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1 AbstratWe review the use of variational methods of approximating inferene and learning in probabilisti graphialmodels. In partiular, we fous on variational approximations to the integrals required for Bayesian learning.For models in the onjugate-exponential family, a generalisation of the EM algorithm is derived that iteratesbetween optimising hyperparameters of the distribution over parameters, and inferring the hidden variabledistributions. These approximations make use of available propagation algorithms for probabilisti graphialmodels. We give two ase studies of how the variational Bayesian approah an be used to learn modelstruture: inferring the number of lusters and dimensionalities in a mixture of fator analysers, and inferringthe dimension of the state spae of a linear dynamial system. Finally, importane sampling orretions tothe variational approximations are disussed, along with their limitations.2 IntrodutionTo design learning mahines that reason about and at on the real world we need to represent unertainty.Probability theory provides a language for representing unertain beliefs and a alulus for manipulatingthese beliefs in a onsistent manner [4, 28, 16℄. However, the real world problems a mahine may be faedwith might involve hundreds or thousands of variables, and at �rst it may seem daunting to representand manipulate joint distributions over all these variables. Fortunately, we an assume that of all possiblediret dependenies between variables only a fration are needed in most interesting problem domains. Thedependenies and independenies between variables an be represented graphially, in the form of probabilistigraphial models. Suh graphial models are not only a tool for visualising the relationships between variablesbut, by exploiting the onditional independene relationships, also provide a bakbone upon whih it hasbeen possible to derive eÆient message-propagating algorithms for updating the unertain beliefs of themahine [28, 21, 18, 12℄. This hapter fouses on learning and belief updating in models for whih these areintratable despite the use of these eÆient propagation algorithms. For suh models one has to resort toapproximate methods; we present approximations based on variational methods, whih are losely related tomean-�eld methods in statistial physis.Variational methods have been developed both for maximum likelihood (ML) learning and Bayesianlearning. In setion 3 we desribe their use in ML learning, whih is reviewed in more detail in [20℄. Readersfamiliar with the lower-bound derivation of EM and the use of variational methods in ML learning an skipthis setion. In setion 4, we motivate how the Bayesian approah of integrating over model parametersavoids over�tting and an be used to selet model strutures. Variational methods are used to approximatethese intratable integrals. Setion 5 onsiders models whih fall in the onjugate-exponential lass andpresents the variational Bayesian EM algorithm, whih generalises the maximum likelihood EM algorithm.1



Setion 6 desribes how the variational Bayesian algorithm an make use of propagation algorithms forgraphial models. In setion 7, we provide several example appliations of variational methods to Bayesianinferene of model struture. Setion 8 disusses ombining sampling methods with variational methods toestimate the quality of the variational bounds. Finally, we onlude with setion 9. We assume that thereader is familiar with the basis of inferene in probabilisti graphial models. For relevant tutorials he orshe is referred to: [18, 12, 19, 30℄.3 Variational methods for maximum likelihood learningVariational methods have been used for approximate maximum likelihood learning in probabilisti graphialmodels with hidden variables. To understand their role it is instrutive to derive the EM algorithm formaximum likelihood learning.Consider a graphial model with hidden variables x, observable variables y, and parameters �. MLlearning seeks to maximize the likelihood, or equivalently the log likelihood, of a data set Y = fy1; : : : ;yngas a funtion of �: L(�) = lnP (Y j�) = nXi=1 lnP (yij�) = nXi=1 ln Z dx P (yi;xj�) (1)where we have assumed the data is independent and identially distributed (iid). The integral (or sum) overx is required to obtain the marginal probability of the data. Maximising (1) diretly is often diÆult beausethe log of the integral an potentially ouple all of the parameters of the model. Furthermore, for modelswith many hidden variables, the integral (or sum) over x an be intratable. We an simplify the problemof maximising L with respet to � by making use of the following insight. Any distribution Qx(x) over thehidden variables de�nes a lower bound on L. In fat, for eah data point yi we use a distint distributionQxi(xi) over the hidden variables to get the lower bound:L(�) =Xi ln Z dxiP (yi;xij�) = Xi ln Z dxi Qxi(xi)P (yi;xij�)Qxi(xi) (2)� Xi Z dx Qxi(xi) ln P (yi;xij�)Qxi(xi) (3)= F(Qx1(x1); : : : ; Qxn(xn);�) (4)where the inequality is known as Jensen's inequality and follows from the fat that the ln funtion is onave.De�ning the energy of a global on�guration (x;y) to be � lnP (x;yj�), the lower bound F � L(�) is thenegative of a quantity known in statistial physis as the free energy: the expeted energy under Q minusthe entropy of Q [26℄, where we use Q to mean the set of all Qxi . The Expetation-Maximization (EM)algorithm [2, 5℄ alternates between maximising F with respet to the Qxi and �, respetively, holding theother �xed. Starting from some initial parameters �0:E step: Qk+1xi  argmaxQxi F(Q;�k); 8 i (5)M step: �k+1  argmax� F(Qk+1;�) (6)It is easy to see that the maximum in the E step is obtained by setting Qk+1xi (x) = P (xjyi;�k), at whihpoint the bound beomes an equality: F(Qk+1;�k) = L(�k). The maximum in the M step is obtained byminimising the expeted energy term in (3), sine the entropy of Q does not depend on �:M step: �k+1 argmax� Xi Z dx P (xjyi;�k) lnP (x;yij�):2



Sine F = L at the beginning of eah M step, and sine the E step does not hange �, we are guaranteednot to derease the likelihood after eah ombined EM step.It is usually not neessary to evaluate the posterior distribution P (xjyi;�k) expliitly. For example, iflnP (x;yj�) ontains both hidden and observed variables in a Bayesian network, it an be fatored as thesum of log probabilities of eah node given its parents.1 Therefore, the quantities required for the M stepare the expeted values, under the posterior distributions P (xjyi;�k), of the suÆient statistis required forML estimation in the omplete data ase.For many models, espeially those with multiple hidden variables forming a distributed representation ofthe observed variables, even these suÆient statistis are intratable to ompute [24, 37, 13, 11, 10℄. In the Estep, rather than optimising F over all Q, we onstrain Q to be of a partiular form, for example fatorised.We an still optimise F as a funtional of onstrained distributions Q using alulus of variations. Thisis the key step of variational approximations, and we return to it soon. One this optimisation has beenperformed, we use the expeted suÆient statistis with respet to Q, whih an presumably be omputedtratably, in the M step.Maximising F with respet to Qxi is equivalent to minimising the following quantity:Z dx Qxi(xi) ln Qxi(xi)P (xjyi;�)whih is the Kullbak-Leibler (KL) divergene measuring the (asymmetri) di�erene between Qxi and thetrue posterior. Choosing Qxi to have easily omputed moments, and if lnP is a polynomial in x, we anompute the KL-divergene up to a onstant and more importantly we an take its derivatives to minimiseit with respet to the parameters of Qxi .The E step of this variational EM therefore onsists of a sub-loop in whih the Qxi is optimised. We anoften do this by taking derivatives with respet to the parameters of Qxi and iteratively solving the �xedpoint equations. For approximations where Qxi is fully fatorised, i.e. Qxi(xi) =Qmj=1Qxij (xij), these �xedpoint equations are alled mean-�eld equations by analogy to suh methods in statistial physis. Examplesof these variational approximations an be found in [31, 6, 15, 11℄.4 Variational methods for Bayesian learningMaximum likelihood methods su�er from the problem that that they fail to take into aount model omplex-ity, whih is, from an information theoreti view, the ost of oding the model parameters. Not penalisingmore omplex models leads to over�tting and the inability to determine the best model size and struture.While it is possible to use ross-validation for simple searhes over model size and strutures|for example,if the searh is limited to a single parameter that ontrols the model 'omplexity'|for more general searhesross-validation is omputationally prohibitive. Bayesian approahes overome over�tting and learn modelstruture by treating the parameters � as unknown random variables and averaging over the ensemble ofmodels one would obtain by sampling from �:P (Y jM) = Z d� P (Y j�;M)P (�jM): (7)P (Y jM) is the evidene or marginal likelihood for a data set Y assuming modelM, and P (�jM) is the priordistribution over parameters. Integrating out parameters penalises models with more degrees of freedom sinethese models an a priori model a larger range of data sets. This property of Bayesian integration has beenalled Okham's razor, sine it favors simpler explanations (models) for the data over omplex ones [17, 22℄.The over�tting problem is avoided simply beause no parameter in the pure Bayesian approah is atually�t to the data. Having more parameters imparts an advantage in terms of the ability to model the data, butthis is o�set by the ost of having to ode that parameter under the prior [14℄.Along with the prior over parameters, a Bayesian approah to learning starts with some prior knowledgeor assumptions about the model struture|the set of ars in the Bayesian network. This initial knowledge1One of the de�ning properties of Bayesian networks is that the joint probability of all variables P (z1; : : : ; zn) an be fatoredas Qni=1 P (zijzpa(i)) where zpa(i) is the set of variables whose nodes are parents of i in the network.3



is represented in the form of a prior probability distribution over model strutures, and is updated usingthe data to obtain a posterior distribution over models and parameters. More formally, assuming a priordistribution over models strutures P (M) and a prior distribution over parameters for eah model strutureP (�jM), observing the data set Y indues a posterior distribution over models given by Bayes rule:P (MjY ) = P (M)P (Y jM)P (Y ) (8)The most probable model or model struture is the one that maximises P (MjY ).For a given model struture, we an also ompute the posterior distribution over the parameters:P (�jY;M) = P (Y j�;M)P (�jM)P (Y jM) :whih allows us to quantify our unertainty about parameter values after observing the data. The densityat a new data point y is obtained by averaging over both the unertainty in the model struture and in theparameters, P (yjY ) = Z d� dM P (yj�;M; Y )P (�jM; Y )P (MjY )This is known as the preditive distribution.While Bayesian theory in priniple avoids the problems of over�tting and an be used to do model seletionand averaging, in pratie it is often omputationally and analytially intratable to perform the requiredintegrals. Markov hain Monte Carlo (MCMC) methods an be used to approximate these integrals bysampling [25℄. The main ritiism of MCMC methods is that they are slow and it is usually diÆult to assessonvergene. Furthermore, the posterior density over parameters, P (�jY;M) whih aptures all informationinferred from the data about the parameters, is stored as a set of samples, whih an be ineÆient.Another approah to Bayesian integration is the Laplae approximation whih makes a loal Gaussianapproximation around a maximum a posteriori (MAP) parameter estimate [22℄. These approximations arebased on large data limits and an be poor, partiularly for small data sets (for whih, in priniple, theadvantages of Bayesian integration over ML are largest). Loal Gaussian approximations are also poorlysuited to bounded or positive parameters suh as the mixing proportions of the mixture model. Finally, theGaussian approximation requires omputing or approximating the Hessian at the MAP estimate, whih anbe omputationally ostly.Variational methods an be used for approximate the integrals required for Bayesian learning. The basiidea is to simultaneously approximate the distribution over both hidden states and parameters with a simplerdistribution, usually by assuming the hidden states and parameters are independent. More spei�ally, inexatly the same way as the log likelihood is lower bounded in the derivation of EM (3), the log evidenean be lower bounded by applying Jensen's inequality:lnP (Y jM)= lnZ d� P (Y;�jM) (9)� ZZ d� dX Q�(�)QX(X) ln P (Y;X;�jM)Q�(�)QX(X) (10)= Z d� Q�(�)�Z dXQX(X) ln P (Y;X j�;M)QX(X) + ln P (�jM)Q�(�) � (11)= F(QX(X); Q�(�)) (12)= F(Qx1(x1); : : : ; Qxn(xn); Q�(�)) (13)The last equality follows from the fat that the observed data is iid. The variational Bayesian approahiteratively maximises F as a funtional of the free distributions, QX(X) and Q(�). From (11) we an seethat this maximisation is equivalent to minimising the KL divergene between QX(X) Q(�) and the joint4



posterior over hidden states and parameters P (X;�jY;M). Note the similarity between (4) and (13). Whilewe maximise the former with respet to hidden variable distributions and the parameters, the latter wemaximise w.r.t. hidden variable distributions and a parameter distribution.This approah was �rst proposed for one-hidden layer neural networks (whih have no hidden state) byHinton and van Camp (1993) using the restrition that Q�(�) is Gaussian. The term ensemble learningwas used to desribe the method sine it �ts an ensemble of models, eah with its own parameters. It hassine been applied to various other models with hidden states and no restritions on Q�(�) and Qxi(xi)other than the assumption that they fatorise in some way [36, 23, 3, 1, 8℄. With only these fatorisationassumptions, free-form optimisation with respet to the distributions Q�(�) and Qxi(xi) is done usingalulus of variations, and often results in a modi�ed EM-like algorithm.5 Conjugate-Exponential ModelsWe onsider variational Bayesian learning in models that satisfy two onditions:Condition (1). The omplete data likelihood is in the exponential family:P (x;yj�) = f(x;y) g(�) exp��(�)>u(x;y)	where �(�) is the vetor of natural parameters, and u and f and g are the funtions that de�ne the exponentialfamily.The list of latent-variable models of pratial interest with omplete-data likelihoods in the exponentialfamily is very long. We mention a few: Gaussian mixtures, fator analysis, hidden Markov models andextensions, swithing state-spae models, Boltzmann mahines, and disrete-variable belief networks.2 Ofourse, there are also many as yet undreamed-of models ombining Gaussian, Gamma, Poisson, Dirihlet,Wishart, Multinomial, and other distributions.Condition (2). The parameter prior is onjugate to the omplete data likelihood:P (�j�;�) = h(�;�) g(�)� exp��(�)>�	where � and � are hyperparameters of the prior.Condition (2) in fat usually implies ondition (1). In general the exponential families are the only lassesof distributions that have natural onjugate prior distributions beause they are the only distributions witha �xed number of suÆient statistis apart from some irregular ases. From the de�nition of onjugay it iseasy to see that the hyperparameters of a onjugate prior an be interpreted as the number (�) and values(�) of pseudo-observations under the orresponding likelihood. We all models that satisfy onditions (1)and (2) onjugate-exponential.In Bayesian inferene we want to determine the posterior over parameters and hidden variables P (x;�jy; �;�).In general this posterior is neither onjugate nor in the exponential family. This motivates the use of varia-tional methods, whih we desribed in the previous setion. We provide several general results for variationalBayesian learning of onjugate-exponential models, with no proof. The proofs and additional detail will beprovided in the journal version of this hapter (in preparation).
2Models whose omplete-data likelihood is not in the exponential family (suh as ICA with the logisti nonlinearity, orlogisti regression) an often be approximated by models in the exponential family with additional hidden variables.5



Theorem 1 Given an iid data set Y = fy1; : : :yng, if the model satis�es onditions (1) and (2), thenat the maxima of F(Q(X); Q(�)):(a) Q�(�) is onjugate and of the form:Q�(�) = h(~�; ~�)g(�)~� exp��(�)>~�	where ~� = � + n~� = � + nXi=1 u(xi;yi);and u(xi;yi) = hu(xi;yi)iQ, using h�iQ to denote expetation under Q.(b) QX(X) =Qni=1Qxi(xi) and Qxi(xi) is of the same form as the known parameter posterior:Qxi(xi) / f(xi;yi) exp��(�)>u(xi;yi)	 = P (xijyi;�(�))where �(�) = h�(�)iQ.Sine Q�(�) and Qxi(xi) are oupled, (a) and (b) do not provide an analyti solution to the minimisationproblem. We therefore solve the optimisation problem numerially by iterating between the �xed pointequations given by (a) and (b), and we obtain the following variational Bayesian generalisation of the EMalgorithm:VE Step: Compute the expeted suÆient statistis t(Y ) = Pi u(xi;yi) under the hidden variabledistributions Qxi(xi).VM Step: Compute the expeted natural parameters �(�) under the parameter distribution given by~� and ~�.This redues to the EM algorithm if we restrit the parameter density to a point estimate (i.e. Diradelta funtion), Q�(�) = Æ(� � ��), in whih ase the M step involves re-estimating ��.Note that unless we make the assumption that the parameters and hidden variables fatorise, we willnot generally obtain the further hidden variable fatorisation over n in (b). In that ase, the distributionsof xi and xj will be oupled for all ases i; j in the data set, greatly inreasing the overall omputationalomplexity of inferene.6 Belief Networks and Markov NetworksThe above result an be used to derive variational Bayesian learning algorithms for exponential familydistributions that fall into two important speial lasses. 3Corollary 1: Conjugate-Exponential Belief Networks. Let M be a onjugate-exponential modelwith hidden and visible variables z = (x;y) that satisfy a belief network fatorisation. That is, eah variablezj has parents zpj and P (zj�) =Qj P (zj jzpj ;�). Then the approximating joint distribution for M satis�esthe same belief network fatorisation: Qz(z) =Yj Q(zj jzpj ; ~�)where the onditional distributions have exatly the same form as those in the original model but withnatural parameters �(~�) = �(�). Furthermore, with the modi�ed parameters ~�, the expetations under the3A tutorial on belief networks and Markov networks an be found in [28℄.6



approximating posterior Qx(x) / Qz(z) required for the VE Step an be obtained by applying the beliefpropagation algorithm if the network is singly onneted and the juntion tree algorithm if the networkis multiply-onneted.This result is somewhat surprising as it shows that it is possible to infer the hidden states tratablywhile integrating over an ensemble of model parameters. This result generalises the derivation of variationallearning for HMMs in [23℄, whih uses the forward-bakward algorithm as a subroutine.Theorem 2: Markov Networks. Let M be a model with hidden and visible variables z = (x;y) thatsatisfy a Markov network fatorisation. That is, the joint density an be written as a produt of lique-potentials  j , P (zj�) = g(�)Qj  j(Cj ;�), where eah lique Cj is a subset of the variables in z. Then theapproximating joint distribution for M satis�es the same Markov network fatorisation:Qz(z) = ~gYj  j(Cj)where  j(Cj) = exp fhln j(Cj ;�)iQg are new lique potentials obtained by averaging over Q�(�), and ~g isa normalisation onstant. Furthermore, the expetations under the approximating posterior Qx(x) requiredfor the VE Step an be obtained by applying the juntion tree algorithm.Corollary 2: Conjugate-Exponential Markov Networks. Let M be a onjugate-exponentialMarkov network over the variables in z. Then the approximating joint distribution for M is given byQz(z) = ~gQj  j(Cj ; ~�), where the lique potentials have exatly the same form as those in the originalmodel but with natural parameters �(~�) = �(�).For onjugate-exponential models in whih belief propagation and the juntion tree algorithm over hiddenvariables is intratable further appliations of Jensen's inequality an yield tratable fatorisations in theusual way [20℄.7 ExamplesIn this setion we provide several examples of the variational Bayesian learning algorithm and show how thealgorithm an be used to learn the struture of the model. We disuss two models in detail|mixtures offator analysers and linear dynamial systems|and then briey review several other models.7.1 Mixtures of fator analysersA fator analyser is a linear generative model that assumes the data was generated from zero-mean identity-ovariane Gaussian distributed fators x: y = �x+ �where � is Gaussian noise with diagonal ovariane matrix 	. Integrating out the fators x and noise, weget that P (yj�;	) is zero mean Gaussian with ovariane matrix ��>+	. Generally, the vetor of fatorsx is k-dimensional and k < p, where p is the dimensionality of the observation vetors y, so fator analysisorresponds to �tting the ovariane matrix of y vetor with fewer than p(p+ 1)=2 degrees of freedom.A mixture of fator analysers (MFA) models the density for y as a weighted average of fator analyserdensities P (yj�;	;�) = SXs=1 P (sj�)P (yjs;�s;	); (14)where � is the vetor of mixing proportions, s is a disrete indiator variable, and �s is the fator loadingmatrix for fator analyser s whih inludes a mean vetor for y.By exploiting the fator analysis parameterisation of ovariane matries, a mixture of fator analysersan be used to �t a mixture of Gaussians to orrelated high dimensional data without requiring O(p2)parameters or undesirable ompromises suh as axis-aligned ovariane matries. In an MFA eah Gaussianluster has intrinsi dimensionality k (or ks if the dimensions are allowed to vary aross lusters). The7
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where A is the state dynamis matrix and C is the observation matrix. Linear-Gaussian state-spae modelsan be thought of as fator analysis where the fator vetor one time step depends linearly on the fatorvetor at the previous time step. The dynamis an also depend on a driving input ut:xt = Axt�1 +But +wt: (18)Without loss of generality we an assume that wt has ovariane equal to the unit matrix. The remainingparameters of a linear-Gaussian state-spae model with no inputs5 are the matries A and C and theovariane matrix of the output noise, vt, whih we will all R and assume to be diagonal, R = diag(�)�1,where �i are the preisions (inverse varianes) assoiated with eah output.The omplete data likelihood for state-spae models is Gaussian, whih is in the lass of exponentialfamily distributions. In order to derive a variational Bayesian algorithm by applying the results in theprevious setions we now turn to de�ning onjugate priors over the parameters.Eah row vetor of the A matrix, denoted a>i , is given a zero mean Gaussian prior with inverse ovarianematrix equal to diag(�). Eah row vetor of C, >i , is given a zero-mean Gaussian prior with preision matrixequal to diag(�i�). The dependene of the preision of >i on the noise output preision �i is motivated byonjugay. Intuitively, this prior links the sale of the signal and noise.The prior over the output noise ovariane matrix, R, is de�ned through the preision vetor, �, whihfor onjugay is assumed to be Gamma distributed6 with hyperparameters a and b:P (� ja; b) = pYi=1 ba�(a)�a�1i expf�b�igHere, �, � are hyperparameters that we an optimise to do automati relevane determination (ARD)of hidden states, thus inferring the struture of the SSM.Sine A, C, � and x1:T are all unknown, given a sequene of observations y1:T , an exat Bayesian treat-ment of SSMs would require omputing marginals of the posterior P (A;C; �;x1:T jy1:T ). This posteriorontains interation terms up to �fth order (for example, between elements of C, x and �), and is not ana-lytially manageable. However, sine the model is onjugate-exponential we an apply Theorem 1 to derivea variational EM algorithm for state-spae models analogous to the maximum-likelihood EM algorithm [33℄.Writing out the expression for lnP (A;C; �;x1:T ;y1:T ), one sees that it ontains interation terms between� and C, but none between A and either � or C. This observation implies a further fatorisation, Q(A;C; �) =Q(A)Q(C; �), whih falls out of the initial fatorisation and the onditional independenies of the model.Starting from some arbitrary distribution over the hidden variables, the VM step obtained by applyingTheorem 1 omputes the expeted natural parameters of Q�(�), where � = (A;C; �).We proeed to solve for Q(A). We know from Theorem 1 that Q(A) is multivariate Gaussian, like theprior, so we only need to ompute its mean and ovariane. A has mean S>(diag(�) +W )�1 and eahrow of A has ovariane (diag(�) +W )�1, where S =PTt=2 
xt�1x>t �, W =PT�1t=1 
xtx>t �, and h:i denotesaveraging w.r.t. the Q(x1:T ) distribution.Q(C; �) is also of the same form as the prior. Q(�) is a produt of Gamma densities Q(�i) = G(�i; ~a; ~bi)where ~a = a + T2 , ~b = b + 12gi, gi = PTt=1 y2ti � Ui(diag(�) +W 0)�1U>i , Ui = PTt=1 ytihx>t i and W 0 =W + 
xTx>T �. Given �, eah row of C is Gaussian with ovariane Cov(i) = (diag(�)+W 0)�1=�i and mean�i = �i Ui Cov(i). Note that S, W and Ui are the expeted omplete data suÆient statistis u mentionedin Theorem 1(a).We now turn to the VE step: omputing Q(x1:T ). Sine SSMs are singly onneted belief networksCorollary 1 tells us that we an make use of belief propagation, whih in the ase of SSMs is known asthe Kalman smoother [29℄. We therefore run the Kalman smoother with every appearane of the naturalparameters of the model replaed with the following orresponding expetations under the Qdistribution:h�iii, h�ii>i i, hAi, hA>Ai. We omit the details here. Results from this model are presented in [7℄.5It is straightforward to extend the following derivations to SSMs with inputs.6More generally, if we let R be a full ovariane matrix for onjugay we would give its inverse V = R�1 a Wishartdistribution: P (V j�; S) / jV j(��p�1)=2 exp �� 12 tr V S�1	 ; where tr is the matrix trae operator.
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7.3 Other modelsVariational Bayesian methods have been applied to several other models, whih we mention here briey.One of the �rst suh models was the mixture of experts arhiteture [36℄. This paper showed that theQ distributions ould be optimised in free form. However, beause of the softmax gating network in thismodel, the omplete-data likelihood is not exponential so some additional approximations were neessary.In [23℄ variational methods are applied to hidden Markov models with disrete outputs. These models areonjugate-exponential and furthmore this paper showed that the forward{bakward propagation algorithmould be employed (whih follows from Corollary 1). A variational Bayesian treatment of probabilisti PCAis given by [3℄. Here ARD priors are used to �nd the optimal dimensionality of the prinipal omponentspae. Attias [1℄ shows how the variational Bayesian framework an be applied to mixtures of Gaussiansand to a form of independent omponents analysis (ICA). Sine ICA is not onjugate{exponential, a diretvariational treatment is not straightforward. However, Attias approximates the ICA model using mixture ofGaussian soure distributions, whih makes the model onjugate{exponential.We are urrently exploring the boundary of appliability of variational Bayesian methods. In partiularNaonori Ueda and the �rst author have derived variational Bayesian treatments of a onjugate{exponentialform of the mixture of experts and hidden Markov model with real-valued outputs. Importantly, muh em-phasis has been plaed on using F to searh over model lasses and to avoid loal minima in the optimisation.Spei�ally, using F it is possible to ompare models with di�erent state-spae sizes and strutures and toinrementally grow or prune strutures. This programme has led to models that adapt their struture to thedata.A promising model we plan to explore is the swithing state spae model, whih was analysed in avariational (but non-Bayesian) way in [10℄. This is a onjugate{exponential belief network and so is amenableto a variational Bayesian treatment. In fat, this model an be seen as a hybrid between hidden Markovmodels and state-spae models. One amazing property of swithing state-spae models is that, when oupledwith the ability to learn model struture, it is apable of beoming a mixture of fator analysers, mixture ofGaussians, hidden Markov model, or linear dynamial system. So in priniple one ould run the VB swithingSSM model and let it disover the appropriate model lass by searhing over its possible strutures.8 Sampling from Variational ApproximationsOne of the limitations of the variational approah is that it only provides a lower bound on the log evidene.While it is possible in ertain speial ases to form a useful upper bound as well, these bounds are notas generally appliable as the lower bounds. We briey show how by ombining sampling with variationalapprahes it is possible to estimate the log evidene.We use one of the least sophistiated sampling tehniques: importane sampling. In importane sampling,we wish to estimate an expetation of interest under the true distribution hf(x)iP = R dxf(x)P (x). Forsome reason this integral is diÆult (e.g. it is omputationally intratable) and we annot sample from P (x)although we an evaluate P (x) at any x (perhaps upto a onstant). We take n samples xi s Q(x) from atratable distribution, whih has support everywhere P (x) does, and form the estimatehf(x)iP = Z dx Q(x)f(x)P (x)Q(x) � 1n nXi=1 f(xi) �P (xi)Q(xi)� (19)The braketed term is the importane weight wi.By importane sampling from the variational approximation we an obtain estimates of three impor-tant quantities: the exat preditive density, the true log evidene L, and the KL divergene between thevariational posterior and the true posterior. We sample �i s Q�(�). Eah suh sample is an instane ofour model with preditive density P (yj�i). We weight these preditive densities by the importane weightswi = P (�i; Y )=Q(�i), whih are easy to evaluate. This results in a mixture of models, and will onverge tothe exat preditive density, P (yjY ), as long as Q(�) > 0 wherever P (�jY ) > 0. The true evidene an besimilarly estimated by P (Y ) = hwiQ, where h�iQ denotes averaging over the importane samples. Finally,the KL divergene is estimated by: KL(Q(�)kP (�jY )) = lnhwi � hlnwi.11



This proedure has three signi�ant properties. First, the same importane weights an be used toestimate all three quantities. Seond, while importane sampling an work very poorly in high dimensionsfor ad ho proposal distributions, here the variational optimisation is used in a prinipled manner to pik Qto be a good approximation to P and therefore hopefully a good proposal distribution. Third, this proedurean be applied to any variational approximation.Unfortunately, importane sampling is notoriously bad in high dimensions. In fat it is also easy toshow that importane sampling an fail even in one dimension (David MaKay, personal ommuniation).Consider omputing expetations under a one dimensional Gaussian P by sampling from another GaussianQ. Although importane sampling an give us unbiased estimates, if the variane of Q is less than half thevariane of P the variane of the importane weights will be in�nite! This problem is exaerbated in higherdimensions, where a mismath in the tails of P and Q along any dimension ould ause similar atastrophibehaviour. There is obviously a great deal of further researh that ould be put into interesting ombinationsof sampling methods and variational approximations.9 ConlusionMean �eld theory and its generalisation in the form of variational methods have provided powerful toolsfor inferene in graphial models. In this hapter we disussed the appliation of variational methods bothin the more traditional maximum-likelihood setting, where it an form the basis of the E step of the EMlearning algorithm, and in the Bayesian setting.In the Bayesian setting variational methods make it possible to lower bound the evidene, whih in turnan be used both for model averaging (whih we did not disuss here) and model seletion. For models inthe onjugate{exponential lass, the variational Bayesian optimisation turns out to be a generalisation ofthe EM algorithm. Moreover, propagation algorithms from the graphial model literature an be exploitedwith (almost) no modi�ation required. These properties should make it possible to automate the derivationof variational Bayesian learning proedures for a large family of models muh in the same way as Gibbssampling and propagation algorithms have been automated in the BUGS [34℄ and HUGIN [32℄ softwaresystems, respetively. Through ombining sampling, exat propagation algorithms, and variational methods,Bayesian inferene in very large domains should be possible, opening up new uses for mahine learning,arti�ial intelligene, and pattern reognition systems.AknowledgmentsWe thank Hagai Attias, Chris Bishop, David MaKay and Naonori Ueda for stimulating disussions andollaborations. This researh was funded by the Gatsby Charitable Foundation.Referenes[1℄ H. Attias. A variational bayesian framework for graphial models. In Advanes in Neural InformationProessing Systems 12. MIT Press, Cambridge, MA, 2000.[2℄ L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization tehnique ourring in the statistialanalysis of probabilisti funtions of Markov hains. The Annals of Mathematial Statistis, 41:164{171,1970.[3℄ C.M. Bishop. Variational PCA. In Pro. Ninth Int. Conf. on Arti�ial Neural Networks. ICANN, 1999.[4℄ R. Cox. Probability, frequeny, and reasonable expetation. Amerian Journal of Physis, 14(1):1{13,1946.[5℄ A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from inomplete data via the EMalgorithm. J. Royal Statistial Soiety Series B, 39:1{38, 1977.12
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