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1 Abstra
tWe review the use of variational methods of approximating inferen
e and learning in probabilisti
 graphi
almodels. In parti
ular, we fo
us on variational approximations to the integrals required for Bayesian learning.For models in the 
onjugate-exponential family, a generalisation of the EM algorithm is derived that iteratesbetween optimising hyperparameters of the distribution over parameters, and inferring the hidden variabledistributions. These approximations make use of available propagation algorithms for probabilisti
 graphi
almodels. We give two 
ase studies of how the variational Bayesian approa
h 
an be used to learn modelstru
ture: inferring the number of 
lusters and dimensionalities in a mixture of fa
tor analysers, and inferringthe dimension of the state spa
e of a linear dynami
al system. Finally, importan
e sampling 
orre
tions tothe variational approximations are dis
ussed, along with their limitations.2 Introdu
tionTo design learning ma
hines that reason about and a
t on the real world we need to represent un
ertainty.Probability theory provides a language for representing un
ertain beliefs and a 
al
ulus for manipulatingthese beliefs in a 
onsistent manner [4, 28, 16℄. However, the real world problems a ma
hine may be fa
edwith might involve hundreds or thousands of variables, and at �rst it may seem daunting to representand manipulate joint distributions over all these variables. Fortunately, we 
an assume that of all possibledire
t dependen
ies between variables only a fra
tion are needed in most interesting problem domains. Thedependen
ies and independen
ies between variables 
an be represented graphi
ally, in the form of probabilisti
graphi
al models. Su
h graphi
al models are not only a tool for visualising the relationships between variablesbut, by exploiting the 
onditional independen
e relationships, also provide a ba
kbone upon whi
h it hasbeen possible to derive eÆ
ient message-propagating algorithms for updating the un
ertain beliefs of thema
hine [28, 21, 18, 12℄. This 
hapter fo
uses on learning and belief updating in models for whi
h these areintra
table despite the use of these eÆ
ient propagation algorithms. For su
h models one has to resort toapproximate methods; we present approximations based on variational methods, whi
h are 
losely related tomean-�eld methods in statisti
al physi
s.Variational methods have been developed both for maximum likelihood (ML) learning and Bayesianlearning. In se
tion 3 we des
ribe their use in ML learning, whi
h is reviewed in more detail in [20℄. Readersfamiliar with the lower-bound derivation of EM and the use of variational methods in ML learning 
an skipthis se
tion. In se
tion 4, we motivate how the Bayesian approa
h of integrating over model parametersavoids over�tting and 
an be used to sele
t model stru
tures. Variational methods are used to approximatethese intra
table integrals. Se
tion 5 
onsiders models whi
h fall in the 
onjugate-exponential 
lass andpresents the variational Bayesian EM algorithm, whi
h generalises the maximum likelihood EM algorithm.1



Se
tion 6 des
ribes how the variational Bayesian algorithm 
an make use of propagation algorithms forgraphi
al models. In se
tion 7, we provide several example appli
ations of variational methods to Bayesianinferen
e of model stru
ture. Se
tion 8 dis
usses 
ombining sampling methods with variational methods toestimate the quality of the variational bounds. Finally, we 
on
lude with se
tion 9. We assume that thereader is familiar with the basi
s of inferen
e in probabilisti
 graphi
al models. For relevant tutorials he orshe is referred to: [18, 12, 19, 30℄.3 Variational methods for maximum likelihood learningVariational methods have been used for approximate maximum likelihood learning in probabilisti
 graphi
almodels with hidden variables. To understand their role it is instru
tive to derive the EM algorithm formaximum likelihood learning.Consider a graphi
al model with hidden variables x, observable variables y, and parameters �. MLlearning seeks to maximize the likelihood, or equivalently the log likelihood, of a data set Y = fy1; : : : ;yngas a fun
tion of �: L(�) = lnP (Y j�) = nXi=1 lnP (yij�) = nXi=1 ln Z dx P (yi;xj�) (1)where we have assumed the data is independent and identi
ally distributed (iid). The integral (or sum) overx is required to obtain the marginal probability of the data. Maximising (1) dire
tly is often diÆ
ult be
ausethe log of the integral 
an potentially 
ouple all of the parameters of the model. Furthermore, for modelswith many hidden variables, the integral (or sum) over x 
an be intra
table. We 
an simplify the problemof maximising L with respe
t to � by making use of the following insight. Any distribution Qx(x) over thehidden variables de�nes a lower bound on L. In fa
t, for ea
h data point yi we use a distin
t distributionQxi(xi) over the hidden variables to get the lower bound:L(�) =Xi ln Z dxiP (yi;xij�) = Xi ln Z dxi Qxi(xi)P (yi;xij�)Qxi(xi) (2)� Xi Z dx Qxi(xi) ln P (yi;xij�)Qxi(xi) (3)= F(Qx1(x1); : : : ; Qxn(xn);�) (4)where the inequality is known as Jensen's inequality and follows from the fa
t that the ln fun
tion is 
on
ave.De�ning the energy of a global 
on�guration (x;y) to be � lnP (x;yj�), the lower bound F � L(�) is thenegative of a quantity known in statisti
al physi
s as the free energy: the expe
ted energy under Q minusthe entropy of Q [26℄, where we use Q to mean the set of all Qxi . The Expe
tation-Maximization (EM)algorithm [2, 5℄ alternates between maximising F with respe
t to the Qxi and �, respe
tively, holding theother �xed. Starting from some initial parameters �0:E step: Qk+1xi  argmaxQxi F(Q;�k); 8 i (5)M step: �k+1  argmax� F(Qk+1;�) (6)It is easy to see that the maximum in the E step is obtained by setting Qk+1xi (x) = P (xjyi;�k), at whi
hpoint the bound be
omes an equality: F(Qk+1;�k) = L(�k). The maximum in the M step is obtained byminimising the expe
ted energy term in (3), sin
e the entropy of Q does not depend on �:M step: �k+1 argmax� Xi Z dx P (xjyi;�k) lnP (x;yij�):2



Sin
e F = L at the beginning of ea
h M step, and sin
e the E step does not 
hange �, we are guaranteednot to de
rease the likelihood after ea
h 
ombined EM step.It is usually not ne
essary to evaluate the posterior distribution P (xjyi;�k) expli
itly. For example, iflnP (x;yj�) 
ontains both hidden and observed variables in a Bayesian network, it 
an be fa
tored as thesum of log probabilities of ea
h node given its parents.1 Therefore, the quantities required for the M stepare the expe
ted values, under the posterior distributions P (xjyi;�k), of the suÆ
ient statisti
s required forML estimation in the 
omplete data 
ase.For many models, espe
ially those with multiple hidden variables forming a distributed representation ofthe observed variables, even these suÆ
ient statisti
s are intra
table to 
ompute [24, 37, 13, 11, 10℄. In the Estep, rather than optimising F over all Q, we 
onstrain Q to be of a parti
ular form, for example fa
torised.We 
an still optimise F as a fun
tional of 
onstrained distributions Q using 
al
ulus of variations. Thisis the key step of variational approximations, and we return to it soon. On
e this optimisation has beenperformed, we use the expe
ted suÆ
ient statisti
s with respe
t to Q, whi
h 
an presumably be 
omputedtra
tably, in the M step.Maximising F with respe
t to Qxi is equivalent to minimising the following quantity:Z dx Qxi(xi) ln Qxi(xi)P (xjyi;�)whi
h is the Kullba
k-Leibler (KL) divergen
e measuring the (asymmetri
) di�eren
e between Qxi and thetrue posterior. Choosing Qxi to have easily 
omputed moments, and if lnP is a polynomial in x, we 
an
ompute the KL-divergen
e up to a 
onstant and more importantly we 
an take its derivatives to minimiseit with respe
t to the parameters of Qxi .The E step of this variational EM therefore 
onsists of a sub-loop in whi
h the Qxi is optimised. We 
anoften do this by taking derivatives with respe
t to the parameters of Qxi and iteratively solving the �xedpoint equations. For approximations where Qxi is fully fa
torised, i.e. Qxi(xi) =Qmj=1Qxij (xij), these �xedpoint equations are 
alled mean-�eld equations by analogy to su
h methods in statisti
al physi
s. Examplesof these variational approximations 
an be found in [31, 6, 15, 11℄.4 Variational methods for Bayesian learningMaximum likelihood methods su�er from the problem that that they fail to take into a

ount model 
omplex-ity, whi
h is, from an information theoreti
 view, the 
ost of 
oding the model parameters. Not penalisingmore 
omplex models leads to over�tting and the inability to determine the best model size and stru
ture.While it is possible to use 
ross-validation for simple sear
hes over model size and stru
tures|for example,if the sear
h is limited to a single parameter that 
ontrols the model '
omplexity'|for more general sear
hes
ross-validation is 
omputationally prohibitive. Bayesian approa
hes over
ome over�tting and learn modelstru
ture by treating the parameters � as unknown random variables and averaging over the ensemble ofmodels one would obtain by sampling from �:P (Y jM) = Z d� P (Y j�;M)P (�jM): (7)P (Y jM) is the eviden
e or marginal likelihood for a data set Y assuming modelM, and P (�jM) is the priordistribution over parameters. Integrating out parameters penalises models with more degrees of freedom sin
ethese models 
an a priori model a larger range of data sets. This property of Bayesian integration has been
alled O
kham's razor, sin
e it favors simpler explanations (models) for the data over 
omplex ones [17, 22℄.The over�tting problem is avoided simply be
ause no parameter in the pure Bayesian approa
h is a
tually�t to the data. Having more parameters imparts an advantage in terms of the ability to model the data, butthis is o�set by the 
ost of having to 
ode that parameter under the prior [14℄.Along with the prior over parameters, a Bayesian approa
h to learning starts with some prior knowledgeor assumptions about the model stru
ture|the set of ar
s in the Bayesian network. This initial knowledge1One of the de�ning properties of Bayesian networks is that the joint probability of all variables P (z1; : : : ; zn) 
an be fa
toredas Qni=1 P (zijzpa(i)) where zpa(i) is the set of variables whose nodes are parents of i in the network.3



is represented in the form of a prior probability distribution over model stru
tures, and is updated usingthe data to obtain a posterior distribution over models and parameters. More formally, assuming a priordistribution over models stru
tures P (M) and a prior distribution over parameters for ea
h model stru
tureP (�jM), observing the data set Y indu
es a posterior distribution over models given by Bayes rule:P (MjY ) = P (M)P (Y jM)P (Y ) (8)The most probable model or model stru
ture is the one that maximises P (MjY ).For a given model stru
ture, we 
an also 
ompute the posterior distribution over the parameters:P (�jY;M) = P (Y j�;M)P (�jM)P (Y jM) :whi
h allows us to quantify our un
ertainty about parameter values after observing the data. The densityat a new data point y is obtained by averaging over both the un
ertainty in the model stru
ture and in theparameters, P (yjY ) = Z d� dM P (yj�;M; Y )P (�jM; Y )P (MjY )This is known as the predi
tive distribution.While Bayesian theory in prin
iple avoids the problems of over�tting and 
an be used to do model sele
tionand averaging, in pra
ti
e it is often 
omputationally and analyti
ally intra
table to perform the requiredintegrals. Markov 
hain Monte Carlo (MCMC) methods 
an be used to approximate these integrals bysampling [25℄. The main 
riti
ism of MCMC methods is that they are slow and it is usually diÆ
ult to assess
onvergen
e. Furthermore, the posterior density over parameters, P (�jY;M) whi
h 
aptures all informationinferred from the data about the parameters, is stored as a set of samples, whi
h 
an be ineÆ
ient.Another approa
h to Bayesian integration is the Lapla
e approximation whi
h makes a lo
al Gaussianapproximation around a maximum a posteriori (MAP) parameter estimate [22℄. These approximations arebased on large data limits and 
an be poor, parti
ularly for small data sets (for whi
h, in prin
iple, theadvantages of Bayesian integration over ML are largest). Lo
al Gaussian approximations are also poorlysuited to bounded or positive parameters su
h as the mixing proportions of the mixture model. Finally, theGaussian approximation requires 
omputing or approximating the Hessian at the MAP estimate, whi
h 
anbe 
omputationally 
ostly.Variational methods 
an be used for approximate the integrals required for Bayesian learning. The basi
idea is to simultaneously approximate the distribution over both hidden states and parameters with a simplerdistribution, usually by assuming the hidden states and parameters are independent. More spe
i�
ally, inexa
tly the same way as the log likelihood is lower bounded in the derivation of EM (3), the log eviden
e
an be lower bounded by applying Jensen's inequality:lnP (Y jM)= lnZ d� P (Y;�jM) (9)� ZZ d� dX Q�(�)QX(X) ln P (Y;X;�jM)Q�(�)QX(X) (10)= Z d� Q�(�)�Z dXQX(X) ln P (Y;X j�;M)QX(X) + ln P (�jM)Q�(�) � (11)= F(QX(X); Q�(�)) (12)= F(Qx1(x1); : : : ; Qxn(xn); Q�(�)) (13)The last equality follows from the fa
t that the observed data is iid. The variational Bayesian approa
hiteratively maximises F as a fun
tional of the free distributions, QX(X) and Q(�). From (11) we 
an seethat this maximisation is equivalent to minimising the KL divergen
e between QX(X) Q(�) and the joint4



posterior over hidden states and parameters P (X;�jY;M). Note the similarity between (4) and (13). Whilewe maximise the former with respe
t to hidden variable distributions and the parameters, the latter wemaximise w.r.t. hidden variable distributions and a parameter distribution.This approa
h was �rst proposed for one-hidden layer neural networks (whi
h have no hidden state) byHinton and van Camp (1993) using the restri
tion that Q�(�) is Gaussian. The term ensemble learningwas used to des
ribe the method sin
e it �ts an ensemble of models, ea
h with its own parameters. It hassin
e been applied to various other models with hidden states and no restri
tions on Q�(�) and Qxi(xi)other than the assumption that they fa
torise in some way [36, 23, 3, 1, 8℄. With only these fa
torisationassumptions, free-form optimisation with respe
t to the distributions Q�(�) and Qxi(xi) is done using
al
ulus of variations, and often results in a modi�ed EM-like algorithm.5 Conjugate-Exponential ModelsWe 
onsider variational Bayesian learning in models that satisfy two 
onditions:Condition (1). The 
omplete data likelihood is in the exponential family:P (x;yj�) = f(x;y) g(�) exp��(�)>u(x;y)	where �(�) is the ve
tor of natural parameters, and u and f and g are the fun
tions that de�ne the exponentialfamily.The list of latent-variable models of pra
ti
al interest with 
omplete-data likelihoods in the exponentialfamily is very long. We mention a few: Gaussian mixtures, fa
tor analysis, hidden Markov models andextensions, swit
hing state-spa
e models, Boltzmann ma
hines, and dis
rete-variable belief networks.2 Of
ourse, there are also many as yet undreamed-of models 
ombining Gaussian, Gamma, Poisson, Diri
hlet,Wishart, Multinomial, and other distributions.Condition (2). The parameter prior is 
onjugate to the 
omplete data likelihood:P (�j�;�) = h(�;�) g(�)� exp��(�)>�	where � and � are hyperparameters of the prior.Condition (2) in fa
t usually implies 
ondition (1). In general the exponential families are the only 
lassesof distributions that have natural 
onjugate prior distributions be
ause they are the only distributions witha �xed number of suÆ
ient statisti
s apart from some irregular 
ases. From the de�nition of 
onjuga
y it iseasy to see that the hyperparameters of a 
onjugate prior 
an be interpreted as the number (�) and values(�) of pseudo-observations under the 
orresponding likelihood. We 
all models that satisfy 
onditions (1)and (2) 
onjugate-exponential.In Bayesian inferen
e we want to determine the posterior over parameters and hidden variables P (x;�jy; �;�).In general this posterior is neither 
onjugate nor in the exponential family. This motivates the use of varia-tional methods, whi
h we des
ribed in the previous se
tion. We provide several general results for variationalBayesian learning of 
onjugate-exponential models, with no proof. The proofs and additional detail will beprovided in the journal version of this 
hapter (in preparation).
2Models whose 
omplete-data likelihood is not in the exponential family (su
h as ICA with the logisti
 nonlinearity, orlogisti
 regression) 
an often be approximated by models in the exponential family with additional hidden variables.5



Theorem 1 Given an iid data set Y = fy1; : : :yng, if the model satis�es 
onditions (1) and (2), thenat the maxima of F(Q(X); Q(�)):(a) Q�(�) is 
onjugate and of the form:Q�(�) = h(~�; ~�)g(�)~� exp��(�)>~�	where ~� = � + n~� = � + nXi=1 u(xi;yi);and u(xi;yi) = hu(xi;yi)iQ, using h�iQ to denote expe
tation under Q.(b) QX(X) =Qni=1Qxi(xi) and Qxi(xi) is of the same form as the known parameter posterior:Qxi(xi) / f(xi;yi) exp��(�)>u(xi;yi)	 = P (xijyi;�(�))where �(�) = h�(�)iQ.Sin
e Q�(�) and Qxi(xi) are 
oupled, (a) and (b) do not provide an analyti
 solution to the minimisationproblem. We therefore solve the optimisation problem numeri
ally by iterating between the �xed pointequations given by (a) and (b), and we obtain the following variational Bayesian generalisation of the EMalgorithm:VE Step: Compute the expe
ted suÆ
ient statisti
s t(Y ) = Pi u(xi;yi) under the hidden variabledistributions Qxi(xi).VM Step: Compute the expe
ted natural parameters �(�) under the parameter distribution given by~� and ~�.This redu
es to the EM algorithm if we restri
t the parameter density to a point estimate (i.e. Dira
delta fun
tion), Q�(�) = Æ(� � ��), in whi
h 
ase the M step involves re-estimating ��.Note that unless we make the assumption that the parameters and hidden variables fa
torise, we willnot generally obtain the further hidden variable fa
torisation over n in (b). In that 
ase, the distributionsof xi and xj will be 
oupled for all 
ases i; j in the data set, greatly in
reasing the overall 
omputational
omplexity of inferen
e.6 Belief Networks and Markov NetworksThe above result 
an be used to derive variational Bayesian learning algorithms for exponential familydistributions that fall into two important spe
ial 
lasses. 3Corollary 1: Conjugate-Exponential Belief Networks. Let M be a 
onjugate-exponential modelwith hidden and visible variables z = (x;y) that satisfy a belief network fa
torisation. That is, ea
h variablezj has parents zpj and P (zj�) =Qj P (zj jzpj ;�). Then the approximating joint distribution for M satis�esthe same belief network fa
torisation: Qz(z) =Yj Q(zj jzpj ; ~�)where the 
onditional distributions have exa
tly the same form as those in the original model but withnatural parameters �(~�) = �(�). Furthermore, with the modi�ed parameters ~�, the expe
tations under the3A tutorial on belief networks and Markov networks 
an be found in [28℄.6



approximating posterior Qx(x) / Qz(z) required for the VE Step 
an be obtained by applying the beliefpropagation algorithm if the network is singly 
onne
ted and the jun
tion tree algorithm if the networkis multiply-
onne
ted.This result is somewhat surprising as it shows that it is possible to infer the hidden states tra
tablywhile integrating over an ensemble of model parameters. This result generalises the derivation of variationallearning for HMMs in [23℄, whi
h uses the forward-ba
kward algorithm as a subroutine.Theorem 2: Markov Networks. Let M be a model with hidden and visible variables z = (x;y) thatsatisfy a Markov network fa
torisation. That is, the joint density 
an be written as a produ
t of 
lique-potentials  j , P (zj�) = g(�)Qj  j(Cj ;�), where ea
h 
lique Cj is a subset of the variables in z. Then theapproximating joint distribution for M satis�es the same Markov network fa
torisation:Qz(z) = ~gYj  j(Cj)where  j(Cj) = exp fhln j(Cj ;�)iQg are new 
lique potentials obtained by averaging over Q�(�), and ~g isa normalisation 
onstant. Furthermore, the expe
tations under the approximating posterior Qx(x) requiredfor the VE Step 
an be obtained by applying the jun
tion tree algorithm.Corollary 2: Conjugate-Exponential Markov Networks. Let M be a 
onjugate-exponentialMarkov network over the variables in z. Then the approximating joint distribution for M is given byQz(z) = ~gQj  j(Cj ; ~�), where the 
lique potentials have exa
tly the same form as those in the originalmodel but with natural parameters �(~�) = �(�).For 
onjugate-exponential models in whi
h belief propagation and the jun
tion tree algorithm over hiddenvariables is intra
table further appli
ations of Jensen's inequality 
an yield tra
table fa
torisations in theusual way [20℄.7 ExamplesIn this se
tion we provide several examples of the variational Bayesian learning algorithm and show how thealgorithm 
an be used to learn the stru
ture of the model. We dis
uss two models in detail|mixtures offa
tor analysers and linear dynami
al systems|and then brie
y review several other models.7.1 Mixtures of fa
tor analysersA fa
tor analyser is a linear generative model that assumes the data was generated from zero-mean identity-
ovarian
e Gaussian distributed fa
tors x: y = �x+ �where � is Gaussian noise with diagonal 
ovarian
e matrix 	. Integrating out the fa
tors x and noise, weget that P (yj�;	) is zero mean Gaussian with 
ovarian
e matrix ��>+	. Generally, the ve
tor of fa
torsx is k-dimensional and k < p, where p is the dimensionality of the observation ve
tors y, so fa
tor analysis
orresponds to �tting the 
ovarian
e matrix of y ve
tor with fewer than p(p+ 1)=2 degrees of freedom.A mixture of fa
tor analysers (MFA) models the density for y as a weighted average of fa
tor analyserdensities P (yj�;	;�) = SXs=1 P (sj�)P (yjs;�s;	); (14)where � is the ve
tor of mixing proportions, s is a dis
rete indi
ator variable, and �s is the fa
tor loadingmatrix for fa
tor analyser s whi
h in
ludes a mean ve
tor for y.By exploiting the fa
tor analysis parameterisation of 
ovarian
e matri
es, a mixture of fa
tor analysers
an be used to �t a mixture of Gaussians to 
orrelated high dimensional data without requiring O(p2)parameters or undesirable 
ompromises su
h as axis-aligned 
ovarian
e matri
es. In an MFA ea
h Gaussian
luster has intrinsi
 dimensionality k (or ks if the dimensions are allowed to vary a
ross 
lusters). The7
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n=1...NFigure 1: Generative model for variational Bayesian mixture of fa
tor analysers. Cir
les denote randomvariables, solid re
tangles denote hyperparameters, and the dashed re
tangle shows the plate (i.e. repetitions)over the data.mixture of fa
tor analysers therefore simultaneously tries to solve both a 
lustering problem and multiplelo
al dimensionality redu
tion problems under Gaussian assumptions. When 	 is a multiple of the identitythe model be
omes a mixture of probabilisti
 prin
ipal 
omponents analysis (PCA). Tra
table maximumlikelihood pro
edures for �tting MFA and MPCA models 
an be derived from the EM algorithm [9, 35℄.Sin
e P (sj�) is multinomial, and both P (x) and P (yjx; s;�;	) are Gaussian, the model satis�es 
ondition(1), that is, it has a 
omplete data likelihood in the exponential family. Note that if we were to integrateout x and sum over s the marginal likelihood of P (yj�;	;�) is not in the exponential family; however, weneed not worry about this.Starting from (14), the eviden
e for the Bayesian MFA is obtained by averaging the likelihood underpriors for the parameters (whi
h have their own hyperparameters):P (Y ) = Z d�P (�j�) Z d�P (�ja; b) Z d� P (�j�) �NYn=1" SXsn=1P (snj�) Z dxnP (xn)P (ynjxn; sn;�s;	)# : (15)Here f�; a; b;	g are hyperparameters4, and � are pre
ision parameters (i.e. inverse varian
es) for the 
olumnsof �. We have dropped the 
onditioning on model 
lass, M, although this should be understood to beimpli
it in what follows. The 
onditional independen
e relations between the variables in this model areshown graphi
ally in the usual belief network representation in Figure 1.To satisfy 
ondition (2) we 
hoose 
onjugate priors. We 
hoose P (�j�) to be symmetri
 Diri
hlet, whi
his 
onjugate to the multinomial P (sj�). The prior for the fa
tor loading matrix plays a key role in this model.Ea
h 
omponent of the mixture has a Gaussian prior P (�sj�s), where ea
h element of the ve
tor �s is thepre
ision of a 
olumn of �. If one of these pre
isions �sl ! 1, then the outgoing weights for fa
tor xl willgo to zero, whi
h allows the model to redu
e the intrinsi
 dimensionality of x if the data does not warrantthis added dimension. A previous use of su
h Gaussian priors for intrinsi
 dimensionality redu
tion 
an befound in [3℄ for Bayesian PCA. These Gaussian priors are 
alled automati
 relevan
e determination (ARD)priors as they were used by Ma
Kay and Neal to do relevant input variable sele
tion in neural networks [27℄.To avoid over�tting it is important to integrate out all parameters whose 
ardinality s
ales with model
omplexity (i.e. number of 
omponents and their dimensionalities). We therefore also integrate out thepre
isions using Gamma priors, P (�ja; b), whi
h are 
onjugate. We use � = f�s;�;�g to denote modelparameters.Having de�ned the model and the priors, the variational EM algorithm falls out of Theorem 1. Here wedo not provide any details other than to say that the VE step involves 
omputing posteriors over the hiddenstates in the usual way, and the VM step updates the posteriors over the parameters Q�(�), whi
h have the4We 
urrently do not integrate out 	, although this 
an also be done.8
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e model.same form as the priors. We also employ heuristi
s to sear
h over the model stru
ture spa
e by 
omparingthe eviden
e lower bounds F for di�erent stru
tures. Details 
an be found in [8℄.Experiment: Learning MFA model stru
ture. We present just a simple example here to show thatin a syntheti
 problem the variational algorithm 
an re
over both the number of 
lusters and their intrinsi
dimensionalities. We generated a syntheti
 data set with 300 data points in ea
h of 6 Gaussians withintrinsi
 dimensionalities (7 4 3 2 2 1) embedded in 10 dimensions. The variational Bayesian approa
h
orre
tly inferred both the number of Gaussians and their intrinsi
 dimensionalities. We varied the numberof data points and found that, as expe
ted, with fewer points the data 
ould not provide eviden
e for asmany 
omponents and intrinsi
 dimensions (Figure 2).7.2 State-spa
e modelsWe turn our attention to deriving a variational Bayesian treatment of linear-Gaussian state-spa
e models.This serves two purposes. First, it will illustrate another appli
ation of Theorem 1 and an appli
ation ofCorollary 1. Se
ond, linear-Gaussian state-spa
e models are the 
ornerstone of sto
hasti
 �ltering, predi
tionand 
ontrol. A variational Bayesian treatment of these models provides a novel way to learn their stru
ture,i.e. to identify the optimal dimensionality of their state-spa
e.In state-spa
e models (SSMs), a sequen
e of p-dimensional real-valued observation ve
tors (y1; : : : ;yT ),denoted y1:T , is modeled by assuming that at ea
h time step t, yt was generated from a k-dimensionalreal-valued hidden state variable xt, and that the sequen
e of x's de�ne a �rst-order Markov pro
ess. Thejoint probability of a sequen
e of states and observations is therefore given by:P (x1:T ;y1:T ) = P (x1)P (y1jx1) TYt=2P (xtjxt�1)P (ytjxt); (16)This fa
torization of the joint probability 
an be represented by the Bayesian network shown in Figure 3.We fo
us on models where both the dynami
s and output fun
tions are linear and time-invariant and thedistribution of the state and observation noise variables is Gaussian, i.e. linear-Gaussian state-spa
e models:xt = Axt�1 +wtyt = Cxt + vt (17)9



where A is the state dynami
s matrix and C is the observation matrix. Linear-Gaussian state-spa
e models
an be thought of as fa
tor analysis where the fa
tor ve
tor one time step depends linearly on the fa
torve
tor at the previous time step. The dynami
s 
an also depend on a driving input ut:xt = Axt�1 +But +wt: (18)Without loss of generality we 
an assume that wt has 
ovarian
e equal to the unit matrix. The remainingparameters of a linear-Gaussian state-spa
e model with no inputs5 are the matri
es A and C and the
ovarian
e matrix of the output noise, vt, whi
h we will 
all R and assume to be diagonal, R = diag(�)�1,where �i are the pre
isions (inverse varian
es) asso
iated with ea
h output.The 
omplete data likelihood for state-spa
e models is Gaussian, whi
h is in the 
lass of exponentialfamily distributions. In order to derive a variational Bayesian algorithm by applying the results in theprevious se
tions we now turn to de�ning 
onjugate priors over the parameters.Ea
h row ve
tor of the A matrix, denoted a>i , is given a zero mean Gaussian prior with inverse 
ovarian
ematrix equal to diag(�). Ea
h row ve
tor of C, 
>i , is given a zero-mean Gaussian prior with pre
ision matrixequal to diag(�i�). The dependen
e of the pre
ision of 
>i on the noise output pre
ision �i is motivated by
onjuga
y. Intuitively, this prior links the s
ale of the signal and noise.The prior over the output noise 
ovarian
e matrix, R, is de�ned through the pre
ision ve
tor, �, whi
hfor 
onjuga
y is assumed to be Gamma distributed6 with hyperparameters a and b:P (� ja; b) = pYi=1 ba�(a)�a�1i expf�b�igHere, �, � are hyperparameters that we 
an optimise to do automati
 relevan
e determination (ARD)of hidden states, thus inferring the stru
ture of the SSM.Sin
e A, C, � and x1:T are all unknown, given a sequen
e of observations y1:T , an exa
t Bayesian treat-ment of SSMs would require 
omputing marginals of the posterior P (A;C; �;x1:T jy1:T ). This posterior
ontains intera
tion terms up to �fth order (for example, between elements of C, x and �), and is not ana-lyti
ally manageable. However, sin
e the model is 
onjugate-exponential we 
an apply Theorem 1 to derivea variational EM algorithm for state-spa
e models analogous to the maximum-likelihood EM algorithm [33℄.Writing out the expression for lnP (A;C; �;x1:T ;y1:T ), one sees that it 
ontains intera
tion terms between� and C, but none between A and either � or C. This observation implies a further fa
torisation, Q(A;C; �) =Q(A)Q(C; �), whi
h falls out of the initial fa
torisation and the 
onditional independen
ies of the model.Starting from some arbitrary distribution over the hidden variables, the VM step obtained by applyingTheorem 1 
omputes the expe
ted natural parameters of Q�(�), where � = (A;C; �).We pro
eed to solve for Q(A). We know from Theorem 1 that Q(A) is multivariate Gaussian, like theprior, so we only need to 
ompute its mean and 
ovarian
e. A has mean S>(diag(�) +W )�1 and ea
hrow of A has 
ovarian
e (diag(�) +W )�1, where S =PTt=2 
xt�1x>t �, W =PT�1t=1 
xtx>t �, and h:i denotesaveraging w.r.t. the Q(x1:T ) distribution.Q(C; �) is also of the same form as the prior. Q(�) is a produ
t of Gamma densities Q(�i) = G(�i; ~a; ~bi)where ~a = a + T2 , ~b = b + 12gi, gi = PTt=1 y2ti � Ui(diag(�) +W 0)�1U>i , Ui = PTt=1 ytihx>t i and W 0 =W + 
xTx>T �. Given �, ea
h row of C is Gaussian with 
ovarian
e Cov(
i) = (diag(�)+W 0)�1=�i and mean�
i = �i Ui Cov(
i). Note that S, W and Ui are the expe
ted 
omplete data suÆ
ient statisti
s u mentionedin Theorem 1(a).We now turn to the VE step: 
omputing Q(x1:T ). Sin
e SSMs are singly 
onne
ted belief networksCorollary 1 tells us that we 
an make use of belief propagation, whi
h in the 
ase of SSMs is known asthe Kalman smoother [29℄. We therefore run the Kalman smoother with every appearan
e of the naturalparameters of the model repla
ed with the following 
orresponding expe
tations under the Qdistribution:h�i
ii, h�i
i
>i i, hAi, hA>Ai. We omit the details here. Results from this model are presented in [7℄.5It is straightforward to extend the following derivations to SSMs with inputs.6More generally, if we let R be a full 
ovarian
e matrix for 
onjuga
y we would give its inverse V = R�1 a Wishartdistribution: P (V j�; S) / jV j(��p�1)=2 exp �� 12 tr V S�1	 ; where tr is the matrix tra
e operator.
10



7.3 Other modelsVariational Bayesian methods have been applied to several other models, whi
h we mention here brie
y.One of the �rst su
h models was the mixture of experts ar
hite
ture [36℄. This paper showed that theQ distributions 
ould be optimised in free form. However, be
ause of the softmax gating network in thismodel, the 
omplete-data likelihood is not exponential so some additional approximations were ne
essary.In [23℄ variational methods are applied to hidden Markov models with dis
rete outputs. These models are
onjugate-exponential and furthmore this paper showed that the forward{ba
kward propagation algorithm
ould be employed (whi
h follows from Corollary 1). A variational Bayesian treatment of probabilisti
 PCAis given by [3℄. Here ARD priors are used to �nd the optimal dimensionality of the prin
ipal 
omponentspa
e. Attias [1℄ shows how the variational Bayesian framework 
an be applied to mixtures of Gaussiansand to a form of independent 
omponents analysis (ICA). Sin
e ICA is not 
onjugate{exponential, a dire
tvariational treatment is not straightforward. However, Attias approximates the ICA model using mixture ofGaussian sour
e distributions, whi
h makes the model 
onjugate{exponential.We are 
urrently exploring the boundary of appli
ability of variational Bayesian methods. In parti
ularNaonori Ueda and the �rst author have derived variational Bayesian treatments of a 
onjugate{exponentialform of the mixture of experts and hidden Markov model with real-valued outputs. Importantly, mu
h em-phasis has been pla
ed on using F to sear
h over model 
lasses and to avoid lo
al minima in the optimisation.Spe
i�
ally, using F it is possible to 
ompare models with di�erent state-spa
e sizes and stru
tures and toin
rementally grow or prune stru
tures. This programme has led to models that adapt their stru
ture to thedata.A promising model we plan to explore is the swit
hing state spa
e model, whi
h was analysed in avariational (but non-Bayesian) way in [10℄. This is a 
onjugate{exponential belief network and so is amenableto a variational Bayesian treatment. In fa
t, this model 
an be seen as a hybrid between hidden Markovmodels and state-spa
e models. One amazing property of swit
hing state-spa
e models is that, when 
oupledwith the ability to learn model stru
ture, it is 
apable of be
oming a mixture of fa
tor analysers, mixture ofGaussians, hidden Markov model, or linear dynami
al system. So in prin
iple one 
ould run the VB swit
hingSSM model and let it dis
over the appropriate model 
lass by sear
hing over its possible stru
tures.8 Sampling from Variational ApproximationsOne of the limitations of the variational approa
h is that it only provides a lower bound on the log eviden
e.While it is possible in 
ertain spe
ial 
ases to form a useful upper bound as well, these bounds are notas generally appli
able as the lower bounds. We brie
y show how by 
ombining sampling with variationalappra
hes it is possible to estimate the log eviden
e.We use one of the least sophisti
ated sampling te
hniques: importan
e sampling. In importan
e sampling,we wish to estimate an expe
tation of interest under the true distribution hf(x)iP = R dxf(x)P (x). Forsome reason this integral is diÆ
ult (e.g. it is 
omputationally intra
table) and we 
annot sample from P (x)although we 
an evaluate P (x) at any x (perhaps upto a 
onstant). We take n samples xi s Q(x) from atra
table distribution, whi
h has support everywhere P (x) does, and form the estimatehf(x)iP = Z dx Q(x)f(x)P (x)Q(x) � 1n nXi=1 f(xi) �P (xi)Q(xi)� (19)The bra
keted term is the importan
e weight wi.By importan
e sampling from the variational approximation we 
an obtain estimates of three impor-tant quantities: the exa
t predi
tive density, the true log eviden
e L, and the KL divergen
e between thevariational posterior and the true posterior. We sample �i s Q�(�). Ea
h su
h sample is an instan
e ofour model with predi
tive density P (yj�i). We weight these predi
tive densities by the importan
e weightswi = P (�i; Y )=Q(�i), whi
h are easy to evaluate. This results in a mixture of models, and will 
onverge tothe exa
t predi
tive density, P (yjY ), as long as Q(�) > 0 wherever P (�jY ) > 0. The true eviden
e 
an besimilarly estimated by P (Y ) = hwiQ, where h�iQ denotes averaging over the importan
e samples. Finally,the KL divergen
e is estimated by: KL(Q(�)kP (�jY )) = lnhwi � hlnwi.11



This pro
edure has three signi�
ant properties. First, the same importan
e weights 
an be used toestimate all three quantities. Se
ond, while importan
e sampling 
an work very poorly in high dimensionsfor ad ho
 proposal distributions, here the variational optimisation is used in a prin
ipled manner to pi
k Qto be a good approximation to P and therefore hopefully a good proposal distribution. Third, this pro
edure
an be applied to any variational approximation.Unfortunately, importan
e sampling is notoriously bad in high dimensions. In fa
t it is also easy toshow that importan
e sampling 
an fail even in one dimension (David Ma
Kay, personal 
ommuni
ation).Consider 
omputing expe
tations under a one dimensional Gaussian P by sampling from another GaussianQ. Although importan
e sampling 
an give us unbiased estimates, if the varian
e of Q is less than half thevarian
e of P the varian
e of the importan
e weights will be in�nite! This problem is exa
erbated in higherdimensions, where a mismat
h in the tails of P and Q along any dimension 
ould 
ause similar 
atastrophi
behaviour. There is obviously a great deal of further resear
h that 
ould be put into interesting 
ombinationsof sampling methods and variational approximations.9 Con
lusionMean �eld theory and its generalisation in the form of variational methods have provided powerful toolsfor inferen
e in graphi
al models. In this 
hapter we dis
ussed the appli
ation of variational methods bothin the more traditional maximum-likelihood setting, where it 
an form the basis of the E step of the EMlearning algorithm, and in the Bayesian setting.In the Bayesian setting variational methods make it possible to lower bound the eviden
e, whi
h in turn
an be used both for model averaging (whi
h we did not dis
uss here) and model sele
tion. For models inthe 
onjugate{exponential 
lass, the variational Bayesian optimisation turns out to be a generalisation ofthe EM algorithm. Moreover, propagation algorithms from the graphi
al model literature 
an be exploitedwith (almost) no modi�
ation required. These properties should make it possible to automate the derivationof variational Bayesian learning pro
edures for a large family of models mu
h in the same way as Gibbssampling and propagation algorithms have been automated in the BUGS [34℄ and HUGIN [32℄ softwaresystems, respe
tively. Through 
ombining sampling, exa
t propagation algorithms, and variational methods,Bayesian inferen
e in very large domains should be possible, opening up new uses for ma
hine learning,arti�
ial intelligen
e, and pattern re
ognition systems.A
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