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Abstract 

The adaptability of the motor system to both visual and force perturbation has been clearly demon-

strated by experiments on adaptation to prismatic shifts of the visual scene or by adaptation to force-

fields produced by a robotic manipulandum. While these experiments demonstrated the remarkable 

adaptability of the motor system, in the real world the adaptive system has to take account of the in-

herent uncertainty of the environment it interacts with. Two sources of uncertainty have to be 

considered: the uncertainty associated with sensory feedback and the uncertainty arising from the fact 

that the environment can change. These different forms of uncertainty give rise to constraints on how 

sensory and contextual information must be integrated over time in order to optimally update an adap-

tive control system. We treat motor adaptation as a system identification problem of inferring an 

internal model of the environment from noisy observations, using the example of a simple linear sys-

tem and extend this idea to include contextual information. Bayesian theory provides a framework in 

which such uncertain sources of information can be integrated optimally. We briefly discuss experi-

mental results for the role of contextual information on adaptation to dynamic loads and review a 

number of recent experiments that explicitly address the issue of adaptation to noisy and time-varying 

environments, 
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Introduction 

On a typical day, one could ride a bike to work, walk up the stairs to the office, write down a quick 

note, type on a keyboard, use a computer mouse and maybe play a game of squash in the evening. 

What all these activities have in common is that they can be performed without any conscious aware-

ness of the complicated underlying problem of producing the correct motor output given sensory 

information and a representation of the goal of the movements. They all involve different relationships 

between sensory inputs and motor outputs, or sensory-motor mappings, related to the different objects 

and environments we interact with. To complicate the matter further, these mappings are not fixed but 

can vary in time either predictably or in a random fashion: during a game of squash, muscle properties 

change due to fatigue; or we might have to deal with gusty side winds which will certainly introduce a 

random component in our bike ride home. This poses the dual question of how the motor system can 

adapt our behavior to a seemingly infinite number of dynamical environments and how we deal with 

the inherently noisy and time-varying characteristics of our world. 

Since von Helmholtz observed that humans could adapt to displacements of the visual scene in-

duced by wearing spectacles fitted with a set of wedge prisms (Helmholtz, 1925), the adaptability of 

the human motor system has fascinated researchers. A great number of experiments have been per-

formed using the prism paradigm (see Welch, 1986 for a review) and more recently using computer 

aided set-ups (Ghahramani, Wolpert & Jordan, 1996; Vetter & Wolpert, 2000b), testing the adaptabil-

ity of the visuo-motor map. The adaptability of the visuo-motor map is thought to be crucial to keep 

the external world aligned with internal coordinate frames (Bedford, 1999), and probably explains the 

ease with which we can perform tasks like using a computer mouse on our desk to control a cursor on 

the screen.  

While visuomotor adaptation to visual rearrangements has been studied for over a century, most 

of the above examples of possible activities during a typical day illustrate the importance of adaptation 

to environments or objects with different dynamical properties (e.g. inertia). This form of sensori-

motor adaptation has begun to be explored more recently using programmable robotic manipulandi to 
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perturb the hand’s trajectory while subjects reached to targets displayed on a computer screen. Many 

studies have investigated how such a novel dynamic system is learned using position, velocity and 

acceleration dependent perturbations (Flash & Gurevich, 1997; Sainburg, Ghez & Kalakanis, 1999; 

Shadmehr & Mussa-Ivaldi, 1994). This adaptation has been explained by assuming that the motor sys-

tem forms an internal model of the perturbation to compensate for the perturbations in a predictive, 

feed-forward fashion. More recently this picture has been complemented by demonstrating the impor-

tant role of rapid feedback loops for adaptation to dynamic loads (Bhushan & Shadmehr, 1999; Wang, 

Dordevic & Shadmehr, 2001). 

Given that we interact with an extremely large number of different and, usually, noisy and time-

varying dynamical environments, how can we learn, store and recall internal models for numerous 

dynamic situations? Some studies have investigated the role of time (Conditt & Mussa-Ivaldi, 1999) 

and of contextual cues (Gandolfo, Mussa-Ivaldi & Bizzi, 1996) in the acquisition of internal models 

for multiple dynamic situations, but adaptation to non-static, time-varying environments has only been 

studied recently (Korenberg & Ghahramani, submitted; Scheidt, Dingwell & Mussa-Ivaldi, 2001; Ta-

kahashi, Scheidt & Reinkensmeyer, 2001) and lacks a theoretical framework. 

In this work we will develop a probabilistically consistent framework that combines estimation 

of time varying parameters, reflecting changes in the properties of the environment, with the influence 

of contextual cues. The problem is approached by interpreting motor learning as a system identifica-

tion problem, using information about past experience, as well as the context, to infer a controller that 

results in the desired performance. We will review results from dynamic perturbation studies that in-

vestigate the role of contextual from a Bayesian perspective and interpret the results of studies that 

investigate adaptation to noisy, time-varying environments in our framework.  
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Bayesian inference for motor adaptation 

Motor adaptation and the delta rule 

Abstractly, the role of the motor system is to produce motor commands that achieve a given goal. In 

this view, the motor system is described by a function, or internal model, F that maps sensory feed-

back s to an output o (e.g. a motor command) such that as a result the goal is achieved.  

 ( ),=to F w st , (1) 

where the subscripted index t indicates that both o and s are a function of time. O is the output of the 

adaptive controller, for example a force compensating for an external perturbation, and s is any sen-

sory information or history thereof, efference copy or state of mind relevant to producing o. If we 

assume that the desired output o* is known, the goal of adaptation can be reduced to minimizing a 

measure E of the difference between desired and actual output of the system by tuning the parameters 

w. Often the square error is a convenient choice for E: 

 ( 21
2

∗= −∑ t t
t

)E o o  (2) 

E can then be minimized by taking small steps in the direction of decreasing E using gradient descent, 

which results in the well-known delta rule for updating w: 

 ( )new old old t t
E Fw w w o o
w w

η η ∗∂ ∂
= − = − ⋅ − ⋅

∂ ∂
 (3) 

In the remainder of this paper we will assume that F is scalar and linear in w; in particular we 

chose: 

 = ⋅to w st  (4) 

This emphasizes the qualitative conclusions we would like to point out and we will mention the exten-

sion to the general n-dimensional and non-linear case in the discussion. Although this is an extremely 

simplified model of adaptation, it can capture the basic traits of simple adaptation experiments, for 

example, state based adaptation to a viscous force field that depends on the hand’s velocity 

(Thoroughman & Shadmehr, 2000). In this example o* corresponds to the force required to compen-
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sate for the force field, o is the actual force output of an adaptive controller implemented by the motor 

system and the relevant sensory variable s corresponds to the velocity of the hand. The assumptions of 

linearity lead to the simple update rule: 

 ( )new old t t tw w o oη ∗= + ⋅ − ⋅ s  (5) 

This form of the delta rule makes intuitive sense for changing the parameters w of the adaptive 

system, since it correlates the sensory input with the resulting error in the output. This gives it a bio-

logically plausible interpretation as Hebbian learning between sensory neurons and neurons encoding 

an error signal. The learning rate η in this description is a free parameter that has to be set by hand, 

which is fine as long as we are only interested in reproducing a certain experimentally found adaptive 

behavior. There are however some conceptual issues with this approach: First the learning rate η has 

the wrong units for a learning rate, which in our definition of the update rule should be dimensionless; 

instead η has to be in units of the squared inverse of the units of s for eq. (5) to be dimensionally con-

sistent. Since η represent a parameter controlling neural plasticity, it is awkward for it to depend on 

details of how the peripheral signals are represented (in particular their magnitude). Second, when 

adapting to a non-stationary, time varying environment, there is a principled constraint on how to set 

η. Both these issues will be addresses in the next two sections. 

Motor adaptation and system identification 

In the previous section we discussed motor learning from a perspective of function approximation. 

The problem of inconsistent dimensions of the training signal is due to the choice of gradient descent 

as an optimization technique and there are alternative optimization methods, such as Newton’s rule, 

which also have a nice biologically plausible and intuitive interpretation (Kawato, Furukawa & Su-

zuki, 1987). On the other hand, the second problem of how to set the learning rate η in a time-varying 

environment is not addressed in the function approximation framework. To address this question, we 

will rephrase the motor learning problem in terms of system identification, meaning that we will look 

at the motor learner as a dynamical system described by an internal state variable (the adaptive coeffi-

cients w). In system identification, a model is identified by feeding a signal (e.g. white noise) to the 
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system and observing the output. To apply this idea to motor learning, we assume  that the adaptive 

system models the environment (in our simple example with a linear system) by identifying the state w 

that would result in the desired behavior, given the assumed model. In this view adaptation consists in 

inferring (identifying) an estimate  of the “true” coefficients w that would on average result in the 

desired output o . Given the simple output function in Eq. (4) and allowing for the fact that control 

signals are corrupted by noise (assumed to be Gaussian) the underlying model is: 

ŵ

t
∗

 ( )2; 0t t t t t oo w s ,δ δ∗ = ⋅ + ∼ σN  (6) 

where ( 20,t )oδ σ∼ N  means that the noise δt is Gaussian distributed with mean 0 and variance 2
oσ . 

The desired output  is either available internally as a desired trajectory or directly from sensory in-

put (i.e. the sensed external force which needs to be compensated), as is the sensory feedback s

to∗

t. We 

can therefore rewrite Eq. (6) in a more general form by defining : /t ty o s∗=

 ( )2; 0t t t t yy w ,δ δ= + ∼ σN  (7) 

We can see that in this form y is simply an observation of the state of the environment, corrupted by 

Gaussian noise. Although we started with a relationship between desired output and a model of the 

environment, Eq. (7) is a general observation model, capturing the fact that the motor system receives 

noisy sensory information about the environment. 

Since we are interested in analyzing the more general case of a time-varying environment, we 

need to capture how the state of the environment w evolves with time. We again chose a very simple 

model assuming that the state of the environment drifts randomly (modeled by a random walk with 

Gaussian input noise). Although we choose this very simple model for simplicity, constantly drifting 

or decaying dynamics are equally easy to implement within the linear framework. 

 ( )2
1 ; 0t t t tw w , wχ χ+ = + ∼ σN  (8) 

where 2
wσ , the variance characterizing the random walk, models how fast the environment changes. A 

small value of 2
wσ  means that only small changes are likely to occur from one time step to the next and 
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as a result w will drift slowly over time, while an environment characterized by a large 2
wσ  varies 

erratically from one time step to the next.  

 

If the sensory observations would be noise free (i.e. δ = 0 in Eq. (7)), then inferring w would be 

trivial, since w = y. However, in the presence of noise it becomes necessary to average sensory feed-

back y in order to obtain a reliable estimate of w. This can be done online as sensory information 

arrives: 

 ( )1ˆ ˆ ˆt t t tw w K y w−= + ⋅ − 1−  (9) 

where K is a dimensionless learning rate setting the effective number of observations being used in the 

averaging. The first observation about eq. (9) is that unlike the delta rule, this update equation is di-

mensionally correct, and corresponds in fact to stochastic online version of Newton’s method for 

optimizing w given the model of eq. (7). 

Setting K for inferring the state of a time-varying environment from noisy sensory feedback in-

volves a trade-off between the amount of noise in the estimate, and the ability to track the changes in 

the environment. Setting K to a small value will lead to good noise-rejection, as each individual obser-

vation contributes only very little to the estimate, so that the estimator is effectively averaging over 

many observations (or equivalently a long time scale). On the downside, since for small K each obser-

vation has little effect on the estimate, a lot of observations are necessary to “convince” the estimator 

that a large change has occurred in the environment, or in other words the long time scale of averaging 

prevents the estimator from following rapid changes in the environment. Conversely a large value of K 

will result in an estimator that can respond to rapid changes, but will be much more variable. In sum-

mary the best setting of K should be large enough to track the changes in the environment, while 

rejecting as much noise as possible. This trade-off is illustrated in Fig. 1 which shows the behavior of 

an estimator described by eq. (9) for an environment which has slowly varying state and noisy obser-

vations. 

Can the intuition about this trade-off between consistency and responsiveness of the adaptive 

system be captured in a mathematical framework? In the next section we will discuss how this ques-
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tion can be addressed on a general level by considering the probability distributions over sensory 

feedback and the resulting estimate. For the case of a system with linear dynamics and Gaussian noise 

these considerations lead to the Kalman filter (Kalman, 1960), which implements online averaging 

(eq. (9)) optimally. In addition to setting K in a principled way by taking account of the  variability of 

the estimate and sensory feedback, the Kalman filter also incorporates the information from a predic-

tive model (eq. (8)) of the likely evolution of the state. This results in the optimal linear estimator in 

the sense that it results in the estimate with maximal posterior probability (MAP estimate), which also 

minimizes the squared estimation error. 

Optimal inference and the Kalman filter 

The dependence relationships implied by Eq. (7) and (8) can be compactly summarized in the 

graphical model shown in Fig. 2. This graph represents the internal model the motor system is as-

sumed to have built of the environment. The environment or object the motor system interacts with is 

represented by the hidden parameter w and causes the observed sensation y (see Eq. (7)) as indicated 

by the direction of the arrow. In addition the arrows between successive states w represent the depend-

ence of w on previous time steps, given by Eq.(8). 

The goal of the adaptive system is to calculate the best estimate of wt given all previous sensory 

feedback yt…0 (i.e. all instances of sensory feedback yτ from the current time step τ = t back to the first 

time step τ = 0). To find an optimal estimate the system needs to compute the posterior probability 

distribution of the state given all sensory feedback, P(wt | yt…0), which can be calculated in terms of the 

distribution of the estimate given previous sensory feedback P(wt | yt-1…0) (the prior over states), and 

the distribution of the current sensory feedback P(yt | wt) (the likelihood of observing sensory feedback 

y given that the true state of the environment at time t is wt) using Bayes rule (see Appendix): 

 ( ) ( ) ( )0| | | −∝ ⋅t t t t t tP w y P y w P w y… 1 0…  (10) 

The horizontal arrows in Fig. 2 show us that the current value of w depends only on its value at 

the previous time step and the transition probability P(wt | wt-1). The predicted distribution of w based 
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on previous feedback, P(wt | yt-1…0), can therefore be found by averaging over the likely development 

of all possible values of the previous parameter wt-1, weighted by  their posterior probabilities: 

  (11) ( ) ( ) ( )1 0 1 1 1 0 1| | |− − − −= ⋅∫t t t t t t tP w y P w w P w y dw… −…

2+ w

Eq. (10) and (11) result in recursive formulas for updating the prior probability P(wt | yt-1…0) to give the 

posterior P(wt | yt…0) at each time step. Given the linear Gaussian assumptions we made, this recursive 

formula is known as the Kalman filter, and its derivation for our simple example system is developed 

in the Appendix. 

The Kalman filter first updates the estimate and variance from the previous time step according to how 

the state of the environment is likely to have evolved given the assumed dynamics of w. Note that in 

our case only the variance is updated, since our model assumes that w follows a random walk, and 

there is hence no information on how w is likely to develop in the absence of sensory feedback: 

 2 2
1 1ˆ ˆ ˆ ˆ;− − − −= =t t t tw wε εσ σ σ , (12) 

where ˆ tw ε−  is the prior estimate, or prediction, before new sensory input becomes available and 2ˆ t εσ − is 

the associated uncertainty as measured by the variance of the of the prior distribution (see Appendix).  

Second, the estimate and the associated uncertainty are updated to account for the newly arrived sen-

sory feedback: 

 ( )ˆ ˆ ˆ−= + −t t t t tw w K y w −ε ε  (13) 

 ( )2 2ˆ ˆ 1t t tKεσ σ −= ⋅ −  (14) 

The Kalman gain K, defined according to Eq. (20) in the appendix, determines how much an individ-

ual instances of sensory feedback influence the estimate of the underlying w:  

 
2

2 2
−

−+
≡ t

y t
tK ε

ε

σ
σ σ

 (15) 

These equations also make sense intuitively. The updating step in Eq. (12) always increases the 

uncertainty in the estimate, which is reasonable, since w has evolved randomly since the last observa-

tion. On the other hand, observing any sensory data (even with a very large variance) will always 

reduce the variance of the estimate (see Eq. (14)) and conversely, the variance of the estimate can 

never be larger than the variance of the sensory feedback (see Eq. (19)). The Kalman gain determines 
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how much an individual instance of feedback influences the estimate, and hence sets the time scale 

over which sensory inputs are averaged. If the sensory feedback is very noisy relative to the uncer-

tainty in the estimate, the Kalman filter averages over many time steps, reducing the noise. If on the 

other hand the feedback is relatively reliable, then larger changes to the estimate are made at each time 

step, resulting in a faster response of the estimator to changes in the environment. If no sensory feed-

back is available (equivalent to setting ) the Kalman gain becomes zero and the only effect of 

the recursive update is to increase the uncertainty in the estimate due to the drift in the state of the en-

vironment. 

2 →∞yσ

The above procedure for optimal estimation is a special case of the Kalman filter for our as-

sumption of a very simple dynamical system for w. In general the Kalman filter is applicable to any 

linear system (with arbitrary number of state variables) with Gaussian noise, and its derivation is along 

the same lines as presented here, using vectors and matrices to represent the state variables and their 

dynamics (Goodwin & Sin, 1984). For the cases of non-linear dynamics the system can be linearized 

around the previous estimate, resulting in the extended Kalman filter that, although not guaranteed to 

perform optimally, is generally a good approximation for systems with benign non-linearities. In an 

interesting example, Singhal and Wu (1989) have applied the extended Kalman filter to learning non-

linear problems using a multi-layer neural network; this resulted in superior learning performance 

when compared to standard back-propagation algorithms. In this setting the Kalman filter can be seen 

as a way of finding the optimal learning rates for the neural network.  

Although the Kalman filter uses the simplifying assumptions of linear dynamics and Gaussian 

noise, the principle of recursively applying Bayes rule (eq. (10) and (11)) to optimally infer properties 

of the environment applies to arbitrary systems. It is however important to note that any optimal esti-

mation procedure can only be said to be optimal given the knowledge of – and the assumptions about 

the system in question. As a result it is crucially important to choose an appropriate model for the de-

sired level of description. 
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Integrating contextual and temporal information 

In the previous section we have derived the Kalman filter for a simple system underlying adap-

tation to a randomly changing, noisy environment. However, daily experience teaches us that we do 

not solely integrate past experience to determine our motor actions. Much to the contrary, in order to 

be able to interact with many different objects and environments we must make efficient use of con-

textual information other than sensory feedback directly related to our action. When stepping on an 

escalator, for example, the context of seeing the escalator allows us to be prepared to step onto it. In 

fact, if the escalator is actually not moving, we experience a sensation of “surprise” for a short mo-

ment (Reynolds & Bronstein, 2001). 

Fortunately, the Bayesian framework we used to derive the Kalman filter is easily extended to 

include context as an additional source of information. Consider the graphical model represented in 

Fig. 3. The arrows indicate causal relationships between the variables, and the grey shading indicates 

that again w is a hidden parameter we want to estimate. In addition to sensory feedback y, we now 

have additional contextual information C helping us to infer the distribution of w. The graph can be 

summarized to mean that the object or environment associated with the hidden parameter w causes the 

sensation y, while the setting of the parameter depends on the context C. In the previous section we 

showed how Bayes rule can be used to infer an estimate of the state of the environment from informa-

tion contained in the entire history of sensory feedback. Now we assume that we have access to 

contextual cues C, which give us direct information on the hidden parameter w. Using the fact that 

under this model sensory feedback yt depends solely on the current hidden state wt and that wt depends 

only on past sensory feedback and context, we get:  

 
( ) ( ) ( )

( ) ( )
0 0 0 1 0 01 0

1 0 0

| , | | ,, ,
| | ,

−−

−

∝ ⋅

= ⋅
t t t t t t t tt t

t t t t t

P w y C P y P w y Cw y C
P y w P w y C

… … … … ……

… …

 

Unless we have a model of how the context and previous sensory experience interact to deter-

mine the hidden parameter, we cannot simplify this expression further. Fortunately it is often a good 

assumption that the influences of context and previous experience are independent. Consider for ex-

ample the situation where the context indicates directly the nature of an object (and hence the likely 
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value of w) by the feel of holding it in the hand. If we now pick up many such objects, the contextual 

cue indicates the nature of the object, independent of which object was picked up before. A possible 

counterexample in which context and previous experience interact would be a somewhat abstract cue 

indicating that the object will not change for some time. 

Assuming that the influences of current context and past experience are indeed conditionally 

independent, i.e. ( ) ( ) ( )0− − …1 0 0 1 0 1| , | | ,− ∝ ⋅t t t t t t t tP w y C P w C P w y C… … … , we get the posterior probability 

in terms of three factors:  

 ( ) ( )[ ] ( )[ ] ( )[ ]
00 1

current current sensory integrated past
context feedback experience

, | | | ,− −∝ ⋅ ⋅
tt t t t t t t t tP w y C P w C P y w P w y C
…… …��	�
 ��	�
 ����	���
0 1 0…

t

 (16) 

This expression for the posterior probability of wt can be interpreted by picturing that both the current 

context and the integrated past experience are trying to wield their influence over the sensory feedback 

which had just been received. If, for simplicity, we assume that the distributions P are single-peaked 

(such as a Gaussian), then if the context is more informative of the setting of w, the distribution of w 

given the context (the first factor in Eq. (16)) will be narrower than the distribution given the previous 

experience (the last factor in Eq. (16)). When the distribution of the current sensory feedback (the 

middle factor in Eq. (16)) is multiplied by the two other factors, the location of its peak is more 

strongly attracted by the higher, narrower peak, as illustrated by Fig. 4.  

This way of combining different sources of information can explain why some form of contex-

tual information can be very effective while others are ignored (see next section): if the motor system 

does not have an informative model P(wt | Ct) of how the context affects relevant parameters, i.e. 

 is flat and not particularly peaked on any value of w, then the context will have no or only 

very little influence on the final estimate of w. For example, the color of an object would not ordinarily 

be an informative context for the object’s mass, whereas the size would be. 

(  |  )tP w C

While the Gaussian assumption is plausible for the noise sources modeled by the Kalman filter, 

when considering contextual information, it might often be necessary to allow a multi-modal distribu-

tion of states given the context (P(wt | Ct) in Eq. (16)), for example to represent a context in which we 

interact with one of two objects. Fig. 5a-c illustrates that when the posterior distribution over states is 
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calculated by combining a unimodal distribution (e.g. an estimate of the state based purely on sensory 

feedback) with a bimodal distribution representing the context, the result is not necessarily symmetric 

with respect to the MAP estimate. In this case the MAP estimate does not coincide with the least 

squares estimate (black and gray dots in Fig. 5).  

In designing an estimator for this kind of bimodal problem, one has to consider which method to 

use to map the knowledge of the statistics of the world (contained in the posterior distribution over 

states) to an estimate which can be used to execute an action. This amounts to selecting one of two 

strategies: using the MAP estimate in the example illustrated in Fig. 5c is equivalent to a switching 

strategy, since the estimate will always be jumping to the higher peak of the bimodal posterior. On the 

other hand, using the least square estimate is equivalent to a weighting strategy corresponding to the 

full Bayesian treatment that minimizes a loss function (here the squared error) under the posterior dis-

tribution over states. 

The role of external context for the control of multiple dynamical settings 

When subjects learn to make reaching movements using a robotic manipulandum that produces veloc-

ity dependent force field, the movements are initially curved, but recover their initial shape after some 

practice (Shadmehr & Mussa-Ivaldi, 1994). If subjects subsequently are asked to make reaching 

movement in a force field which is the opposite of the first one, interference occurs between the two 

force fields: (Brashers-Krug, Shadmehr & Bizzi, 1996; Shadmehr & Holcomb, 1997) the learning of 

the second field is impaired, as compared to the initial acquisition of the first one, and learning the 

second field infers with the later recall of the first one. However, if a sufficient amount of time passes 

between the presentations of the two force fields (5-6 hours), there is no interference effect and the 

memory of the first field is spared. In other words, the controller for the first field some is somehow 

consolidated in memory. Moreover, this consolidation process can be correlated with metabolic 

changes in the brain (Nezafat, Shadmehr & Holcomb, 2001; Shadmehr & Holcomb, 1999; Shadmehr 

& Holcomb, 1997). In our framework this might be interpreted to suggest that learning of an estimate 

of the perturbation from sensory feedback is taking place in working memory, while storing the asso-
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ciation between a given context and the perturbation (P( w | C )) is a slower process requiring a period 

of consolidation. The functional imaging results support the idea that these two different sources of 

information might be stored in different parts of the brain. In this view, interference occurs because the 

online estimation process simply averages over past experience, while consolidation allows knowledge 

of the perturbation to be stored as a context dependent mapping from sensations (e.g. a force pushing 

to the right) to the correct setting of the controller. 

The results of the above experiments show that multiple dynamic objects can be learned, if they 

are well separated in time and this raises the question what other contextual cues can be used to store 

controllers for multiple dynamic environment. While it seems obvious that in daily life the use of con-

textual information is crucial for successful interaction with our environment; the above observations 

raise the question of which kind of contextual information can be meaningful to the motor system. 

Gandolfo and colleagues (Gandolfo et al., 1996) observed that two opposed force-fields could be 

learned without interference if a different posture of the arm was used for each force field. After train-

ing, movements in the absence of the force fields resulted in posture specific aftereffects, indicating 

that a different controller was associated with each posture. However this was only true for a postural 

change that involved joints participating in the movement – changing the posture of the thumb grip-

ping the manipulandum did not have this effect. Similarly no effect was observed when the color of 

the room lighting was correlated with the force field.  

These results can be described parsimoniously by postulating that adaptation is to some degree 

localized in state space (joint angles or workspace position and velocity). This interpretation implies 

that the motor system was unable to use the kind of cues presented in the above studies for the control 

of dynamic objects and this seems to be in conflict with our daily experience, where we interact with 

many objects based on visual, haptic and other sensory feedback. However, in real life, the motor sys-

tem might rely on a coincidence of many consistent sensory instances to define an object or 

environment, e.g. visual appearance, as well as the "feel" of a tennis racket, so that the simple kind of 

contextual information provided in the experiments is simply too uninformative. In the formalism we 

developed above, this correspond to a flat probability distribution P(w | C) over adaptive states given 
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the context of e.g. room lighting. In fact it would be rather surprising to find any strong effects of such 

artificial contexts – the motor system has a whole lifetime of exposure to naturally occurring contex-

tual information, so that it is not surprising that arbitrary associations, such as the association between 

the color of room lighting and the dynamical properties of a manipulated object, should be hard to 

learn.   

Control of movements in time-varying environments 

The Bayesian framework put forward in this paper tells us how feedback should be integrated over 

time to optimally infer a controller for noisy and time-varying environments or objects. Control in 

such environments has been studied experimentally for both ‘prism adaptation paradigms’ involving 

kinematic perturbations of visual feedback, as well as force-field adaptation paradigms which perturb 

the dynamic properties of a manipulated object.   

Adaptation to kinematic perturbations 

How does the internal estimate of a visual perturbation depend on the availability of visual feedback? 

To address this question, Vetter and Wolpert (2000b) asked subjects to make reaching movements to a 

visual target. After an initial learning phase, when subjects experienced a random sequence of two 

visual perturbations, they were tested with either no visual feedback or brief instances of feedback. 

Their results can be summarized as showing that in the absence of visual feedback, the motor system 

had a prior estimate of the perturbation given the context of the experimental setting, which was the 

average of the two perturbations in the learning phase. Incidentally, this suggests that the motor sys-

tem averages over all possible context instead of using a MAP estimate, as discussed above. 

Furthermore, the effect of feedback on the estimate of the perturbation, as measured by the position of 

the endpoint of the movement was larger if feedback was given later on in the movement. Although 

this result is seemingly paradoxical, since receiving feedback earlier leaves more time for the move-

ment to be updated, it is naturally explained by our estimation framework, which assumes that sources 

of information are weighted by a measure of their certainty: In the absence of sensory feedback, the 
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uncertainty in the feedback-based estimate grows with time according to eq. (8) and (12); conse-

quently estimates based on later instance of feedback will have lower uncertainty at the end of the 

movement and will hence be weighted more strongly. 

 The results in the previous paragraph suggest that internal estimates of the environment are up-

dated, even in the absence of sensory feedback, as suggested by eq. (8). Another experiment in the 

same paper illustrates this point further: If subject make reaching movements with either veridical vis-

ual feedback or feedback translated relative to the hand position, then the hand position does not decay 

to baseline when feedback is removed for a number of reaches. Instead it converges to the average of 

the veridical and perturbed hand positions. Again this can be explained by the increasing uncertainty 

in the absence of the visual feedback, so that the context based information (equal amounts of veridi-

cal and translated trials) dominates. Vetter and Wolpert model this prior knowledge implicitly by 

assuming a process switching between two discrete, modules (one for each context), each with a prior 

probability of 0.5. However, the data are equally well explained by a non-modular model of sensory 

and contextual integration of the form of eq. (16): as feedback is removed, the uncertainty associated 

with the feedback based estimate increases, so that the final estimate is eventually dominated by the 

contextual information. The context could either be represented as a Gaussian centered on the average 

translation, or a bimodal distribution with a lobe at both the veridical and translated settings (see 

Fig.5c,d).  

Most of the models in this paper assume that the CNS has a very simple random walk model 

(eq. (8)) of how the world evolves. This raises two questions: First, in an environment which is well 

described by this model, how close to the optimal estimator (the Kalman filter given by eq. (13), (14) 

and (15)) is human performance? Ingram (1999) shows that human subjects perform very close to the 

ideal estimator in a reaching task with randomly drifting displacements of the visual feedback of the 

endpoint. She found that subjects were able to use up to 80 percent of the information contained in the 

sequence of displacements. Second, is the motor system limited to a random walk model (eq. (8)) in 

estimating the evolution of a given context? Using a tracking task Vetter and Wolpert (2000a) provide 
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evidence that the CNS can at least model a constant rate of change when exposed to a slow, sinusoi-

dally varying visual perturbation. 

Adaptation to dynamic perturbations 

The visual perturbation experiments discussed in the previous section rely on the fact that for a purely 

visual task, sensory feedback can easily be manipulated. Interpretation of these experiments relies on 

the idea that, since there is no mechanical interaction with the movement, the endpoint of the move-

ment is a good indicator of the internal estimate, or model, of the perturbation. Wolpert and colleagues 

used an elegant “trick” to extend this idea to dynamic perturbations (Wolpert, Ghahramani & Jordan, 

1995) by asking the subjects to estimate the position of their hand after making a movement in the 

dark. A Kalman filter model similar to the one described in this paper accurately predicted the changes 

in the bias and variance of the estimate of hand position, both as a function of movement direction and 

externally applied forces. 

However, here we are not interested in how the motor system forms an internal estimate of its 

own state, but the related question of how an internal estimate of the dynamics of an environment or 

object is formed and used for control. In that case it is impossible (at least in healthy subjects) to di-

rectly dissociate the mechanical perturbations applied to the hand from the feedback received by the 

motor system, as propioceptive sensory feedback will always be present. While catch trials, where the 

external perturbation is unexpectedly removed, can give an indication of the internal estimate the mo-

tor system has formed about the environment, the interpretation can be confounded by the continuous 

presence of feedback. Nevertheless recent experiments on non-stationary force fields have provided 

some results relevant to the proposed estimation problem. We will discuss these findings in the light of 

a system identification perspective.  

 When subjects made reaching movements while exposed to a velocity dependent force-field 

with a magnitude that varied randomly from one trial to the next, the effect of the perturbation on the 

movements decreased during the experiment (Scheidt et al., 2001; Takahashi et al., 2001). This sug-

gests that subjects were able to adapt to the force fields, in spite of their random nature. Both studies 

found that subjects showed an adaptive state appropriate for the average magnitude of the force field, 
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even when the force-field magnitude had a bimodal distribution and the average magnitude field was 

never experienced (Scheidt et al., 2001). Scheidt and colleagues also found a dependence of perform-

ance on the force field experienced on the previous trials, indicating that a estimate of the force field is 

based on previous experience, as previously shown for a single, fixed force field (Thoroughman & 

Shadmehr, 2000). Unfortunately, both these results are consistent with any learning rule based on in-

cremental updates as new sensory data becomes available, which would result in the reported 

averaging characteristics, as well as the dependence on previous experience.  

However, Takahashi and colleagues (2001) observed that while catch trials were curved in the 

direction opposite to the force field (indicating that an internal estimate of the force was indeed 

formed), this curvature was smaller for catch trials following exposure to the random field than for 

catch trials following a fixed force field with a magnitude equal to the average magnitude of the ran-

domly varying one. They interpreted this finding as evidence for a dual control mechanism: an 

estimation based controller compensating for the average perturbation, in combination with low-level 

impedance control by regulating muscle-cocontraction. While stiffness regulation surely forms an im-

portant part of the control strategies available to the human motor system, these experimental findings 

are parsimoniously explained by the Kalman filter model: for the fixed force field, the Kalman gain 

will be small because the estimate based on previous experience is very reliable. In the more variable, 

random condition, the Kalman gain would be increased because of the increased uncertainty associ-

ated with the estimate, giving higher weight to online feedback. As a result, the absence of the force 

on catch trials is detected earlier in the trial and the resulting movement is less curved. Although both 

the co-contraction and the Kalman filter hypothesis can explain the decreased magnitude of the catch 

trials, the experiment discussed in the next paragraph supports the latter.  

The studies discussed in the previous section show that in the case of adaptation to a randomly 

switching force field, movements are consistent with adaptation to the average of the experienced 

forces. This suggests that in the case when the average perturbation is zero no adaptation occurs. This 

idea was tested by Korenberg and Ghahramani (2002), by investigating reaching movements in a force 

field switching between two opposed directions. They studied both a random sequence of the two 
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force fields, as well as a predictable sequence, switching the force on every trial. All but two (out of a 

total of 28) subjects were unable to use the information contained in the predictable sequence to com-

pensate for the force-field, which was evident from the fact that catch trials where only slightly curved 

and that there was no significant difference between random and predictable sequences. Furthermore, 

the small curvature of catch trials was opposite to the direction of the previously experienced (as op-

posed to one predicted by the sequence), indicating a residual adaptation to the previously experienced 

force field. This indicates that in nearly all of the subjects, adaptation was purely based on previous 

experience, even if the perturbation was completely predictable from the preceding trial.  

In spite of the absence of feedforward adaptation, the reaching movements became significantly 

straighter during the experiment and, consistent with the results by Takahashi and colleagues (2001), 

the bias of catch trials decreased. However, Korenberg and Ghahramani (2002) found additional 

changes to the pattern of reaching movements, that support the hypothesis that the CNS indeed inte-

grates sensory feedback according to the estimation model in eq. (13)-(15). The underlying 

assumption is that since sequence information is not used, the switching force field is interpreted as a 

rapidly drifting environment, and hence sensory feedback is given a greater weight. This makes the 

prediction that feedback should affect the ongoing movement progressively more, and that movement 

variability should increase, due to the reduced time scale of averaging.  

 To test the effect of feedback on the ongoing movement, Korenberg and Ghahramani introduced a 

novel type of catch trial for which the force was removed only after the movement started and found 

an increasing response to the resulting small force pulse at the beginning of the movement, as pre-

dicted by the model. This increasing feedback response suggest that increasing co-contraction is 

unlikely to explain the changes in reaching movements, since increased co-contraction could be ex-

pected to lead to higher limb impedance. In addition, the variability of catch trials was increased more 

than 10 fold with respect to baseline movements although both types of movements have exactly the 

same dynamic context (i.e. forces are switched off). This is consistent with the second prediction of 

the model that everything else being equal, the variability of movements should increase as a result of 

the exposure to a switching force field environment. 
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In summary the switching force field experiments have two main conclusions. Consistent with 

the difficulty in associating a force field with an abstract cue (e.g. room lighting), the information con-

tained in a simple, predictable sequence of opposed force fields could not be used to learn both fields 

simultaneously. Instead performance was not significantly different if a random sequence was used. 

The behavior was consistent with an adaptive mechanism based on online averaging of sensory 

information, as in the case of a fixed force field (Thoroughman & Shadmehr, 2000) or a force field 

with randomly varying magnitude, but fixed direction (Scheidt et al., 2001; Takahashi et al., 2001). 

However, in the case of two opposed force fields, adaptation to one field interferes with performance 

when moving in the other field. Under these circumstances, the influence of previous trials decreases, 

while the effect of feedback online increases. These findings are parsimoniously explained by the 

integration model proposed in this paper, assuming that the motor system approximates the switching 

force field environment by a rapidly drifting one. 

Conclusion 

We have presented a new point of view for the analysis of motor learning which explicitly takes into 

account the uncertainty inherent in the sensory feedback and the controlled object. The key idea is to 

treat motor learning as the problem of inferring the parameters of the control system from noisy obser-

vations and contextual information. In this framework Bayesian theory is used to optimally combine 

these different sources of information. In the case of a linear system with Gaussian noise this approach 

results in the Kalman filter, which is the optimal estimator under these assumptions. 

We based our discussion on an extremely simplified linear system, as our goal was to illustrate 

the basic idea of how uncertainty in sensory feedback and the controlled environment leads to con-

straints on the efficient use of these sources of information. Using such a simplified model necessarily 

means renouncing the ambition to explain many experimental results in great detail, for example de-

tails of movement trajectories. In fact by limiting the complexity of the model, we explicitly ignore 

details of the motor system in order to concentrate on the underlying principle of optimal probabilistic 

inference as a unifying explanation for a number of experimental observations relating to adaptation in 
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non-stationary environments. Rather than explaining the details of each of the experiments discussed 

in this paper, the aim of the model is to point out and explain the communalities. Such a review of ex-

perimental work in the light of an abstract model is necessarily incomplete, although we have included 

all experimental work relevant to the computational modelling of adaptation to non-stationary envi-

ronment that we are aware of. Likewise, our model is not comprehensive of all possible reactions of 

the motor system in the face of non-stationary environments, as it completely ignores, for example, 

any high-level cognitive influences. 

We used a very simple random walk model of how the environment might change over time. 

Considering that a large amount of the uncertainty arises from the motor system itself (e.g. neuro-

motor noise, fatiguing muscles, miscalibration of visuomotor maps), modeling the controlled envi-

ronment as randomly drifting might actually be a close approximation to the reality the motor system 

has to deal with. In fact, when subjects are exposed to a visual perturbation with such a drifting behav-

ior, the resulting behavior is close to optimal in the sense that most of the information available in the 

random sequence of perturbations is used (Ingram, 1999). 

On the other hand in the switching force-field experiment (Korenberg & Ghahramani, 2002), 

subjects acted far from optimal by completely discarding the information available from the predict-

able alternation of force-fields. The key to understanding this discrepancy might be to consider the 

ecological environment that the motor system has evolved to master. In order to be able to rapidly 

adapt its behavior to the environment based on limited, noisy data, the motor system has use prior 

knowledge of the statistical structure of the world. Real world objects simply do not switch in predict-

able sequences and without associated sensory cues; it therefore seems plausible that artificial 

environment of this kind could be interpreted to be drifting rapidly instead. 

A classic experiment  in animal conditioning of taste aversion underlines the importance of the 

animal’s prior assumptions in how it interprets contextual information. If a rat was given a combined 

conditioned stimulus of sugar water, light and sound, and then made to feel sick, only the taste of the 

sugar water resulted in aversive behavior. However, if an electric shock was used as unconditioned 

stimulus, it became associated with the light and sound (Garcia & Koelling, 1966) and not with the 
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sugar water. The associations the rat formed were determined by the set of naturally occurring associa-

tions - sickness being associated with taste (e.g. from ingesting poisoned food) and pain with an 

external event. Similarly, while the human animal readily uses many types of contextual cues to inter-

act with the world, the force field adaptation studies discussed here have shown that non-ecological 

cues such as room lighting or predictable switching sequences are not easily associated with behaviors 

which are otherwise easily learned. 
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Appendix – Bayes Rule 

Consider two events A (e.g. “it rained”) and B (e.g. “the ground is wet”) occurring with probabilities 

P(A) and P(B). If the two events are not independent, then given that A occurred we get a different 

probability P(B|A) for observing B. P(B|A) (i.e. the probability that the ground is wet, given that it 

rained) is called the conditional probability of B given A, and similarly we can define the probability 

of P(A|B) (i.e. the probability that it rained, given that the ground is wet). The joint probability of both 

A and B (i.e. wet ground and rain) occurring is given by: 

  ( , ) ( ) ( | ) ( ) ( | )P A B P A P B A P B P A B= ⋅ = ⋅

Let’s suppose we observe B but are really interested in knowing how probable A is given that we ob-

served B. To do this inference, we can use Bayes rule, which follows straight from the above 

expression for the joint probability: 

 ( | ) ( )( | )
( )

P B A P AP A B
P B

⋅
=  

 In this context, P(B|A) is called the likelihood of observing B, P(A) is the prior and P(A|B) is the 

posterior probability over A. The same argument holds if the Ps are probability distributions over the 

random variables A and B. In that case P(B) is a constant with respect to A, ensuring that 

, as required for a probability distribution. If we are only interested in the shape of 

P(A|B), than we do not need to be concerned with this normalization constant and can use 

( | ) 1P A B dA =∫

 ( | ) ( | ) ( )P A B P B A P A∝ ⋅  
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Appendix – A simple Kalman filter 

This appendix derives the Kalman filter for the optimal estimate given the assumptions of linear 

dynamics (in fact a random walk) and Gaussian noise. The derivation reads on from Eq. (11) and re-

sults in the update equations (12), (13) and (14) Given the assumptions of linear dynamics and 

Gaussian noise for the evolution of w (Eq. (8)), the prior distribution P(wt | yt-1…0) is also a Gaussian: 

Since we assume that w follows a random walk with no consistent trend, ( )1 0| −t tP w y …  is also a Gaus-

sian with the same mean and increased variance as compared to ( )1 1 0|− −t ty …P w . To indicate that the 

prior is in fact the distribution representing our knowledge about w just before the current measure-

ment is taken into account, we use the time index  t-ε: 
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− −
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wµ µ σ σ σ

N
 (17)  

The sensory feedback is given by the state of the world corrupted by Gaussian noise and we therefore 

also get a Gaussian (centered on w and with variance given by the feedback noise) for the likelihood of 

observing a given sensation y: 

 ( ) ( )2|t t t yP y w w ,σN∼  (18) 

Since the posterior probability P(wt | yt…0), which we are interested in, is simply the product of two 

Gaussians ( Eq. (17) and Eq. (18)), it is also a Gaussian, centered on the average of the individual cen-

ters weighted by the inverse of the respective variances and with a variance equal to the geometric 

mean of the individual variances: 
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 (19) 

How do we extract an estimate of wt from the posterior distribution? One possibility is to simply 

pick the value of wt for which the posterior probability is maximized (MAP estimate), i.e. the mean of 

the distribution in the Gaussian case. Alternatively we could seek to minimize the estimation error. If 

we choose the squared estimation error as a cost function, it is easy to show that the resulting (least 
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square) estimate is again the mean of the posterior distribution. Although in the Gaussian case (and in 

fact for any unimodal distribution centered on its mean) the MAP and least square estimates coincide, 

this is not generally the case. 

By equating the estimate  with the mean µ of the posterior and rewriting Eq. (19) as ŵ

 ( ) ( )2

2 2 2 2
2

1 ; 1−

− −
− −+

= + − = −t

y t y t
t t t t t tyε

ε ε

σ 2 2−
−+

t εσ
ε εσ σ σ σ

µ µ µ σ σ   (20) 

we obtain a recursive procedure for calculating the optimal estimate  of w and the associated uncer-

tainty, as measured by the variance in , 

ŵ

ŵ σ̂ 2 . Using the definition of the Kalman gain in Eq. (15) 

result in the update equations Eq. (12), (13) and (14). 
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Figure legends 

Figure 1: The trade-off between noise rejection and responsiveness. When inferring a parameter w 

from noisy observations (dots) using online averaging over time t (eq. (9)), a small learning rate K (top 

left panel) results in an estimate (gray line) with low noise but which does not follow the underlying 

“true” time course of w (black line). Conversely, if K is too large (bottom left panel), the estimate is 

very noisy. There exists an optimal setting of K (top right panel), that minimizes the estimation error 

by trading off noise rejection and responsiveness. 

 

Figure 2: A graphical representation of the causal relationships implied by eq. (7) and (8). The state at 

time t, wt, is assumed to drift over time, which is represented by the horizontal arrow linking states at 

subsequent time steps. The sensory observations yt are assumed to depend on the state, as indicated by 

the vertical arrows. 

 

Figure 3: An extension to the model in Fig. 2, where context affects the state at each time step. In this 

view the context determines a distribution over possible states, which is combined with sensory feed-

back online. 

 

Figure 4: An example of how sensory feedback and contextual information are combined. If the uncer-

tainty associated with sensory feedback is large compared to the contextual information (i.e. P( y | w ) 

is broader than P( w | C ); left panel) then the resulting estimated is dominated by the contextual in-

formation, and vice versa (right panel). The graphs also demonstrate that the distribution of the 

resulting estimate is always narrower than each of the contributing sources of information, or in other 

words, adding even vague information reduces the overall uncertainty. 
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Figure 5: MAP and least square estimate do not necessarily coincide. A-C: The distribution over sen-

sory feedback (dashed line) is combined with a bimodal distribution containing contextual information 

(dotted lines) to give a probability distribution over w given sensory feedback and the context (solid 

lines). For progressively broader distributions over sensory feedback from A to C, the resulting com-

bined distribution becomes more bimodal, and as a consequence MAP (black dot) and least square 

(gray dot) estimates move apart. The gray line shows the expected squared estimation error. D: If all 

sources of information are Gaussian, MAP and least square estimate always coincide.  


