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This paper proposes density estimation as a feasible approach to the wide class of learning problems
where traditional function approximation methods fail. These problems generally involve learning the
inverse of causal systems, specifically when the inverse is a non-convex mapping. We demonstrate the
approach through three case studies: the inverse kinematics of a three-joint planar arm, the acoustics of
a four-tube articulatory model, and the localization of multiple objects from sensor data.

The learning algorithm presented differs from regression-based algorithms in that no distinction is
made between input and output variables; the joint density is estimated via the EM algorithm and can
be used to represent any input/output map by forming the conditional density of the output given the
input.

Causality in physical systems induces directionality in the relations between variables measured from
them. Thus, one can generally define a forward and an inverse direction of mapping. The forward direction
is the causal direction, for example, from the forces applied to an object to the motion outcome, from the
joint angles of an arm to the Cartesian coordinate of the finger, or from the configuration of a vocal tract
to the sound frequencies produced. Similarly, the inverse direction is the non-causal direction. If the goal
is to control the physical system the the inverse direction of mapping is particularly relevant. Returning
to the above examples, this is the mapping from desired motion of an object to the forces required, from
desired Cartesian finger coordinates to required joint angles, or from desired sound frequencies to required
vocal tract configuration. In general the forward direction will be a function, whereas the inverse direction
may be one-to-many and therefore not a function.

One-to-many relations are often difficult to learn with function approximation methods. This difficulty
arises from the fact that if the image of an input is a non-convex region in the output, then the least-squares
solution may fall outside this region (for further discussion of non-convexity see [12]).

This paper proposes density estimation as a feasible approach to the wide class of non-convex learning
problems where function approximation and non-linear regression methods fail. The learning algorithm
presented here differs from regression-based algorithms in that no distinction is made between input and
output variables; the joint density is estimated and this estimate can then be used to form any input/output
map. Thus, to estimate the vector function y = f(x) the joint density P(x,y) is estimated and, given
a particular input x, the conditional density P(y|x) is formed. If a single estimate of y is desired rather
than the full conditional density, several methods can be applied. For example, the estimate can be set to
¥ = E(y|x), the expectation of y given x.

In particular, the density estimation algorithm presented is based on maximizing the likelihood of a
parametric mixture model using the EM algorithm [3]. This approach provides a single framework for real,
discrete, or mixed data, and generalizes naturally to data sets with arbitrary missing data patterns. In
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principle any density estimation algorithm (e.g. [16, 17]) could be used within this framework for solving
inverse problems. However, the parametric mixture models presented here benefit from the simple form of
their conditional densities, the convergence speed of the EM algorithm, and a principled way for dealing
with missing data.

DENSITY ESTIMATION USING EM

General Theory

This section outlines the learning algorithm for mixture models [3, 4, 15]. We assume that the data
X ={x1,...,xy} were generated independently by a mixture density:
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where each component of the mixture is denoted w; and parametrized by ¢;. Thus the log of the likelihood
of the parameters given the data set is
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We seck to find the parameter vector that maximizes {(6|X). However, this function is not easily maximized
numerically because it involves the log of a sum. Intuitively it is not easily maximized because for each data
point there is a “credit-assignment” problem, i.e. it is not clear which component of the mixture generated
that data point and thus which parameters to adjust to fit that data point.

The EM algorithm applied to mixtures is an iterative method for overcoming this credit-assignment
problem. The intuition behind it 1s that if one had access to a “hidden” random variable z that indicated
which data point was generated by which component, then the maximization problem would decouple into
a set of simple maximizations. Mathematically, given Z = {z1,...,zx} a “complete-data” log likelihood
function could be written,
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such that it does not involve a log of a summation.
As proven in [3], I(#|X) can be maximized by iterating the following two steps,
Estep: QOI6;) = BILOWY, 2)X, 0 »

M step: O 141 = argmaxy Q(0|0r).

The E (Expectation) step computes the expected complete data log likelihood and the M (Maximization)
step finds the parameters that maximize this likelihood.

Real case: mixture of Gaussians
Real valued data will be modeled as generated by a mixture of Gaussians. For this model the E-step

simplifies to computing h;; = E[z;;|x;, 0], the probability that Gaussian j, as defined by the mean p; and
covariance matrix i]j estimated at time step k, generated data point i:
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The M-step then involves re-estimating the means and covariances of the Gaussians using the data set
weighted by the h;;:
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Discrete case: mixture of Bernoullis

D-dimensional binary datax = (z1,...,24...2p), 4 € {0, 1}, will be modeled as generated by a mixture
of m Bernoulli densities. That is,
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For this model the E-step and M-step are:
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More generally, discrete or categorical data can be modeled as generated by a mixture of multinomial
densities and similar derivations for the learning algorithm can be applied. Moreover, the extension to data
with mixed real, binary, and categorical dimensions can also be readily derived.

The EM algorithm has traditionally been used in statistics for two distinct applications: to estimate
the parameters of mixture models, as shown here, and to deal with arbitrary patterns of missing values in
the data. A combination of both these applications of the EM algorithm, resulting in a general learning
algorithm for incomplete data, is presented in [7].
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SUPERVISED LEARNING

The above sections have outlined the learning algorithms for estimating a mixture density from a data set.
When viewed as supervised learning each vector x; in the training set is composed of an “input” subvector
xi and a “target” or output subvector x?. Applying the learning algorithm we obtain an estimate of the
density of the data in this input/output space. For the Gaussian mixture case this estimate can be used to
approximate a function in the following way:

Given the input vector xi» we extract all the relevant information from the joint p.d.f. P(Xi,xo) by
conditionalizing to P(xo|x}). For a single Gaussian this conditional density is normal, and by linearity, since
P(x',x°) is a mixture of Gaussians so is P(x°|x'). In principle, this conditional density is the final output of
the density estimator. That is, given a particular input the network returns the complete conditional density
of the output. However, for the purposes of comparison to function approximation methods and since many
applications require a single estimate of the output, we will outline three possible ways to obtain such an
estimate % of x° = f(x}):

e Least squares estimate (LSE) takes %°(x}) = F(x°|x});

e Stochastic Sampling (STOCH) samples according to the distribution %°(x}) ~ P(x°|x});

e Single component LSE (SLSE) takes %°(x}) = F(x°|x},w;) where j = argmax; P(z;|x.). That is, for

a given input, SLSE picks the Gaussian with highest posterior, and for that Gaussian approximates
the output with the LSE estimator given by that Gaussian alone.

Looking more closely at the LSE estimator we note that we can write it as
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from which we see that the LSE function estimate is a weighted sum of linear approximations, where the
weights h;; vary nonlinearly over the input space. In fact, the LSE estimator on a Gaussian mixture has
interesting relations to algorithms such as CART [2], MARS [6], and competitive modular networks [11], as
the mixture of Gaussians competitively partitions the input space, and learns a linear regression surface on
each partition (details are given in [7]). In the limit, as the covariance matrices go to zero the approximation
becomes a nearest-neighbour map.

%(xl) =

9)



For the discrete case, if we wish to obtain the posterior probability of the output given the input and
the model of the data, we would use the LSE estimator. On the other hand, if we wish to obtain output
estimates that fall in our discrete output space we would use the STOCH estimator. 2

Returning to the Gaussian mixture case, the STOCH and the SLSE estimators are more appropriate
for learning non-convex inverse maps, where the mean of several solutions to an inverse might not be a
solution. Both STOCH and SLSE take advantage of the explicit representation of the input/output density
by selecting one of the several solutions to the inverse.

In the next three sections we illustrate, through case studies, the general phenomenon of non-convex
inverses in learning. We also provide empirical evidence for the claim that density estimation using the
STOCH or SLSE estimators, but not the LSE estimator, is a feasible approach to learning in these contexts.

INVERSE KINEMATICS

As a first example of a non-convex inverse problem we present the inverse kinematics of a three-joint
planar arm. This problem involves learning the mapping between end-point Cartesian positions x = (z, y)
and joint angles 8 = (61,02, 03) of a robotic arm. Whereas the forward kinematic map from joint angles
to end-point positions 1s always well-posed, it has been noted that redundancy of of the arm allows for
many solutions to the inverse, causing a form of ill-posedness known as the “degrees-of-freedom problem”
[1]. Approaches to learning the inverse kinematic map by sampling the (x, 8) space and directly estimating a
function 8 = f(x) have met with some success [13]. However, as Jordan and Rumelhart (1992) have pointed
out, the non-convexity of the map places a lower bound on the achievable error of any direct least-squares
algorithm. Jordan and Rumelhart propose an indirect approach to this non-convexity problem based on
forming an internal model of the arm and using this model to transform errors in Cartesian space to errors
in joint-angle space.

Here we propose an alternative direct method where we will use our density estimation technique to
form a model of the arm. Conditionalizing this density at values along the joint-angle space gives us a
forward kinematic model of the arm. Conditionalizing at values along the end-point space gives us the
inverse kinematic map. Since non-convexity implies that this latter conditional density is multimodal, we
expect the LSE estimator to be inferior to the STOCH or SLSE estimators.

Figure 1 shows the results of learning the kinematics of an unconstrained three-joint planar arm with
relative link lengths 1.0, 1.0, and 0.5. In Figure 1 (a) we see large reaching errors obtained on a feedforward
backpropagation network using a least-squares error criterion to learn the inverse kinematics. Figure 1 (b)
shows that first performing density estimation and then taking the conditional expectation (LSE) of the
density yields qualitatively similar results to the last-squares backprop network. On the other hand, it can
be seen in Figures 1 (¢ & d) that the density estimate actually contains enough information so that, if
sampled properly with STOCH or SLSE, satisfactory solutions to the inverse can be obtained.

ACOUSTICS OF THE VOCAL TRACT

The motor theory of speech perception proposes that knowledge of speech production is used in the
perception of speech [14]. One form of the motor theory proposes that speech perception is the process
of inverting an internal model of speech production. Thus, speech is perceived by taking a model of how
phonemes arise from the vocal tract and predicting from the acoustic signal what the speaker’s intended
vocal tract configuration was—i.e. speech perception is an inverse acoustics problem.

?Here an analogy can be made to Boltzmann machine learning [9]. Boltzmann machines minimize the relative
entropy between their state distribution and the target state distribution. This corresponds to maximum likelihood
density estimation, taking the target distribution to be the empirical distribution of the data. Amnalogously, the
EM approach to Bernoulli mixtures estimates the target density by placing the component means in parts of the
space with high data density. Using the approximation X° (Xi) = p§ where j = arg maxy, P(zk|xll) emulates basins of
attraction by completing patterns with the probabilistically nearest mean, with the number of such “basins” equal
to the number of components in the mixture. Finally, it is worth noting that Boltzmann machine learning is also an
instance of generalized EM [9].
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Figure 1. Learning direct inverse kinematics: Vector fields of reaching errors of a three-joint planar arm.
Fach of the above was trained on 1000 pairs of Cartesian (z,y) inputs and (61,02, 03) joint angle targets.
The vectors are calculated on a test set of 200 points as the difference between an (z*, ™) command given to
the network and the forward kinematic transformation of the output of the network (z,y) = KIN(f1, 03, 03).
(a) Backpropagation (RMS error = 1.211; a coarse search over the learning rate, momentum, and number
of hidden units did not yield qualitatively different solutions from this). (b) EM Mixture of 60 Gaussians
using the LSE estimator, (RMS error = 1.128). (c) Same mixture using the STOCH estimator (RMS error
= 0.247). (d) Using the SLSE estimator (RMS error = 0.134).

In this section of the paper we observe that the non-convexity issue also arises in the context of this
inverse acoustics problem. We limit our analysis to vowel production in a simplified four-tube model of the
vocal tract [5] (see Figure 2 (a)). Tongue position and constriction of the model are varied as the tract
resonances corresponding to the first three formants Fy,F5> and F3, are measured. These three formants
are perceptually salient features of vowels in human speech. The learner is presumed to randomly sample
the configuration space of the vocal tract, observe the vowels produced, and attempt to learn the mapping
between vowels formants and tract configuration — essentially a static inverse acoustics problem. More
sophisticated schemes involve a learner that uses a dynamic model of the articulators to recursively estimate
the vocal tract configuration [10]. We will focus on the simpler static case.

One thousand data points were generated by randomly varying the tongue position between —6.5cm and
6.5cm and the tongue constriction between —1.0cm and 1.0cm about their resting states, and measuring
the first three vowel formants (in Hertz). The learner estimated this 5 dimensional density using 60 full
covariance Gaussians and 20 iterations of the EM algorithm, enough for approximate convergence. The
density was then used to estimate tongue position and constriction (#1,Z2) from the formants. The acoustic
outcome of this estimate was then compared to the actual input formants to obtain an error measure. Figures
2 (b& c) show that the least-squares estimates of tongue position and constriction obtained by taking the
conditional expectation of the density do not correspond to the actual formants. On the other hand we
see in Figure 2 (d & e) that the estimates obtained from the SLSE estimator can accurately reproduce the
formants. The mean euclidean errors were 169.9 £ 5.6 Hz for the LSE estimator and 15.6 & 1.5 Hz for the
SLSE estimator (n=>5 runs).

Thus, as with the inverse kinematics problem, non-convexity is of high relevance in predicting articulator
configuration from formants, even though strictly speaking the problem in this case is not due to excess
degrees of freedom but to symmetries in the vocal tract.

LOCALIZATION OF MULTIPLE OBJECTS FROM SENSOR DATA

As a final example of a non-convex learning problem we present the localization of multiple objects from
sensor readings. The framework for this problem is one in which the learner is presented sensor readings
from a room and the location of a single object in that room. The goal is to learn to determine from a sensor
reading the locations of all the objects in the room. Given that there may be more than one object in the
room contributing to the sensor readings at any time, we view this problem as one in which there are hidden
sources and the learner is given incomplete data. The non-convexity in the problem arises from the hidden
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Figure 2. Four-tube model of the vocal tract. (a) Two parameters of the model, the tongue position #; and
the tongue constriction x2, are varied and the acoustic resonances of the four-tube model are computed. (b
& ¢) Projections of the error vector field in formant space for the LSE estimator. (d & e) Projections of the

error vector field for the SLSE estimator.
source: one object at the average location of two objects in the environment does not give the same sensor
readings as the two objects combined.

For this particular example we assume that the contribution of each object in the room to the sensor
readings is additive, and that a reading is inversely proportional to the square distance between the object
and the sensor — a situation roughly analogous to point light sources being detected by light meters in a
non-reflecting room. 1225 data points were generated by independently placing two objects, (#1,y1) and
(22,y2), on a grid in the room and calculating the sensor readings (s1, s2, $3,54). The learner was trained
using only the first object (i.e. on data points (#1,y1, 51, $2, 83, $4)) with a mixture of 60 Gaussians for 20
iterations of the EM algorithm.

Figure 3 shows four examples of the learner’s estimated conditional density of object location given
sensor readings calculated over the room, ]5(1‘, y|s1, s2, 83, 54). Four pairs of object locations were randomly
generated and their corresponding sensor representations were computed as the input to the network. The
density estimated by the learner is multimodal and tends to agree with the actual object locations; whereas a
learner which simply attempts to predict (z,y) location by non-linear regression on the same data set would
always falsely detect a single object intermediate between the two objects.

Two things should be noted about this example. First, even this simple multiple object localization
problem suffers from exponential growth in number of data points as the number of objects increases. That
is, for n objects each represented at a resolution of 1/k in each dimension, there are k2" configurations of
the room and sensor readings. This makes training the density estimator infeasible as the number of objects
increases.

Second, it should be noted that for this example the generative model assumed by the mixture density
does not reflect the way the data were actually generated. That is, even though the sensor data are the
result of several simultaneous objects in the room, the mixture model assumes that each data point was
generated by exactly one Gaussian. Thus, if the network output is a bimodal conditional density i1t should



Figure 3. Localizing multiple objects from sensor data; four examples. The shading of the background
represents the estimated probability density over object location given the sensor readings. (Shade at (z,y)

is proportional to log(1+ P(x, y|s1, s2, 83, $4)), with brighter representing higher estimated probability). The
concentric circles mark at their center the actual locations of the two objects that generated the sensor data.
The letter “s” marks sensor position. Note that the learner always estimated the actual locations to have
relatively high probability (white squares).

be interpreted as a single object whose location is uncertain, not as two objects. However, from the data
vectors alone there is no way of distinguishing between one object which gives the same sensor readings at
two locations, and two objects, only one of which is present in the data vector.

An idea which may overcome the exponential growth of samples by explicitly representing the multiple
causes in this data is the cooperative vector quantizer (CVQ) based on Minimum Description Length prin-
ciples [8]. The CVQ extracts a compact code for the data by assuming that several independent sources
collaborate to generate the data vector. In this example, the CVQ would extract such a code for the sensor
readings, and the mapping from this code to sets of (z,y) positions could simultaneously be learned in a
supervised fashion.

DiscussionN

Many learning problems do not fall under the rubric of traditional function approximation or classification.
In this paper we have outlined one such class of problems, those involving non-convex learning, and an
approach to solving them through parametric density estimation.

The three examples presented are instances of different sources of non-convexity. In the inverse kinematics
problem the non-convexity arises from the excess degrees of freedom in a three-joint planar arm. In the
vocal tract configuration problem the non-convexity arises from symmetries in the vocal tract. In the object
localization problem it arises from the fact that the learner is presented with incomplete information about
the environment—that is, it learns with one target object location at a time when there are in fact multiple
objects in the room.

The particular density estimation procedure, applying maximum likelihood to a parametric mixture
model using the EM algorithm, has the attractive properties that it generalizes to real and discrete data,
can handle arbitrary patterns of incompleteness, and takes advantage of the convergence speed of EM. For



applicability to large problems full data-parallel implementations of this algorithm have also been coded on
a Connection Machine CM5.

Further directions of research include extending the implementations, running on high dimensional real-
world data sets, and testing an on-line weighted recursive least squares update rule.
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