features
may lie in between those of either ethnic group (for ex-
ample skin color or nose size), better than the mixture
model.

3. Conjugate-Exponential Models

In the previous section we derived a partial member-
ship model, given by equation 3. However we have
not yet discussed the form of the distribution for each
cluster, pk(xn|θk), and we will now focus on the case
when these distributions are in the exponential family.

An exponential family distribution can be written in
the form:

pk(xn|θk) = exp{s(xn)>θk + h(xn) + g(θk)} (4)

where s(xn) is a vector depending on the data known
as the sufficient statistics, θk is a vector of natu-
ral parameters, h(xn) is a function of the data, and
g(θk) is a function of the parameters which ensures
that the probability normalizes to one when integrat-
ing or summing over xn. We will use the short-hand
xn ∼ Expon(θk) to denote that xn is drawn from an
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exponential family distribution with natural parame-
ters θk.

If we plug the exponential family distribution (equa-
tion 4) into our partial membership model (equation
3) it follows that:

xn|πn,Θ ∼ Expon(
∑

k

πnkθk) (5)

where xn comes from the same exponential family dis-
tribution as the original clusters pk, but with new nat-
ural parameters which are a convex combination of
the natural parameters of the original clusters, θk,
weighted by πnk, the partial membership values for
data point xn. Computation of the normalizing con-
stant c is therefore always tractable when pk is in the
exponential family.

A probability distribution p(θk) is said to be conju-
gate to the exponential family distribution p(xn|θk) if
p(θk|xn) has the same functional form as p(θk). In
particular, the conjugate prior to the above exponen-
tial family distribution can be written in the form:

p(θ) ∝ exp{λ>θ + νg(θ)} (6)

where λ and ν are hyperparameters of the prior. We
will use the short-hand, θ ∼ Conj(λ, ν). We now have
the tools to define our Bayesian partial membership
model.

4. Bayesian Partial Membership
Models

Consider a model with K clusters, and a data set
D = {xn : n = 1 . . . N}. Let α be a K-dimensional
vector of positive hyperparameters. We start by draw-
ing mixture weights from a Dirichlet distribution:

ρ ∼ Dir(α) (7)

Here ρ ∼ Dir(α) is shorthand for p(ρ|α) =
c
∏K

k=1 ραk−1
k where c = Γ(

∑
k αk)/

∏
k Γ(αk) is a nor-

malization constant which can be expressed in terms
of the Gamma function2. For each data point, n, we
draw a partial membership vector πn which represents
how much that data point belongs to each of the K
clusters:

πn ∼ Dir(aρ). (8)

The parameter a is a positive scaling constant drawn,
for example, from an exponential distribution p(a) =
be−ba, where b > 0 is a constant. We assume that

2The Gamma function generalizes the factorial to pos-
itive reals: Γ(x) = (x − 1)Γ(x − 1), Γ(n) = (n − 1)! for
integer n
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Figure 2. Graphical model for the BPM

each cluster k is characterized by an exponential family
distribution with natural parameters θk and that

θk ∼ Conj(λ, ν). (9)

Given all these latent variables, each data point is
drawn from

xn ∼ Expon(
∑

k

πnkθk) (10)

In order to get an intuition for what the functions of
the parameters we have just defined are, we return to
the ethnicity example. Here, each cluster k is an eth-
nicity (for example, “White British” and “Pakistani”)
and the parameters θk define a distribution over fea-
tures for each of the k ethnic groups (for example,
how likely it is that someone from that ethnic group
likes pizza or marmite or bindi bhaji). The parame-
ter ρ gives the ethnic composition of the population
(for example, 75% “White British” and 25% “Pak-
istani”), while a controls how similar to the popu-
lation an individual is expected to be (Are 100% of
the people themselves 75% “White British” and 25%
“Pakistani”? Or are 75% of the people 100% “White
British” and the rest are 100% “Pakistani”? Or some-
where in between?). For each person n, πn gives their
individual ethnic composition, and finally xn gives
their individual feature values (e.g. how much they
like marmite). The graphical model representing this
generative process is drawn in Figure 2.

Since the Bayesian Partial Membership Model is a gen-
erative model, we tried generating data from it us-
ing full-covariance Gaussian clusters. Figure 3 shows
the results of generating 3000 data points from our
model with K = 3 clusters as the value of parameter
a changes. We can see that as the value of a increases
data points tend to have partial membership in more
clusters. In fact we can prove the following lemmas:

Lemma 1 In the limit that a → 0 the exponential
family BPM is a standard mixture model with K com-
ponents and mixing proportions ρ.
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Figure 3. 3000 BPM generated data points with partial as-
signments to 3 Gaussian clusters shown in red, as param-
eter a varies.

Lemma 2 In the limit that a → ∞ the exponential
family BPM model has a single component with natural
parameters

∑
k ρkθk.

Proofs of these lemmas follow simply from taking the
limits of equation 8 as a goes to 0 and ∞ respectively.

5. BPM Learning

We can represent the observed data set D as an N×D
matrix X with rows corresponding to xn, where D is
the number of input features.3 Let Θ be a K × D
matrix with rows θk and Π be an N ×K matrix with
rows πn. Learning in the BPM consists of inferring
all unknown variables, Ω = {Π,Θ,ρ, a} given X. We
treat the top level variables in the graphical model in
Figure 2, Ψ = {α,λ, ν, b} as fixed hyperparameters,
although these could also be learned from data. Our
goal is to infer p(Ω|X,Ψ), for which we decide to em-
ploy Markov chain Monte Carlo (MCMC).

Our key observation for MCMC is that even though
BPMs contain discrete mixture models as a special
case, all of the unknown variables Ω of the BPM are
continuous. Moreover, it is possible to take deriva-
tives of the log of the joint probability of all variables
with respect to Ω. This makes it possible to do infer-
ence using a full Hybrid Monte Carlo (HMC) algorithm
on all parameters. Hybrid (or Hamiltonian) Monte
Carlo is an MCMC procedure which overcomes the
random walk behaviour of more traditional Metropo-
lis or Gibbs sampling algorithms by making use of the
derivatives of the log probability (Neal, 1993; MacKay,

3We assume that the data is represented in its natural
representation for the exponential family likelihood, so that
s(xn) = xn.

2003). In high dimensions, this derivative information
can lead to a dramatically faster mixing of the Markov
chain, analogous to how optimization using derivatives
is often much faster than using greedy random search.

We start by writing the probability of all parameters
and variables4 in our model:

p(X,Ω|Ψ) = p(X|Π,Θ)p(Θ|λ, ν)p(Π|a, ρ)p(a|b)p(ρ|α)
(11)

We assume that the hyperparameter ν = 1, and omit
it from our derivation. Since the forms of all distri-
butions on the right side of equation (11) are given in
section 4, we can simply plug these in and see that:

log p(X,Ω|Ψ) =

log Γ(
∑

k αk)−
∑

k log Γ(αk) +
∑

k(αk − 1) log ρk

+ log b− ba + N log Γ (
∑

k aρk)−N
∑

k log Γ(aρk)
+

P
n

P
k(aρk − 1) log πnk +

P
k

ˆ
θ>k λ + g(θk) + f(λ)

˜
+

P
n

ˆ
(
P

k πnkθk)>xn + h(xn) + g
`P

k πnkθk

´˜
The Hybrid Monte Carlo algorithm simulates dynam-
ics of a system with continuous state Ω on an en-
ergy function E(Ω) = − log p(X,Ω|Ψ). The deriva-
tives of the energy function ∂E(Ω)

∂Ω) provide forces on
the state variables which encourage the system to find
high probability regions, while maintaining detailed
balance to ensure that the correct equilibrium distri-
bution over states is achieved (Neal, 1993). Since Ω
has constraints, e.g. a > 0 and

∑
k ρk = 1, we use a

tranformation of variables so that the new state vari-
ables are unconstrained, and we perform dynamics in
this unconstrained space. Specifically, we use a = eη,
ρk = erkP

k′ er
k′ , and πnk = epnkP

k′ ep
nk′ . For HMC to be

valid in this new space, the chain rule needs to be ap-
plied to the derivatives of E , and the prior needs to
be transformed through the Jacobian of the change
of variables. For example, p(a)da = p(η)dη implies
p(η) = p(a)(da/dη) = ap(a). We also extended the
HMC procedure to handle missing inputs in a princi-
pled manner, by analytically integrating them out, as
this was required for some of our applications. More
details and general pseudocode for HMC can be found
in (MacKay, 2003).

6. Related Work

The BPM model has interesting relations to several
models that have been proposed in machine learning,
statistics and pattern recognition. We describe these
relationships here.

4A formal distinction between hidden variables, e.g. the
{πn}, and unknown parameters is not necessary as they
are both unknowns.
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Latent Dirichlet Allocation: Using the notation
introduced above, the BPM model and LDA (Blei
et al., 2003) both incorporate a K-dimensional Dirich-
let distributed π variable. In LDA, πn are the mix-
ing proportions of the topic mixture for each docu-
ment n. Each word in document n can then be seen
as having been generated by topic k, with probability
πnk, where the word distribution for topic k is given
by a multinomial distribution with some parameters,
θk. The BPM also combines πnk with some exponen-
tial family parameters θk, but here the way in which
they are combined does not result in a mixture model
from which another variable (e.g. a word) is assumed
to be generated. In contrast, the data points are in-
dexed by n directly, and therefore exist at the doc-
ument level of LDA. Each data point is assumed to
have come from an exponential family distribution pa-
rameterized by a weighted sum of natural parameters
θ, where the weights are given by πn for data point
n. In LDA, data is organized at two levels (e.g. docu-
ments and words). More generally, mixed membership
(MM) models (Erosheva et al., 2004), or admixture
models, assume that each data attribute (e.g. words)
of the data point (e.g. document) is drawn indepen-
dently from a mixture distribution given the member-
ship vector for the data point, xnd ∼

∑
k πnkP (x|θkd).

LDA and mixed membership models do not average
natural parameters of exponential family distributions
like the BPM. LDA or MM models could not generate
the continuous densities in figure 3 from full-covariance
Gaussians. The analagous generative process for MM
models is given in figure 4. Since data attributes are
drawn independently, the original clusters (not explic-
ity shown) are one dimensional and have means at 0,
10 and 20 for both attribute dimensions. We can no-
tice from the plot that this model always generates a
mixture of 9 Gaussians, which is a very different be-
havior than the BPM, and clearly not as suitable for
the general modeling of partial memberships. LDA
only makes sense when the objects (e.g. documents)
being modelled constitute bags of exchangeable sub-
objects (e.g. words). Our model makes no such as-
sumption. Moreover, in LDA and MM models there
is a discrete latent variable for every sub-object corre-
sponding to which mixture component that sub-object
was drawn from. This large number of discrete latent
variables makes MCMC sampling in LDA potentially
much more expensive than in BPM models.

Exponential Family PCA: Our model bears an
interesting relationship to Exponential Family PCA
(Collins et al., 2002). EPCA was originally formu-
lated as the solution to an optimization problem based
on Bregman divergences, while our model is a fully

−10 0 10 20 30
−5

0

5

10

15

20

25
a = 0.01

−10 0 10 20 30
−5

0

5

10

15

20

25
a = 0.1

−10 0 10 20 30
−5

0

5

10

15

20

25
a = 1

−10 0 10 20 30
−5

0

5

10

15

20

25
a = 100

Figure 4. Generative plot for MM model with 3 Gaussian
clusters

probabilistic model in which all parameters can be in-
tegrated out via MCMC. However, it is possible to
think of EPCA as the likelihood function of a proba-
bilistic model, which coupled with a prior on the pa-
rameters, would make it possible to do Bayesian in-
ference in EPCA and would render it closer to our
model. However, our model was entirely motivated by
the idea of partial membership in clusters, which is
enforced by forming convex combinations of the nat-
ural parameters of exponential family models, while
EPCA is based on linear combinations of the param-
eters. Therefore: EPCA does not naturally reduce
to clustering, none of the variables can be interpreted
as partial memberships, and the coefficients define a
plane rather than a convex region in parameter space.

The recent work of Buntine and Jakulin (Buntine &
Jakulin, 2006) focusing on the analysis of discrete data
is also closely related to the BPM model. The frame-
work of (Buntine & Jakulin, 2006) section III B ex-
presses a model for discrete data in terms of linear
mixtures of dual exponential family parameters where
MAP inference is performed. Section V B also pro-
vides insights on differences between using dual and
natural parameters.

Fuzzy Clustering: The notion that probabilistic
models are unable to handle partial membership has
been used to argue that probability is a subtheory of
or different in character from fuzzy logic (Zadeh, 1965;
Kosko, 1992). In this paper we described a probabilis-
tic model for partial membership which may be of use
in the many application domains where fuzzy cluster-
ing has been used.

Fuzzy K-means clustering (Bezdek, 1981) itera-
tively minimizes the following objective: J =
N∑

n=1

K∑
k=1

πγ
nkd2(xn, ck), where γ > 1 is an exponent pa-

rameter, πnk represents the degree of membership of



Statistical Models for Partial Membership

data point n in cluster k (
∑

k πnk = 1), and d2(xn, ck)
is a measure of squared distance between data point
xn and cluster center ck. By varying γ it is possi-
ble to attain different amounts of partial membership,
where the limiting case γ = 1 is K-means with no
partial membership. Although the π parameters rep-
resent partial membership, none of the variables have
probabilistic interpretations.

IOMM: Lastly, this work is related to the Infi-
nite Overlapping Mixture Model (IOMM) (Heller &
Ghahramani, 2007) in which overlapping clustering is
performed, also by taking products of exponential fam-
ily distributions, much like products of experts (Hin-
ton, 1999). However in the IOMM the memberships
of data points to clusters are restricted to be binary,
which means that it can not model partial member-
ship.

7. Experiments

We generated a synthetic binary data set from the
BPM, and used this to test BPM learning. The syn-
thetic data set had 50 data points which each have
32 dimensions and can hold partial memberships in
3 clusters. We ran our Hybrid Monte Carlo sampler
for 4000 iterations, burning in the first half. In or-
der to compare our learned partial membership assign-
ments for data points (ΠL) to the true ones (ΠT ) for
this synthetic data set, we compute (Û = ΠLΠ>

L ) and
(U∗ = ΠT Π>

T ), which basically give the total amount
of cluster membership shared between each pair of
data points, and is invariant to permutations of clus-
ter labels. Both of these matrices can be seen in figure
5. One can see that the structure of these two ma-
trices is quite similar, and that the BPM is learning
the synthetic data reasonably. For a more quantita-
tive measure table 5c gives statistics on the number of
pairs of data points whose learned shared membership
differs from the true shared membership by more than
a given threshold (the range of this statistic is [0,1]).

We also used the BPM to model two “real-world” data
sets. The first is senate roll call data from the 107th US
congress (2001-2002) (Jakulin, 2004), and the second
is a data set of images of sunsets and towers.

The senate roll call data is a matrix of 99 senators (one
senator died in 2002 and neither he nor his replacement
is included) by 633 votes. It also includes the outcome
of each vote, which is treated as an additional data
point (like a senator who always voted the actual out-
come). The matrix contained binary features for yea
and nay votes, and we used the BPM to cluster this
data set using K = 2 clusters. There are missing val-

ues in this dataset but this can easily be dealt with in
the HMC log probability calculations by explicitly rep-
resenting both 0 and 1 binary values and leaving out
missing values. The results are given in figure 6. The
line in figure 6 represents the amount of membership of
each senator in one of the clusters (we used the “Demo-
crat” cluster, where senators on the far left have partial
memberships very close to 0, and those on the far right
have partial memberships extremely close to 1). Since
there are two clusters, and the amount of member-
ship always sums to 1 across clusters, the figure looks
the same regardless of whether we are looking at the
“Democrat” or “Republican” cluster. We can see that
most Republicans and Democrats are tightly clustered
at the ends of the line (and have partial memberships
very close to 0 and 1), but that there is a fraction
of senators (around 20%) which lies somewhere rea-
sonably in between the extreme partial memberships
of 0 or 1. Interesting properties of this figure include
the location of Senator Jeffords who left the Republi-
can party in 2001 to become an independent who cau-
cused with the Democrats. Also Senator Chafee who is
known as a moderate Republican and who often voted
with the Democrats (for example, he was the only Re-
publican to vote against authorizing the use of force
in Iraq), and Senator Miller a conservative Democrat
who supported George Bush over John Kerry in the
2004 US Presidential elections. Lastly, it is interesting
to note the location of the Outcome data point, which
is very much in the middle. This makes sense since the
107th congress was split 50-50 (with Republican Dick
Cheney breaking ties), until Senator Jeffords became
an Independent at which point the Democrats had a
one seat majority.

We also tried running both fuzzy k-means clustering
and Dirichlet Process Mixture models (DPMs) on this
data set. While fuzzy k-means found roughly simi-
lar rankings of the senators in terms of membership to
the “Democrat” cluster, the exact ranking and, in par-
ticular, the amount of partial membership (πn) each
senator had in the cluster was very sensitive to the
fuzzy exponent parameter, which is typically set by
hand. Figure 7a plots the amount of membership for
the Outcome data point in black, as well as the most
extreme Republican, Senator Ensign, in red, and the
most extreme Democrat, Senator Schumer, in blue, as
a function of the fuzzy exponent parameter. We can
see in this plot that as the assignment of the Outcome
data point begins to reach a value even reasonably
close to 0.5, the most extreme Republican already has
20% membership in the “Democrat” cluster. This re-
duction in range does not make sense semantically, and
presents a trade-off between finding reasonable values
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Statistic Percent

|(Û − U∗)| ≤ 0.1 60.40

|(Û − U∗)| ≤ 0.2 84.28

|(Û − U∗)| ≤ 0.3 95.48

|(Û − U∗)| ≤ 0.4 99.68

|(Û − U∗)| ≤ 0.5 100.00

Figure 5. a) left - matrix U∗ showing the true shared partial memberships for pairs of data points. b) right - matrix Û
showing the learned shared partial memberships. c) Summary statistics for learned Û . Reports the percentage of pairs
in Û whose difference from U∗ in terms of the amount of shared partial memberships is at most the given threshold (0.1
- 0.5).

for πn in the middle of the range, versus at the ex-
tremes. This kind of sensitivity to parameters does
not exist in our BPM model, which models both ex-
treme and middle range values well.

We tried using a DPM to model this data set where
we ran the DPM for 1000 iterations of Gibbs sampling,
sampling both assignments and concentration parame-
ter. The DPM confidently finds 4 clusters: one cluster
consists solely of Democrats, one consists solely of Re-
publicans, the third cluster has 9 of the most moderate
Democrats and Republicans plus the ”vote outcome”
variable, and the last cluster has just one member,
Hollings (D-SC). Figure 7b is a 100x100 matrix show-
ing the overlap of cluster assignments for pairs of sen-
ators, averaged over 500 samples (there are no changes
in relative assignments, the DPM is completely confi-
dent). The interpretation of the data provided by the
DPM is very different from the BPM model’s. The
DPM does not use uncertainty in cluster membership
to model Senators with intermediate views. Rather, it
creates an entirely new cluster to model these Sena-
tors. This makes sense for the data as viewed by the
DPM: there is ample data in the roll calls that these
Senators are moderate — it is not the case that there is
uncertainty about whether they fall in line with hard-
core Democrats or Republicans. This highlights the
fact that the responsibilities in a mixture model (such
as the DPM) cannot and should not be interpreted
as partial membership, they are representations of un-
certainty in full membership. The BPM model, how-
ever, explicitly models the partial membership, and
can, for example, represent the fact that a Senator
might be best characterized as moderate (and quan-
tify how moderate they are). In order to quantify this
comparison we calculated the negative log predictive
probability (in bits) across senators for the BPM and
the DPM (Table 1). We look at a number of different
measures: the mean, median, minimum and maximum
number of bits required to encode a senator’s votes.
We also look at the number of bits needed to encode
the “Outcome” in particular. On all of these measures

Mean Median Min Max “Outcome”

BPM 187 168 93 422 224
DPM 196 178 112 412 245

Table 1. Comparison between the BPM and a DPM in
terms of negative log predictive probability (in bits) across
senators.
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Figure 7. a) left - fuzzy k-means: plot of the partial mem-
bership values for the Outcome data point (in black) and
the most extreme Republican (in red) and Democrat (in
blue) as a function of the fuzzy exponent parameter. b)
right - DPMs: an ordered 100x100 matrix showing the frac-
tion of times each pair of senators was assigned to the same
cluster, averaged over 500 Gibbs sampling iterations.

except for maximum, the BPM performs better than
the DPM, showing that the BPM is a superior model
for this data set.

Lastly, we used the BPM to model images of sunsets
and towers. The dataset consisted of 329 images of
sunsets or towers, each of which was represented by
240 binary simple texture and color features. Partial
assignments to K = 2 clusters were learned, and figure
8 provides the result. The top row of the figure is the
three images with the most membership in the “sun-
set” cluster, the bottom row contains the three images
with the most membership in the “tower” cluster, and
the middle row shows the 3 images which have closest
to 50/50 membership in each cluster (πnk ≈ 0.5). In
this dataset, as well as all the datasets described in
this section, our HMC sampler was very fast, giving
reasonable results within tens of seconds.
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Figure 6. Analysis of the partial membership results on the Senate roll call data from 2001-2002. The line shows amount
of membership in the “Democrat” cluster with the left of the line being the lowest and the right the highest.

Figure 8. Tower and Sunset images. The top row are the
images found to have largest membership in the “sunset”
cluster, the bottom row are images found to have largest
membership in the “tower” cluster, and the middle row are
the images which have the most even membership in both
clusters.

8. Conclusions and Future Work

In summary, we have described a fully probabilistic
approach to data modelling with partial membership
using continuous latent variables, which can be seen as
a relaxation of clustering with finite mixture models.
We employed a full Hybrid Monte Carlo algorithm for
inference, and our experience with HMC has been very
positive. Despite the general reputation of MCMC
methods for being slow, our model using HMC seems
to discover sensible partial membership structure after
surprisingly few samples.

In the future we would like to develop a nonparamet-
ric version of this model. The most obvious way to try
to generalize this model would be with a Hierarchi-
cal Dirichlet Process (Teh et al., 2006). However, this
would involve averaging over infinitely many poten-
tial clusters, which is both computationally infeasible,
and also undesirable from the point of view that each
data point should have non-zero partial membership

in only a few (certainly finite) number of clusters. A
more promising alternative is to use an Indian Buffet
Process (Griffiths & Ghahramani, 2005), where each 1
in a row in an IBP sample matrix would represent a
cluster in which the data point corresponding to that
row has non-zero partial membership, and then draw
the continuous values for those partial memberships
conditioned on that IBP matrix.
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