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This paper proposes density estimation as a feasible approach to the wide class of learning problemswhere traditional function approximation methods fail. These problems generally involve learning theinverse of causal systems, speci�cally when the inverse is a non-convex mapping. We demonstrate theapproach through three case studies: the inverse kinematics of a three-joint planar arm, the acoustics ofa four-tube articulatory model, and the localization of multiple objects from sensor data.The learning algorithm presented di�ers from regression-based algorithms in that no distinction ismade between input and output variables; the joint density is estimated via the EM algorithm and canbe used to represent any input/output map by forming the conditional density of the output given theinput.Causality in physical systems induces directionality in the relations between variables measured fromthem. Thus, one can generally de�ne a forward and an inverse direction of mapping. The forward directionis the causal direction, for example, from the forces applied to an object to the motion outcome, from thejoint angles of an arm to the Cartesian coordinate of the �nger, or from the con�guration of a vocal tractto the sound frequencies produced. Similarly, the inverse direction is the non-causal direction. If the goalis to control the physical system the the inverse direction of mapping is particularly relevant. Returningto the above examples, this is the mapping from desired motion of an object to the forces required, fromdesired Cartesian �nger coordinates to required joint angles, or from desired sound frequencies to requiredvocal tract con�guration. In general the forward direction will be a function, whereas the inverse directionmay be one-to-many and therefore not a function.One-to-many relations are often di�cult to learn with function approximation methods. This di�cultyarises from the fact that if the image of an input is a non-convex region in the output, then the least-squaressolution may fall outside this region (for further discussion of non-convexity see [12]).This paper proposes density estimation as a feasible approach to the wide class of non-convex learningproblems where function approximation and non-linear regression methods fail. The learning algorithmpresented here di�ers from regression-based algorithms in that no distinction is made between input andoutput variables; the joint density is estimated and this estimate can then be used to form any input/outputmap. Thus, to estimate the vector function y = f(x) the joint density P (x;y) is estimated and, givena particular input x, the conditional density P (yjx) is formed. If a single estimate of y is desired ratherthan the full conditional density, several methods can be applied. For example, the estimate can be set toŷ = E(yjx), the expectation of y given x.In particular, the density estimation algorithm presented is based on maximizing the likelihood of aparametric mixture model using the EM algorithm [3]. This approach provides a single framework for real,discrete, or mixed data, and generalizes naturally to data sets with arbitrary missing data patterns. In1This research was supported by a grant from the McDonnell-Pew Foundation. This paper would nothave been possible without the support and helpful comments of Michael I. Jordan and his research group.Thanks to Geo� Hinton for his insightful comments and review and to John F. Houde for the data from thefour-tube model of the vocal tract.



principle any density estimation algorithm (e.g. [16, 17]) could be used within this framework for solvinginverse problems. However, the parametric mixture models presented here bene�t from the simple form oftheir conditional densities, the convergence speed of the EM algorithm, and a principled way for dealingwith missing data.Density Estimation using EMGeneral TheoryThis section outlines the learning algorithm for mixture models [3, 4, 15]. We assume that the dataX = fx1; : : : ;xNg were generated independently by a mixture density:P (xi) = MXj=1P (xij!j; �j)P (!j); (1)where each component of the mixture is denoted !j and parametrized by �j . Thus the log of the likelihoodof the parameters given the data set isl(�jX ) = log NYi=1 MXj=1P (xij!j; �j)P (!j) = NXi=1 log MXj=1P (xij!j; �j)P (!j): (2)We seek to �nd the parameter vector that maximizes l(�jX ). However, this function is not easily maximizednumerically because it involves the log of a sum. Intuitively it is not easily maximized because for each datapoint there is a \credit-assignment" problem, i.e. it is not clear which component of the mixture generatedthat data point and thus which parameters to adjust to �t that data point.The EM algorithm applied to mixtures is an iterative method for overcoming this credit-assignmentproblem. The intuition behind it is that if one had access to a \hidden" random variable z that indicatedwhich data point was generated by which component, then the maximization problem would decouple intoa set of simple maximizations. Mathematically, given Z = fz1; : : : ; zNg a \complete-data" log likelihoodfunction could be written, lc(�jX ;Z) = NXi=1 MXj=1 zij logP (xijzi; �)P (zi; �); (3)such that it does not involve a log of a summation.As proven in [3], l(�jX ) can be maximized by iterating the following two steps,E step: Q(�j�k) = E[lc(�jX ;Z)jX ; �k]M step: �k+1 = argmax�Q(�j�k): (4)The E (Expectation) step computes the expected complete data log likelihood and the M (Maximization)step �nds the parameters that maximize this likelihood.Real case: mixture of GaussiansReal valued data will be modeled as generated by a mixture of Gaussians. For this model the E-stepsimpli�es to computing hij � E[zijjxi; �k], the probability that Gaussian j, as de�ned by the mean �̂j andcovariance matrix �̂j estimated at time step k, generated data point i:hij = j�̂kj j�1=2 expf�12 (xi � �̂kj )T �̂k;�1j (xi � �̂kj )gPMl=1 j�̂kl j�1=2 expf�12(xi � �̂kl )T �̂k;�1l (xi � �̂kl )g : (5)The M-step then involves re-estimating the means and covariances of the Gaussians using the data setweighted by the hij:�̂k+1j = PNi=1 hijxiPNi=1 hij ; �̂k+1j = PNi=1 hij(xi � �̂k+1j )(xi � �̂k+1j )TPNi=1 hij : (6)



Discrete case: mixture of BernoullisD-dimensional binary data x = (x1; : : : ; xd : : :xD), xd 2 f0; 1g, will be modeled as generated by a mixtureof m Bernoulli densities. That is,P (xj�) = MXj=1P (!j) DYd=1�xdjd (1 � �jd)(1�xd): (7)For this model the E-step and M-step are:E step: hij = QDd=1 �̂xidjd (1� �̂jd)(1�xid)PMl=1QDd=1 �̂xidld (1� �̂ld)(1�xid) ; M step: �̂k+1j = PNi=1 hijxiPNi=1 hij : (8)More generally, discrete or categorical data can be modeled as generated by a mixture of multinomialdensities and similar derivations for the learning algorithm can be applied. Moreover, the extension to datawith mixed real, binary, and categorical dimensions can also be readily derived.The EM algorithm has traditionally been used in statistics for two distinct applications: to estimatethe parameters of mixture models, as shown here, and to deal with arbitrary patterns of missing values inthe data. A combination of both these applications of the EM algorithm, resulting in a general learningalgorithm for incomplete data, is presented in [7].Supervised learningThe above sections have outlined the learning algorithms for estimating a mixture density from a data set.When viewed as supervised learning each vector xi in the training set is composed of an \input" subvectorxii and a \target" or output subvector xoi . Applying the learning algorithm we obtain an estimate of thedensity of the data in this input/output space. For the Gaussian mixture case this estimate can be used toapproximate a function in the following way:Given the input vector xii we extract all the relevant information from the joint p.d.f. P (xi;xo) byconditionalizing to P (xojxii). For a single Gaussian this conditional density is normal, and by linearity, sinceP (xi;xo) is a mixture of Gaussians so is P (xojxi). In principle, this conditional density is the �nal output ofthe density estimator. That is, given a particular input the network returns the complete conditional densityof the output. However, for the purposes of comparison to function approximation methods and since manyapplications require a single estimate of the output, we will outline three possible ways to obtain such anestimate x̂ of xo = f(xii):� Least squares estimate (LSE) takes x̂o(xii) = E(xojxii);� Stochastic Sampling (STOCH) samples according to the distribution x̂o(xii) � P (xojxii);� Single component LSE (SLSE) takes x̂o(xii) = E(xojxii; !j) where j = argmaxk P (zkjxii). That is, fora given input, SLSE picks the Gaussian with highest posterior, and for that Gaussian approximatesthe output with the LSE estimator given by that Gaussian alone.Looking more closely at the LSE estimator we note that we can write it asx̂o(xii) = PMj=1 hij[�oj + �oij �oo�1j (xii � �ij)]PMj=1 hij ; (9)from which we see that the LSE function estimate is a weighted sum of linear approximations, where theweights hij vary nonlinearly over the input space. In fact, the LSE estimator on a Gaussian mixture hasinteresting relations to algorithms such as CART [2], MARS [6], and competitive modular networks [11], asthe mixture of Gaussians competitively partitions the input space, and learns a linear regression surface oneach partition (details are given in [7]). In the limit, as the covariance matrices go to zero the approximationbecomes a nearest-neighbour map.



For the discrete case, if we wish to obtain the posterior probability of the output given the input andthe model of the data, we would use the LSE estimator. On the other hand, if we wish to obtain outputestimates that fall in our discrete output space we would use the STOCH estimator. 2Returning to the Gaussian mixture case, the STOCH and the SLSE estimators are more appropriatefor learning non-convex inverse maps, where the mean of several solutions to an inverse might not be asolution. Both STOCH and SLSE take advantage of the explicit representation of the input/output densityby selecting one of the several solutions to the inverse.In the next three sections we illustrate, through case studies, the general phenomenon of non-convexinverses in learning. We also provide empirical evidence for the claim that density estimation using theSTOCH or SLSE estimators, but not the LSE estimator, is a feasible approach to learning in these contexts.Inverse kinematicsAs a �rst example of a non-convex inverse problem we present the inverse kinematics of a three-jointplanar arm. This problem involves learning the mapping between end-point Cartesian positions x = (x; y)and joint angles � = (�1; �2; �3) of a robotic arm. Whereas the forward kinematic map from joint anglesto end-point positions is always well-posed, it has been noted that redundancy of of the arm allows formany solutions to the inverse, causing a form of ill-posedness known as the \degrees-of-freedom problem"[1]. Approaches to learning the inverse kinematic map by sampling the (x; �) space and directly estimating afunction � = f̂ (x) have met with some success [13]. However, as Jordan and Rumelhart (1992) have pointedout, the non-convexity of the map places a lower bound on the achievable error of any direct least-squaresalgorithm. Jordan and Rumelhart propose an indirect approach to this non-convexity problem based onforming an internal model of the arm and using this model to transform errors in Cartesian space to errorsin joint-angle space.Here we propose an alternative direct method where we will use our density estimation technique toform a model of the arm. Conditionalizing this density at values along the joint-angle space gives us aforward kinematic model of the arm. Conditionalizing at values along the end-point space gives us theinverse kinematic map. Since non-convexity implies that this latter conditional density is multimodal, weexpect the LSE estimator to be inferior to the STOCH or SLSE estimators.Figure 1 shows the results of learning the kinematics of an unconstrained three-joint planar arm withrelative link lengths 1.0, 1.0, and 0.5. In Figure 1 (a) we see large reaching errors obtained on a feedforwardbackpropagation network using a least-squares error criterion to learn the inverse kinematics. Figure 1 (b)shows that �rst performing density estimation and then taking the conditional expectation (LSE) of thedensity yields qualitatively similar results to the last-squares backprop network. On the other hand, it canbe seen in Figures 1 (c & d) that the density estimate actually contains enough information so that, ifsampled properly with STOCH or SLSE, satisfactory solutions to the inverse can be obtained.Acoustics of the vocal tractThe motor theory of speech perception proposes that knowledge of speech production is used in theperception of speech [14]. One form of the motor theory proposes that speech perception is the processof inverting an internal model of speech production. Thus, speech is perceived by taking a model of howphonemes arise from the vocal tract and predicting from the acoustic signal what the speaker's intendedvocal tract con�guration was|i.e. speech perception is an inverse acoustics problem.2Here an analogy can be made to Boltzmann machine learning [9]. Boltzmann machines minimize the relativeentropy between their state distribution and the target state distribution. This corresponds to maximum likelihooddensity estimation, taking the target distribution to be the empirical distribution of the data. Analogously, theEM approach to Bernoulli mixtures estimates the target density by placing the component means in parts of thespace with high data density. Using the approximation x̂o(xi) = �oj where j = argmaxk P (zkjxii) emulates basins ofattraction by completing patterns with the probabilistically nearest mean, with the number of such \basins" equalto the number of components in the mixture. Finally, it is worth noting that Boltzmann machine learning is also aninstance of generalized EM [9].



BP

-3 -1 1 3

-3

-1

1

3

(a)

LSE

-3 -1 1 3

-3

-1

1

3

(b)

STOCH

-3 -1 1 3

-3

-1

1

3

(c)

SLSE

-3 -1 1 3

-3

-1

1

3

(d)Figure 1. Learning direct inverse kinematics: Vector �elds of reaching errors of a three-joint planar arm.Each of the above was trained on 1000 pairs of Cartesian (x; y) inputs and (�1; �2; �3) joint angle targets.The vectors are calculated on a test set of 200 points as the di�erence between an (x�; y�) command given tothe network and the forward kinematic transformation of the output of the network (x; y) = KIN(�1; �2; �3).(a) Backpropagation (RMS error = 1.211; a coarse search over the learning rate, momentum, and numberof hidden units did not yield qualitatively di�erent solutions from this). (b) EM Mixture of 60 Gaussiansusing the LSE estimator, (RMS error = 1.128). (c) Same mixture using the STOCH estimator (RMS error= 0.247). (d) Using the SLSE estimator (RMS error = 0.134).In this section of the paper we observe that the non-convexity issue also arises in the context of thisinverse acoustics problem. We limit our analysis to vowel production in a simpli�ed four-tube model of thevocal tract [5] (see Figure 2 (a)). Tongue position and constriction of the model are varied as the tractresonances corresponding to the �rst three formants F1,F2 and F3, are measured. These three formantsare perceptually salient features of vowels in human speech. The learner is presumed to randomly samplethe con�guration space of the vocal tract, observe the vowels produced, and attempt to learn the mappingbetween vowels formants and tract con�guration { essentially a static inverse acoustics problem. Moresophisticated schemes involve a learner that uses a dynamic model of the articulators to recursively estimatethe vocal tract con�guration [10]. We will focus on the simpler static case.One thousand data points were generated by randomly varying the tongue position between �6:5cm and6:5cm and the tongue constriction between �1:0cm and 1:0cm about their resting states, and measuringthe �rst three vowel formants (in Hertz). The learner estimated this 5 dimensional density using 60 fullcovariance Gaussians and 20 iterations of the EM algorithm, enough for approximate convergence. Thedensity was then used to estimate tongue position and constriction (x̂1; x̂2) from the formants. The acousticoutcome of this estimate was then compared to the actual input formants to obtain an error measure. Figures2 (b& c) show that the least-squares estimates of tongue position and constriction obtained by taking theconditional expectation of the density do not correspond to the actual formants. On the other hand wesee in Figure 2 (d & e) that the estimates obtained from the SLSE estimator can accurately reproduce theformants. The mean euclidean errors were 169.9 � 5.6 Hz for the LSE estimator and 15.6 � 1.5 Hz for theSLSE estimator (n=5 runs).Thus, as with the inverse kinematics problem, non-convexity is of high relevance in predicting articulatorcon�guration from formants, even though strictly speaking the problem in this case is not due to excessdegrees of freedom but to symmetries in the vocal tract.Localization of multiple objects from sensor dataAs a �nal example of a non-convex learning problem we present the localization of multiple objects fromsensor readings. The framework for this problem is one in which the learner is presented sensor readingsfrom a room and the location of a single object in that room. The goal is to learn to determine from a sensorreading the locations of all the objects in the room. Given that there may be more than one object in theroom contributing to the sensor readings at any time, we view this problem as one in which there are hiddensources and the learner is given incomplete data. The non-convexity in the problem arises from the hidden
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(c)Figure 2. Four-tube model of the vocal tract. (a) Two parameters of the model, the tongue position x1 andthe tongue constriction x2, are varied and the acoustic resonances of the four-tube model are computed. (b& c) Projections of the error vector �eld in formant space for the LSE estimator. (d & e) Projections of theerror vector �eld for the SLSE estimator.source: one object at the average location of two objects in the environment does not give the same sensorreadings as the two objects combined.For this particular example we assume that the contribution of each object in the room to the sensorreadings is additive, and that a reading is inversely proportional to the square distance between the objectand the sensor { a situation roughly analogous to point light sources being detected by light meters in anon-re
ecting room. 1225 data points were generated by independently placing two objects, (x1; y1) and(x2; y2), on a grid in the room and calculating the sensor readings (s1; s2; s3; s4). The learner was trainedusing only the �rst object (i.e. on data points (x1; y1; s1; s2; s3; s4)) with a mixture of 60 Gaussians for 20iterations of the EM algorithm.Figure 3 shows four examples of the learner's estimated conditional density of object location givensensor readings calculated over the room, P̂ (x; yjs1; s2; s3; s4). Four pairs of object locations were randomlygenerated and their corresponding sensor representations were computed as the input to the network. Thedensity estimated by the learner is multimodal and tends to agree with the actual object locations; whereas alearner which simply attempts to predict (x; y) location by non-linear regression on the same data set wouldalways falsely detect a single object intermediate between the two objects.Two things should be noted about this example. First, even this simple multiple object localizationproblem su�ers from exponential growth in number of data points as the number of objects increases. Thatis, for n objects each represented at a resolution of 1=k in each dimension, there are k2n con�gurations ofthe room and sensor readings. This makes training the density estimator infeasible as the number of objectsincreases.Second, it should be noted that for this example the generative model assumed by the mixture densitydoes not re
ect the way the data were actually generated. That is, even though the sensor data are theresult of several simultaneous objects in the room, the mixture model assumes that each data point wasgenerated by exactly one Gaussian. Thus, if the network output is a bimodal conditional density it should
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sFigure 3. Localizing multiple objects from sensor data; four examples. The shading of the backgroundrepresents the estimated probability density over object location given the sensor readings. (Shade at (x; y)is proportional to log(1+P̂ (x; yjs1; s2; s3; s4)), with brighter representing higher estimated probability). Theconcentric circles mark at their center the actual locations of the two objects that generated the sensor data.The letter \s" marks sensor position. Note that the learner always estimated the actual locations to haverelatively high probability (white squares).be interpreted as a single object whose location is uncertain, not as two objects. However, from the datavectors alone there is no way of distinguishing between one object which gives the same sensor readings attwo locations, and two objects, only one of which is present in the data vector.An idea which may overcome the exponential growth of samples by explicitly representing the multiplecauses in this data is the cooperative vector quantizer (CVQ) based on Minimum Description Length prin-ciples [8]. The CVQ extracts a compact code for the data by assuming that several independent sourcescollaborate to generate the data vector. In this example, the CVQ would extract such a code for the sensorreadings, and the mapping from this code to sets of (x; y) positions could simultaneously be learned in asupervised fashion.DiscussionMany learning problems do not fall under the rubric of traditional function approximationor classi�cation.In this paper we have outlined one such class of problems, those involving non-convex learning, and anapproach to solving them through parametric density estimation.The three examples presented are instances of di�erent sources of non-convexity. In the inverse kinematicsproblem the non-convexity arises from the excess degrees of freedom in a three-joint planar arm. In thevocal tract con�guration problem the non-convexity arises from symmetries in the vocal tract. In the objectlocalization problem it arises from the fact that the learner is presented with incomplete information aboutthe environment|that is, it learns with one target object location at a time when there are in fact multipleobjects in the room.The particular density estimation procedure, applying maximum likelihood to a parametric mixturemodel using the EM algorithm, has the attractive properties that it generalizes to real and discrete data,can handle arbitrary patterns of incompleteness, and takes advantage of the convergence speed of EM. For
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