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Abstract
In this work, we apply Dirichlet Process
Mixture Models (DPMMs) to a learning
task in natural language processing (NLP):
lexical-semantic verb clustering. We thor-
oughly evaluate a method of guiding DP-
MMs towards a particular clustering so-
lution using pairwise constraints. The
quantitative and qualitative evaluation per-
formed highlights the benefits of both
standard and constrained DPMMs com-
pared to previously used approaches. In
addition, it sheds light on the use of evalu-
ation measures and their practical applica-
tion.

1 Introduction

Bayesian non-parametric models have received a
lot of attention in the machine learning commu-
nity. These models have the attractive property
that the number of components used to model
the data is not fixed in advance but is actually
determined by the model and the data. This
property is particularly interesting for NLP where
many tasks are aimed at discovering novel, pre-
viously unknown information in corpora. Recent
work has applied Bayesian non-parametric mod-
els to anaphora resolution (Haghighi and Klein,
2007), lexical acquisition (Goldwater, 2007) and
language modeling (Teh, 2006) with good results.

Recently, Vlachos et al. (2008) applied the ba-
sic models of this class, Dirichlet Process Mix-
ture Models (DPMMs) (Neal, 2000), to a typical
learning task in NLP: lexical-semantic verb clus-
tering. The task involves discovering classes of
verbs similar in terms of their syntactic-semantic
properties (e.g. MOTION class for travel, walk,
run, etc.). Such classes can provide important
support for other NLP tasks, such as word sense
disambiguation, parsing and semantic role label-
ing (Dang, 2004; Swier and Stevenson, 2004).

Although some fixed classifications are available
(e.g. VerbNet (Kipper-Schuler, 2005)) these are
not comprehensive and are inadequate for specific
domains (Korhonen et al., 2006b).

Unlike the clustering algorithms applied to this
task before, DPMMs do not require the number of
clusters as input. This is important because even
if the number of classes in a particular task was
known (e.g. in the context of a carefully controlled
experiment), a particular dataset may not contain
instances for all the classes. Moreover, each class
is not necessarily contained in one cluster exclu-
sively, since the target classes are defined manu-
ally without taking into account the feature rep-
resentation used. The fact that DPMMs do not
require the number of target clusters in advance,
renders them promising for the many NLP tasks
where clustering is used for learning purposes.

While the results of Vlachos et al. (2008) are
promising, the use of a clustering approach which
discovers the number of clusters in data presents
a new challenge to existing evaluation measures.
In this work, we investigate optimal evaluation
for such approaches, using the dataset and the ba-
sic method of Vlachos et al. as a starting point.
We review the applicability of existing evalua-
tion measures and propose a modified version of
the newly introduced V-measure (Rosenberg and
Hirschberg, 2007). We complement the quanti-
tative evaluation with thorough qualitative assess-
ment, for which we introduce a method to summa-
rize samples obtained from a clustering algorithm.

In preliminary work by Vlachos et al. (2008),
a constrained version of DPMMs which takes ad-
vantage of must-link and cannot-link pairwise con-
straints was introduced. It was demonstrated how
such constraines can guide the clustering solution
towards some prior intuition or considerations rel-
evant to the specific NLP application in mind. We
explain the inference algorithm for the constrained
DPMM in greater detail and evaluate quantita-
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tively the contribution of each constraint type of
independently, complementing it with qualitative
analysis. The latter demonstrates how the pairwise
constraints added affects instances beyond those
involved directly. Finally, we discuss how the un-
supervised and the constrained version of DPMMs
can be used in a real-world setup.

The results from our comprehensive evaluation
show that both versions of DPMMs are capable
of learning novel information not in the gold stan-
dard, and that the constrained version is more ac-
curate than a previous verb clustering approach
which requires setting the number of clusters in
advance and is therefore less realistic.

2 Unsupervised clustering with DPMMs

With DPMMs, as with other Bayesian non-
parametric models, the number of mixture compo-
nents is not fixed in advance, but is determined by
the model and the data. The parameters of each
component are generated by a Dirichlet Process
(DP) which can be seen as a distribution over the
parameters of other distributions. In turn, each in-
stance is generated by the chosen component given
the parameters defined in the previous step:

G|α,G0 ∼ DP (α,G0)
θi|G ∼ G (1)

xi|θi ∼ F (θi)

In Eq. 1, G0 and G are probability distributions
over the component parameters (θ), and α > 0 is
the concentration parameter which determines the
variance of the Dirichlet process. We can think
of G as a randomly drawn probability distribution
with meanG0. Intuitively, the larger α is, the more
similar G will be to G0. Instance xi is generated
by distribution F , parameterized by θi. The graph-
ical model is depicted in Figure 1.

The prior probability of assigning an instance
to a particular component is proportionate to the
number of instances already assigned to it (n−i,z).
In other words, DPMMs exhibit the “rich get
richer” property. In addition, the probability that
a new cluster is created is dependent on the con-
centration parameter α. A popular metaphor to de-
scribe DPMMs which exhibits an equivalent clus-
tering property is the Chinese Restaurant Process
(CRP). Customers (instances) arrive at a Chinese
restaurant which has an infinite number of tables
(components). Each customer sits at one of the ta-
bles that is either occupied or vacant with popular
tables attracting more customers.

Figure 1: Graphical representation of DPMMs.

In this work, the distribution used to model the
components is the multinomial and the prior used
is the Dirichlet distribution (F and G0 in Eq. 1).
The conjugacy between them allows for the ana-
lytic integration over the component parameters.
Following Neal (2000), the component assign-
ments zi are sampled using the following scheme:

P (zi = z|z−i, xi) ∝
p(zi = z|z−i)DirM(xi|zi = z, x−i,z, λ) (2)

In Eq. 2DirM is the Dirichlet-Multinomial distri-
bution, λ are the parameters of the Dirichlet prior
G0 and x−i,z are the instances assigned already to
component z (none if we are sampling the prob-
ability of assignment to a new component). This
sampling scheme is possible due to the fact that the
instances in the model are exchangeable, i.e. the
order in which they are generated is not relevant.

In terms of the CRP metaphor, we consider each
instance xi as the last customer to arrive and he
chooses to sit together with other customers at an
existing table or to sit at a new table. Following
Navarro et al. (2006) who used the same model to
analyze individual differences, we sample the con-
centration parameter α using the inverse Gamma
distribution as a prior.

3 Evaluation measures

The evaluation of unsupervised clustering against
a gold standard is not straightforward because the
clusters found are not explicitly labelled. Formally
defined, an unsupervised clustering algorithm par-
titions a set of instances X = {xi|i = 1, ..., N}
into a set of clusters K = {kj |j = 1, ..., |K|}.
The standard approach to evaluate the quality of
the clusters is to use an external gold standard in
which the instances are partitioned into a set of
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classes C = {cl|l = 1, ..., |C|}. Given this, the
goal is to find a partitioning of the instances K
that is as close as possible to the gold standard C.

Most work on verb clustering has used the F-
measure or the Rand Index (RI) (Rand, 1971)
for evaluation, which rely on counting pairwise
links between instances. However, Rosenberg and
Hirschberg (2007) pointed out that F-measure as-
sumes (the missing) mapping between cl and kj .
In practice, RI values concentrate in a small inter-
val near 100% (Meilă, 2007).

Rosenberg & Hirschberg (2007) proposed an
information-theoretic metric: V-measure. V-
measure is the harmonic mean of homogeneity
and completeness which evaluate the quality of the
clustering in a complementary way. Homogeneity
assesses the degree to which each cluster contains
instances from a single class of C. This is com-
puted as the conditional entropy of the class dis-
tribution of the gold standard given the clustering
discovered by the algorithm, H(C|K), normal-
ized by the entropy of the class distribution in the
gold standard, H(C). Completeness assesses the
degree to which each class is contained in a single
cluster. This is computed as the conditional en-
tropy of the cluster distribution discovered by the
algorithm given the class, H(K|C), normalized
by the entropy of the cluster distribution, H(K).
In both cases, we subtract the resulting ratios from
1 to associate higher scores with better solutions:

h = 1− H(C|K)
H(C)

c = 1− H(K|C)
H(K)

Vβ =
(1 + β) ∗ h ∗ c

(β ∗ h) + c
(3)

The parameter β in Eq. 3 regulates the balance
between homogeneity and completeness. Rosen-
berg & Hirschberg set it to 1 in order to obtain the
harmonic mean of these qualities. They also note
that V-measure favors clustering solutions with a
large number of clusters (large |K|), since such so-
lutions can achieve very high homogeneity while
maintaining reasonable completeness. This ef-
fect is more prominent when a dataset includes a
small number of instaces for gold standard classes.
While increasing |K| does not guarantee an in-
crease in V-measure (splitting homogeneous clus-
ters would reduce completeness without improv-
ing homogeneity), it is easier to achieve higher

scores when more clusters are produced.
Another relevant measure is the Variation of In-

formation (VI) (Meilă, 2007). Like V-measure,
it assesses homogeneity and completeness using
the quantitiesH(C|K) andH(K|C) respectively,
however it simply adds them up to obtain a final
result (higher scores are worse). It is also a metric,
i.e. VI scores can be added, subtracted, etc, since
the quantities involved are measured in bits. How-
ever, it can be observed that if |C| and |K| are very
different then the terms H(C|K) and H(K|C)
will not necessarily be in the same range. In par-
ticular, if |K| � |C| then H(K|C) (and V I) will
be low. In addition, VI scores are not normalized
and therefore their interpretation is difficult.

Both V-measure and VI have important advan-
tages over RI and F-measure: they do not assume
a mapping between classes and clusters and their
scores depend only on the relative sizes of the clus-
ters. However, V-measure and VI can be mislead-
ing if the number of clusters found (|K|) is sub-
stantially different than the number of gold stan-
dard classes (|C|). In order to ameliorate this, we
suggest to take advantage of the β parameter in
Eq. 3 in order to balance homogeneity and com-
pleteness. More specifically, setting β = |K|/|C|
assigns more weight to completeness than to ho-
mogeneity in case |K| > |C| since the former is
harder to achieve and the latter is easier when the
clustering solution has more clusters than the gold
standard has classes. The opposite occurs when
|K| < |C|. In case |K| = |C| the score is the
same as the original V-measure. Achieving 100%
score according to any of these measures requires
correct prediction of the number of clusters.

In this work, we evaluate our results using the
three measures described above (V-measure, VI,
V-beta). We complement this evaluation with
qualitative evaluation which assesses the poten-
tial of DPMMs to discover novel information that
might not be included in the gold standard.

4 Experiments

To perform lexical-semantic verb clustering we
used the dataset of Sun et al. (2008). It contains
204 verbs belonging to 17 fine-grained classes in
Levin’s (1993) taxonomy so that each class con-
tains 12 verbs. The classes and their verbs were
selected randomly. The features for each verb are
its subcategorization frames (SCFs) and associ-
ated frequencies in corpus data, which capture the
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DPMM Sun et al.
no. of clusters 37.79 17
homogeneity 60.23% 57.57%
completeness 55.82% 60.19%

V-measure 57.94% 58.85%
V-beta 57.11% 58.85%

VI (bits) 3.5746 3.3598

Table 1: Clustering performances.

syntactic context in which the verb occurs. SCFs
were extracted from the publicly available VALEX
lexicon (Korhonen et al., 2006a). VALEX was ac-
quired automatically using a domain-independent
statistical parsing toolkit, RASP (Briscoe and Car-
roll, 2002), and a classifier which identifies verbal
SCFs. As a consequence, it includes some noise
due to standard text processing and parsing errors
and due to the subtlety of argument-adjunct dis-
tinction. In our experiments, we used the SCFs
obtained from VALEX1, parameterized for the
prepositional frame, which had the best perfor-
mance in the experiments of Sun et al. (2008).

The feature sets based on verbal SCFs are very
sparse and the counts vary over a large range of
values. This can be problematic for generative
models like DPMMs, since a few dominant fea-
tures can mislead the model. To reduce the spar-
sity, we applied non-negative matrix factorization
(NMF) (Lin, 2007) which decomposes the dataset
in two dense matrices with non-negative values. It
has proven useful in a variety of tasks, e.g. infor-
mation retrieval (Xu et al., 2003) and image pro-
cessing (Lee and Seung, 1999).

We use a symmetric Dirichlet prior with param-
eters of 1 (λ in Equation 2). The number of di-
mensions obtained using NMF was 35. We run
the Gibbs sampler 5 times, using 100 iterations for
burn-in and draw 20 samples from each run with
5 iterations lag between samples. Table 1 shows
the average performances. The DPMM discov-
ers 37.79 verb clusters on average with its perfor-
mance ranging between 53% and 58% depending
on the evaluation measure used. Homogeneity is
4.5% higher than completeness, which is expected
since the number of classes in the gold standard is
17. The fact that the DPMM discovers more than
twice the number of classes is reflected in the dif-
ference between the V-measure and V-beta, the lat-
ter being lower. In the same table, we show the re-
sults of Sun et al. (2008), who used pairwise clus-

tering (PC) (Puzicha et al., 2000) which involves
determining the number of clusters in advance.

The performance of the DPMM is 1%-3% lower
than that of Sun et al. As expected, the differ-
ence in V-measure is smaller since the DPMM
discovers a larger number of clusters, while for
VI it is larger. The slightly better performance
of PC can be attributed to two factors. First,
the (correct) number of clusters is given as in-
put to the PC algorithm and not discovered like
by the DPMM. Secondly, PC uses the similarities
between the instances to perform the clustering,
while the DPMM attempts to find the parameters
of the process that generated the data, which is a
different and typically a harder task. In addition,
the DPMM has two clear advantages which we il-
lustrate in the following sections: it can be used to
discover novel information and it can be modified
to incorporate intuitive human supervision.

5 Qualitative evaluation

The gold standard employed in this work (Sun et
al., 2008) is not fully accurate or comprehensive.
It classifies verbs according to their predominant
senses in the fairly small SemCor data. Individ-
ual classes are relatively coarse-grained in terms
of syntactic-semantic analysis1 and they capture
some of the meaning components only. In addi-
tion, the gold standard does not capture the se-
mantic relatedness of distinct classes. In fact, the
main goal of clustering is to improve such exist-
ing classifications with novel information and to
create classifications for new domains. We per-
formed qualitative analysis to investigate the ex-
tent to which the DPMM meets this goal.

We prepared the data for qualitative analysis as
follows: We represented each clustering sample
as a linking matrix between the instances of the
dataset and measured the frequency of each pair
of instances occurring in the same cluster. We
constructed a partial clustering of the instances
using only those links that occur with frequency
higher than a threshold prob link. Singleton clus-
ters were formed by considering instances that
are not linked with any other instances more fre-
quently than a threshold prob single. The lower
the prob link threshold, the larger the clusters will
be, since more instances get linked. Note that in-
cluding more links in the solution can either in-

1Many original Levin classes have been manually refined
in VerbNet.
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crease the number of clusters when instances in-
volved were not linked otherwise, or decrease it
when linking instances that already belong to other
clusters. The higher the prob single threshold,
the more instances will end up as singletons. By
adjusting these two thresholds we can affect the
coverage of the analysis. This approach was cho-
sen because it enables to conduct qualitative analy-
sis of data relevant to most clustering samples and
irrespective of individual samples. It can also be
useful in order to use the output of the clustering
algorithm as a component in a pipeline which re-
quires a single result rather than multiple samples.

Using this method, we generated data sets for
qualitative analysis using 4 sets of values for
prob link and prob single, respectively: (99%,
1%), (95%, 5%), (90%, 10%) and (85%, 15%).
Table 1 shows the number of a) verbs, b) clusters
(2 or more instances) and c) singletons in each
resulting data set, along with the percentage and
size of the clusters which represent 1, 2, or mul-
tiple gold standard classes. As expected, higher
threshold values produce high precision clusters
for a smaller set of verbs (e.g. (99%,1%) pro-
duces 5 singletons and assigns 70 verbs to 20 clus-
ters, 55% of which represent a single gold stan-
dard class), while less extreme threshold values
yield higher recall clusters for a larger set of verbs
(e.g. (85%,15%) produces 10 singletons and as-
signs 140 verbs to 25 clusters, 20% of which con-
tain verbs from several gold standard classes).

We conducted the qualitative analysis by com-
paring the four data sets against the gold standard,
SCF distributions, and WordNet (Fellbaum, 1998)
senses for each test verb. We first analysed the
5-10 singletons in data sets and discovered that
while 3 of the verbs resist classification because
of syntactic idiosyncrasy (e.g. unite takes intransi-
tive SCFs with frequency higher than other mem-
bers of class 22.2), the majority of them (7) end
up in singletons for valid semantic reasons: taking
several frequent WordNet senses they are “too pol-
ysemous” to be realistically clustered according to
their predominant sense (e.g. get and look).

We then examined the clusters, and discovered
that even in the data set created with the lowest
prob link threshold of 85%, almost half of the
“errors” are in fact novel semantic patterns discov-
ered by clustering. Many of these could be new
sub-classes of existing gold standard classes. For
example, looking at the 13 high accuracy clusters

which correspond to a single gold standard class
each, they only represent 9 gold standard classes
because as many as 4 classes been divided into
two clusters, suggesting that the gold standard is
too coarse-grained. Interestingly, each such sub-
division seems semantically justified (e.g. the 11.1
PUT verbs bury and immerse appear in a differ-
ent cluster than the semantically slightly different
place and situate).

In addition, the DPMM discovers semantically
similar gold standard classes. For example, in the
data set created with the prob link threshold of
99%, 6 of the clusters include members from 2
different gold standard classes. 2 occur due to
syntactic idiosyncrasy, but the majority (4) oc-
cur because of true semantic relatedness (e.g. the
clustering relates 22.2 AMALGAMATE and 36.1
CORRESPOND classes which share similar mean-
ing components). Similarly, in the data set pro-
duced by the prob link threshold of 85%, one
of the largest clusters includes 26 verbs from 5
gold standard classes. The majority of them be-
long to 3 classes which are related by the meaning
component of “motion”: 43.1 LIGHT EMISSION,
47.3 MODES OF BEING INVOLVING MOTION, and
51.3.2 RUN verbs:

• class 22.2 AMALGAMATE: overlap
• class 36.1 CORRESPOND: banter, concur, dissent, hag-

gle
• class 43.1 LIGHT EMISSION: flare, flicker, gleam, glis-

ten, glow, shine, sparkle

• class 47.3 MODES OF BEING INVOLVING MOTION:
falter, flutter, quiver, swirl, wobble

• class 51.3.2 RUN: fly, gallop, glide, jog, march, stroll,
swim, travel, trot

Thus many of the singletons and the clusters
in the different outputs capture finer or coarser-
grained lexical-semantic differences than those
captured in the gold standard. It is encouraging
that this happens despite us focussing on a rela-
tively small set of 204 verbs and 17 classes only.

6 Constrained DPMMs

While the ability to discover novel information is
attractive in NLP, in many cases it is also desir-
able to influence the solution with respect to some
prior intuition or consideration relevant to the ap-
plication in mind. For example, while discover-
ing finer-grained classes than those included in the
gold standard is useful for some applications, oth-
ers may benefit from a coarser clustering or a clus-
tering that reveals a specific aspect of the dataset.
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% and size of clusters containing
THR verbs clusters singletons 1 class 2 classes multiple classes

99%,1% 70 20 5 55% (3.0) 30% (2.8) 15% (4.5)
95%,5% 104 25 9 40% (3.7) 44% (2.8) 16% (6.8)

90%,10% 128 28 9 46% (3.4) 39% (2.5) 14% (11.0)
85%,15% 140 25 10 44% (3.7) 28% (3.3) 20% (13.0)

Table 2: An overview of the data sets generated for qualitative analysis

Preliminary work by Vlachos et al. (2008) intro-
duced a constrained version of DPMMs that en-
ables human supervision to guide the clustering
solution when needed. We model the human su-
pervision as pairwise constraints over instances,
following Wagstaff & Cardie (2000): given a pair
of instances, they are either linked together (must-
link) or not (cannot-link). For example, charge
and run should form a must-link if the aim is
to cluster 51.3 MOTION verbs together, but they
should form a cannot-link if we are interested in
54.5 BILL verbs. In the discussion and the experi-
ments that follow, we assume that all links are con-
sistent with each other. This information can be
obtained by asking human experts to label links,
or by extracting it from extant lexical resources.
Specifying the relations between the instances re-
sults in a partial labeling of the instances. Such
labeling is likely to be re-usable, since relations
between the instances are likely to be useful for a
wider range of tasks which might not have identi-
cal labels but could still have similar relations.

In order to incorporate the constraints in the
DPMM, we modify the underlying generative pro-
cess to take them into account. In particular must-
linked instances are generated by the same com-
ponent and cannot-linked instances always by dif-
ferent ones. In terms of the CRP metaphor, cus-
tomers connected with must-links arrive at the
restaurant together and choose a table jointly, re-
specting their cannot-links with other customers.
They get seated at the same table successively one
after the other. Customers without must-links with
others choose tables avoiding their cannot-links.

In order to sample the component assignments
according to this model, we restrict the Gibbs sam-
pler to take them into account using the sampling
scheme of Fig. 2. First we identify linked-groups
of instances, taking into account transitivity2. We
then sample the component assignments only from
distributions that respect the links provided. More

2If A is linked to B and B to C, then A is linked to C.

specifically, for each instance that does not belong
to a linked-group, we restrict the sampler to choose
components that do not contain instances cannot-
linked with it. For instances in a linked-group, we
sample their assignment jointly, again taking into
account their cannot-links. This is performed by
adding each instance of the linked-group succes-
sively to the same component. In Fig. 2, Ci are the
cannot-links for instance(s) i, ` are the indices of
the instances in a linked-group, and z<i and x<i
are the assignments and the instances of a linked-
group that have been assigned to a component be-
fore instance i.

Input: data X , must-linksM, cannot-links C
linked groups = find linked groups(X ,M)
Initialize Z according toM, C
for i not in linked groups

for z = 1 to |Z|+ 1
if x−i,z ∩ Ci = ∅
P (zi = z|z−i, xi) (Eq. 2)

else
P (zi = z|z−i, xi) = 0

Sample from P (zi)
for ` in linked groups

for z = 1 to |Z|+ 1
if x−`,z ∩ C` = ∅

Set P (z` = z|z−`, x`) = 1
for i in `

P (z`= z|z−`, x`)∗ =
P (zi = z|z−`, x−`,z, z<i, x<i)

else
P (z` = z|z−`, x`) = 0

Sample from P (z`)

Figure 2: Gibbs sampler incorporating must-links
and cannot-links.

7 Experiments using constraints

To investigate the impact of pairwise constraints
on clustering by the DPMM, we conduct exper-
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iments in which the links are sampled randomly
from the gold standard. The number of links var-
ied from 10 to 50 and the random choice was re-
peated 5 times without checking for redundancy
due to transitivity. All the other experimental set-
tings are identical to those in Section 4. Follow-
ing Wagstaff & Cardie (2000), in Table 3 we show
the impact of each link type independently (la-
beled “must” and “cannot” accordingly), as well
as when mixed in equal proportions (“mix”).

Adding randomly selected pairwise links is ben-
eficial. In particular, must-links improve the clus-
tering rapidly. Incorporating 50 must-links im-
proves the performance by 7-8% according to the
evaluation measures. In addition, it reduces the
average number of clusters by approximately 4.
The cannot-links are rather ineffective, which is
expected as the clustering discovered by the un-
supervised DPMM is more fine-grained than the
gold standard. For the same reason, it is more
likely that the randomly selected cannot-links are
already discovered by the DPMM and are thus re-
dundant. Wagstaff & Cardie also noted that the
impact of the two types of links tends to vary
across data sets. Nevertheless, a minor improve-
ment is observed in terms of homogeneity. The
balanced mix improves the performance, but less
rapidly than the must-links.

In order to assess how the links added help the
DPMM learn other links we use the Constrained
Rand Index (CRI), which is a modification of the
Rand Index that takes into account only the pair-
wise decisions that are not dictated by the con-
straints added (Wagstaff and Cardie, 2000; Klein
et al., 2002). We evaluate the constrained DPMM
with CRI (Table 3, bottom right graph) and our re-
sults show that the improvements obtained using
pairwise constraints are due to learning links be-
yond the ones enforced.

In a real-world setting, obtaining the mixed set
of links is equivalent to asking a human expert to
give examples of verbs that should be clustered to-
gether or not. Such information could be extracted
from a lexical resource (e.g. ontology). Alterna-
tively, the DPMM could be run without any con-
straints first and if a human expert judges the clus-
tering too coarse (or fine) then cannot-links (or
must-links) could help, since they can adapt the
clustering rapidly. When 20 randomly selected
must-links are integrated, the DPMM reaches or
exceeds the performance of PC used by Sun et

al. (2008) according to all the evaluation mea-
sures. We also argue that it is more realistic to
guide the clustering algorithm using pairwise con-
straints than by defining the number of clusters in
advance. Instead of using pairwise constraints to
affect the clustering solution, one could alter the
parameters for the Dirichlet prior G0 (Eq. 1) or
experiment with varying concentration parameter
values. However, it is difficult to predict in ad-
vance the exact effect such changes would have in
the solution discovered.

Finally, we conducted qualitative analysis of the
samples obtained constraining the DPMM with 10
randomly selected must-links. We first prepared
the data according to the method described in Sec-
tion 5, using prob link and prob single thresh-
olds of 99% and 1% respectively. This resulted in
26 clusters and one singleton for 79 verbs. Recall
that without constraining the DPMM these thresh-
olds produced 20 clusters and 5 singletons for 70
verbs. 49 verbs are shared in both outputs, while
the average cluster size is similar.

The resulting clusters are highly accurate. As
many as 16 (i.e. 62%) of them represent a sin-
gle gold standard class, 7 of which contain (only)
the pairs of must-linked verbs. Interestingly, only
11 out of 17 gold standard classes are exempli-
fied among the 16 clusters, with 5 classes sub-
divided into finer-grained classes. Each of these
sub-divisions seems semantically fully motivated
(e.g. 30.3 PEER verbs were subdivided so that
peep and peek were assigned to a different cluster
than the semantically different gaze, glance and
stare) and 4 of them can be directly attributed to
the use of must-links.

From the 6 clusters that contained members
from two different gold standard classes, the ma-
jority (5) make sense as well. 3 of these contain
members of must-link pairs together with verbs
from semantically related classes (e.g. 37.7 SAY

and 40.2 NONVERBAL EXPRESSION classes). 3 of
the clusters that contain members of several gold
standard classes include must-link pairs as well.
In two cases must-links have helped to bring to-
gether verbs which belong to the same class (e.g.
the members of the must-link pair broaden-freeze
which represent 45.4 CHANGE OF STATE class ap-
pear now in the same cluster with other class mem-
bers dampen, soften and sharpen). Thus, DP-
MMs prove useful in learning novel information
taking into account pairwise constraints. Only 4
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Table 3: Performance of constrained DPMMs incorporating pairwise links.

(i.e. 15%) of the clusters in the output examined
are not meaningful (mostly due to the mismatch
between the syntax and semantics of verbs).

8 Related work

Previous work on unsupervised verb clustering
used algorithms that require the number of clus-
ters as input e.g. PC, Information Bottleneck (Ko-
rhonen et al., 2006b) and spectral clustering (Brew
and Schulte im Walde, 2002). In terms of apply-
ing non-parametric Bayesian approaches to NLP,
Haghighi and Klein (2007) evaluated the cluster-
ing properties of DPMMs by performing anaphora
resolution with good results.

There is a large body of work on semi-
supervised learning (SSL), but relatively little
work has been done on incorporating some form
of supervision in clustering. It is important to note
that the pairwise links used in this work consti-
tute a weak form of supervision since they cannot
be used to infer class labels which are required for
SSL. However, the opposite can be done. Wagstaff
& Cardie (2000) employed must-links and cannot-
links to constrain the COBWEB algorithm, while
Klein et al. (2002) applied them to complete-link
hierarchical agglomerative clustering. The latter
also studied how the added links affect instances
not directly involved in them.

It can be argued that one could use clustering
algorithms that require the number of clusters to
be known in advance to discover interesting sub-
classes such as those discovered by the DPMMs.
However, this would normally require multiple
runs and manual inspection of the results, while

DPMMs discover them automatically. Apart from
the fact that fixing the number of clusters in ad-
vance restricts the discovery of novel information
in the data, such algorithms cannot take full ad-
vantage of the pairwise constraints, since the latter
are likely to change the number of clusters.

9 Conclusions - Future Work

In this work, following Vlachos et al. (2008) we
explored the application of DPMMs to the task of
verb clustering. We modified V-measure (Rosen-
berg and Hirschberg, 2007) to deal more appro-
priately with the varying number of clusters dis-
covered by DPMMs and presented a method of
agregating the generated samples which allows for
qualitative evaluation. The quantitative and qual-
itative evaluation demonstrated that they achieve
performance comparable with that of previous
work and in addition discover novel information in
the data. Furthermore, we evaluated the incorpo-
ration of constraints to guide the DPMM obtaining
promising results and we discussed their applica-
tion in a real-world setup.

The results obtained encourage the application
of DPMMs and non-parametric Bayesian methods
to other NLP tasks. We plan to extend our ex-
periments to larger datasets and further domains.
While the improvements achieved using randomly
selected pairwise constraints were promising, an
active constraint selection scheme as in Klein et
al. (2002) could increase their impact. Finally,
an extrinsic evaluation of the clustering provided
by DPMMs in the context of an NLP application
would be informative on their practical potential.
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