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Abstract

Real-world learning tasks often involve high-dimensional data sets with complex patterns of
missing features. In this paper we review the problem of learning from incomplete data from
two statistical perspectives—the likelihood-based and the Bayesian. The goal is two-fold: to
place current neural network approaches to missing data within a statistical framework, and
to describe a set of algorithms, derived from the likelihood-based framework, that handle clus-
tering, classification, and function approximation from incomplete data in a principled and
efficient manner. These algorithms are based on mixture modeling and make two distinct ap-
peals to the Expectation-Maximization (EM) principle (Dempster et al., 1977)—both for the
estimation of mixture components and for coping with the missing data.
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1 Introduction

In computational and biological learning the environment does not often provide complete information to
the learner. For example, a vision system may encounter many partially occluded examples of an object,
yet have to recover a model for the unoccluded object. Similarly, an adaptive controller may be required
to learn a mapping from sensor readings to actions even if its sensors are unreliable and sometimes fail to
give readings. Examples of data sets with missing values abound in machine learning. !

In this paper we review the problem of learning from incomplete data from a statistical perspective. The
goal is two-fold: to place current neural network treatments of missing data within a statistical framework,
and to derive from this framework a set of algorithms that handle incomplete data in a principled manner.
To maintain the breadth of the review we discuss classification, function approximation, and clustering
problems. Because missing data can arise in both the input and the target variables, we treat both missing
inputs and unlabeled data.

The statistical framework that we adopt (cf. Little and Rubin, 1987) makes a distinction between the
environment, which we assume to generate complete data, and the missing data mechanism which renders
some of the output of the environment unobservable to the learner. The supervised learning problem
consists of forming a map from inputs to targets. The unsupervised learning process generally consists
of extracting some compact statistical description of the inputs. In both these cases the learner may
benefit from knowledge of constraints both on the data generation process (e.g., that it falls within a
certain parametric family), and on the mechanism which caused the pattern of incompleteness (e.g., that
it is independent of the data generation process). The use of statistical theory allows us to formalize the
consequences of these constraints and provides us with a framework for deriving learning algorithms that
make use of these consequences.

Before developing a framework for incomplete data, let us motivate the problem with perhaps the
simplest statistical example that illustrates an interaction between the missing data and the data generation
mechanisms. Imagine we wish to estimate the mean (g, ity ) and covariance matrix ¥ of a bivariate normal
distribution, from a data set X' = {(@;,9;)}Y, where some of the observations of y; are missing (see
Fig. 1). If we estimate p; by the mean of the z; and g, by the mean of the observed values of y;, we will
underestimate p, as we have ignored the covariance structure in the observed data. A more intelligent
heuristic would use the covariance structure to fill-in the values of the missing y; by regressing them on
the z;. However, even this heuristic will yield a biased estimate of the covariance matrix as the filled-in
data points will all fall along the regression line. Both of the above “filling-in” techniques, known as mean
imputation and regression imputation, yield unsatisfactory results even on this simple parameter estimation
problem.

The paper is organized as follows. In section 2 we outline the statistical framework that defines the
missing data and data generation mechanisms. In section 3 we proceed to describe a likelihood-based
approach to learning from incomplete data. In section 4 we use this approach to derive a set of learning
algorithms for function approximation, classification, and clustering. Section 5 describes an alternative to
the likelihood-based approach, the Bayesian approach, and several algorithms that implement it. Section 6
discusses Boltzmann machines and incomplete data. Finally, we conclude in section 7.

2 The Framework

The statistical framework we present is based on Little and Rubin (1987). We assume that the data set
X = {x;}¥, can be divided into an observed component A'° and a missing component A™. Each data
vector x; may have different patterns of missing features. We will not distinguish for now between the
input and target components of the data vector.

1See, for example, the UCI Repository of Machine Learning Databases (Murphy and Aha, 1992).
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Figure 1: A simple example. Complete data were generated from a Gaussian with mean (5,5) and co-
variance matrix (5/4 9/4,9/4 17/4). Data points with missing y values are denoted by hollow circles on
the y = 0 line. The solid square indicates the (z,y) mean calculated over the observed data. The hollow
square and the ellipse indicate the mean and standard deviation calculated from the incomplete data using
a maximum likelihood (ML) algorithm. Note that the ML estimate of 4, is higher than any of the observed
values of y!

We formalize the notion of a missing data mechanism by defining a missing data indicator matrix R,
such that
Rij :{ 1, w;; observed,

0, x;; missing.

Both the data generation process and the missing data mechanism are considered to be random processes,
with joint probability distribution given by

P(X.RIB.6) = P(X|0)P(R|X,0). (1)

We use the parameters 8 for the data generation process and a distinct set of parameters, ¢, for the missing
data mechanism.

Once the data probability model has been decomposed as in (1), we can distinguish three nested types
of missing data mechanism. The data can be

1. Missing completely at random (MCAR): P(R|X,¢) = P(R|¢p). That is, the probability that z;; is
missing is independent of the values in the data vector.

2. Missing at random (MAR): P(R|X°,A™, ¢) = P(R|X°,¢). That is, the probability that z;; is
missing is independent of values of missing components of the data, but may depend on the values of
observed components. For example, ;; may be missing for certain values of ; (1;) provided that
x;; 18 always observed. Figure 1 illustrates this case.

3. Not missing at random (NMAR). That is, P(R|X°, A™, ¢) may depend on the value of z;;. If
P(R;jlz;,¢) is a function of z;; the data is said to be censored. For example, if a sensor fails when
its input exceeds some range its output will be censored.

The type of the missing data mechanism is critical in evaluating learning algorithms for handling incomplete
data. Full maximum likelihood and Bayesian approaches can handle data that is missing at random or
2



completely at random. Several simpler learning approaches can handle MCAR, data but fail on MAR data
in general. No general approaches exist for NMAR data.

For both Bayesian and maximum likelihood techniques the estimates of the parameters  and ¢ are linked
to the observed data, X° and R, via P(X°, R|#, $).? For maximum likelihood methods the likelihood is

L(8,p|X°, R) x P(X°, R|0, ),
and for Bayesian methods the posterior probability is
P(6,p|X°, R) x P(X°,R|0,0)P(0,).

We wish to ascertain under which conditions the parameters of the data generation process can be
estimated independently of the parameters of the missing data mechanism. Given that

P(X°, R|6, ) = /P(XO,Xm|0)P(R|X°,Xm, $)dm,

we note that if

P(R|X°, X™, ¢) = P(R|X?, ¢),
then

P(X°,R|6,$) = P(R|X°,¢)/P(X°,Xm|0)d)(m
P(R|X°, ¢)P(X°]0). (2)

Equation (2) states that if the datais MAR then the likelihood can be factored. For maximum likelihood
methods this implies directly that maximizing L(0|X°) x P(X°|f) as a function of # is equivalent to
maximizing L(8, ¢|X°, R). Therefore the parameters of the missing data mechanism can be ignored for the
purposes of estimating # (Little and Rubin, 1987).

For Bayesian methods, the missing data mechanism cannot be ignored unless we make the additional
requirement that the prior is factorizable:

These results imply that data sets that are NMAR, such as censored data, cannot be handled by Bayesian
or likelihood-based methods unless a model of the missing data mechanism is also learned. On the positive
side, they also imply that the MAR condition, which is weaker than the MCAR condition, is sufficient for
Bayesian or likelihood-based learning.

3 Likelihood-Based Methods for Feedforward Networks

In the previous section we showed that maximum likelihood methods can be utilized for estimating the
parameters of the data generation model, ignoring the missing data mechanism, provided that the data is
missing at random. We now turn to the problem of estimating the parameters of a model from incomplete
data.

We focus first on feedforward neural network models before turning to a class of models where the
missing data can be incorporated more naturally into the estimation algorithm. For feedforward neural
networks we know that descent in the error cost function can be interpreted as ascent in the model
parameter likelihood (e.g. White, 1989). In particular if the target vector is assumed to be Gaussian,

2For succinctness will nse the non-Bayesian phrase “estimating parameters” in this section; this can be replaced by “cal-
culating the posterior probabilities of the parameters” for the parallel Bayesian argument.
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P(yi|xi,0) ~ N(ys; fo(xi),021), then the log likelihood is equivalent to the sum-squared error weighted by
the output variances:

! 1
max Y log P(yilx;,0) < min o > ;(yi — fo(x:))?

If a target y; is missing or unknown the variance of that output can be taken to be infinite, 02 — oc.
Similarly, if certain components of a target vector are missing we can assume that the variance of that
component is infinite. The missing targets drop out of the likelihood and the minimization can proceed as
before, simply with certain targets replaced by “don’t cares.”

If components of an input vector are missing, however, then the likelihood is not properly defined since
P(y;|x;,0) depends on the full input vector. The conditional over the observed inputs needed for the
likelihood requires integrating out the missing inputs. This, in turn, requires a model for the input density,
P(x), which is not explicitly available in a feedforward neural network.

Tresp et al. (1994) proposed solving this problem by separately estimating the input density, P(x), with
a Gaussian mixture model and the conditional density, P(y|x), with a feedforward network. This approach
can be seen as maximizing the joint input-output log likelihood

Zlog P(x;,y:l0,¢)
= Zlog P(yi|Xi,0) + Zlog P(Xz|¢)

[

where the feedforward network is parametrized by # and the mixture model is parametrized by ¢. If some
components of an input vector are missing the observed data likelihood can be expressed as

Py:|x2,0) = / Py:|x2, x™, 0) P(x™|x%, ¢)dx™,

where the input has been decomposed into its observed and missing components, x = (x°,x™). The
mixture model is used to integrate the likelihood over the missing inputs of the feedforward network. The
gradient of this likelihood with respect to the network parameters,

8[ 1 e} m m (o]
2 = ZP(TX?,O)/P(YAX“X LO)P(x™x5, )

d fo(x9,x™)

(yi — fo(x7,x™)) 20

dx™,

exhibits error terms which weight each completion of the missing input vector by P(x™|y;,x?,6,¢). This
term, by Bayes rule, is proportional to the product of the probability of the completion given the input,
P(x™|x¢, ¢), and the posterior probability of the output given that completion P(y;|x$,x™, ). The integral
can be approximated by a Monte Carlo method, where, for each missing input, several completions are
generated according to the input distribution. An intuitively appealing aspect of this method is that more
weight is placed on error gradients from input completions that better approximate the target (Tresp et al.,
1994; Buntine and Weigend, 1991).

These arguments imply that computing maximum likelihood estimates from missing inputs requires a
model of the joint input density. In principle this could be achieved by multiple feedforward networks
each learning a particular conditional density of inputs. For example, if the pattern of missing inputs is
monotone, i.e. the d input dimensions can be ordered such that if z;; is observed then all z;; for £ < j are
also observed, then the missing data can be completed by a cascade of d — 1 networks. Each network is
trained to predict one input dimension from completed instances of all the lower index input dimensions and
therefore models that particular conditional density (cf. regression imputation for monotone multivariate
normal data; Little and Rubin, 1987).
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However, to accommodate general patterns of missing inputs and targets the approach of using multiple
feedforward networks becomes practically cumbersome as the number of such networks grows exponentially
with the data dimensionality. This problem can be avoided by modeling both the input and output densities
using a mixture model.

4 Mixture Models and Incomplete Data

The mixture modeling framework allows learning from data sets with arbitrary patterns of incompleteness.
Learning in this framework is a classical estimation problem requiring an explicit probabilistic model and
an algorithm for estimating the parameters of the model. A possible disadvantage of parametric methods
is their lack of flexibility when compared with nonparametric methods. Mixture models, however, largely
circumvent this problem as they combine much of the flexibility of nonparametric methods with certain of
the analytic advantages of parametric methods (McLachlan and Basford, 1988).

Mixture models have been utilized recently for supervised learning problems in the form of the “mixtures
of experts” architecture (Jacobs et al., 1991; Jordan and Jacobs, 1994). This architecture is a parametric
regression model with a modular structure similar to the nonparametric decision tree and adaptive spline
models (Breiman et al., 1984; Friedman, 1991). The approach presented here differs from these regression-
based approaches in that the goal of learning is to estimate the density of the data. No distinction is made
between input and output variables; the joint density is estimated and this estimate is then used to form
an input/output map. Similar density estimation approaches have been discussed by Specht (1991) for
nonparametric models, and Nowlan (1991) and Tresp et al. (1994), among others, for Gaussian mixture
models. To estimate the vector function y = f(x) the joint density P(x,y) is estimated and, given a
particular input x, the conditional density P(y|x) is formed. To obtain a single estimate of y rather than
the full conditional density one can evaluate §y = F(y|x), the expectation of y given x.

The most appealing feature of mixture models in the context of this paper is that they can deal naturally
with incomplete data. In fact, the problem of estimating mixture densities can itself be viewed as a missing
data problem (the “labels” for the component densities are missing) and an Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) can be developed to handle both kinds of missing data.

4.1 The EM algorithm for mixture models

This section outlines the estimation algorithm for finding the maximum likelihood parameters of a mixture
model (Dempster et al., 1977). We model the data X’ = {x;}¥, as being generated independently from a
mixture density

M
Z_:P xilwj; 0;)P(w;), (3)

where each component of the mixture is denoted w; and parametrized by §;. We start by assuming complete
data. From equation (3) and the independence assumption we see that the log likelihood of the parameters
given the data set is

1(0|X) = ZlogZP X;|w;; 0;)P(w;).

By the maximum likelihood principle the best model of the data has parameters that maximize [(8|X).
This function, however, is not easily maximized numerically because it involves the log of a sum.
Intuitively, there is a “credit-assignment” problem: it is not clear which component of the mixture
generated a given data point and thus which parameters to adjust to fit that data point. The EM algorithm
for mixture models is an iterative method for solving this credit-assignment problem. The intuition is that
if one had access to a “hidden” random variable z indicating which data point was generated by which
component, then the overall maximization problem would decouple into a set of simple maximizations.
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Using the binary indicator variables Z = {z;}¥, defined such that z; = (z;1,..., 2) and zi; = 1iff x; is
generated by Gaussian j, a “complete-data” log likelihood function can be written

N M
L(0|X,2) =YY zijlog[P(xi|zi; ) Pz 0)), (4)
i=1 j=1
which does not involve a log of a summation.

Since z is unknown [. cannot be utilized directly, so we instead work with its expectation, denoted by
Q(0|0;). As shown by (Dempster et al., 1977), {(#|X') can be maximized by iterating the following two
steps:

Estep: QUO16,) = E[L(6X, 2)|X,0,
M-step: 641 = argmax Q(60|6;). (5)
0
The Expectation or E-step computes the expected complete data log likelihood, and the Maximization or
M-step finds the parameters that maximize this likelihood. In practice, for densities from the exponential
family the E-step reduces to computing the expectation over the missing data of the sufficient statistics
required for the M-step. These two steps form the basis of the EM algorithm for mixture modeling.

Incorporating missing values into the EM algorithm

In the previous section we presented one aspect of the EM algorithm: learning mixture models. Another
important application of EM is to learning from data sets with missing values (Little and Rubin, 1987;
Dempster et al., 1977). This application has been pursued in the statistics literature mostly for non-mixture
density estimation problems.®> We now show how combining the missing data application of EM with that
of learning mixture parameters results in a set of clustering, classification, and function approximation
algorithms for incomplete data.

Using the previously defined notation, x; is divided into (x?,x) where each data vector can have
different patterns of missing components. (To denote the missing and observed components in each data
vector we would ordinarily introduce superscripts m; and o;, however, we have simplified the notation for
the sake of clarity.)

To handle missing data we rewrite the EM algorithm incorporating both the indicator variables from
algorithm (5) and the missing inputs, A™.

E-step:  Q(0|0x) = FE[l.(8]X°, ™, 2)|X°, 6]
M-step:  Ox41 = argmax Q(6]6x).
0
The expected value in the E-step is taken with respect to both sets of missing variables. We proceed to

illustrate this algorithm for two classes of models, mixtures of Gaussians and mixtures of Bernoullis, which
we later use as building blocks for classification and function approximation.

Real-valued data: mixture of Gaussians

Real-valued data can be modeled as a mixture of Gaussians. We start with the estimation algorithm for
complete data (Duda and Hart, 1973; Dempster et al., 1977; Nowlan, 1991). For this model the E-step
simplifies to computing F[z;;|x;, 0x]. Given the binary nature of z;;, E[z;;|x;, 8x], which we denote by h;;,
is the probability that Gaussian j generated data point q.

ST P exp =g (xi = )T (xi - )}
] T A~ ~ A ~ .
S S 2 exp{ =50 — ) TS (i — )

®Some exceptions are the use of mixture densities in the context of contaminated normal models for robust estimation (Little
and Rubin, 1987), and in the context of mixed categorical and continuous data with missing values (Little and Schluchter,
1985).
) 6

(6)
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The M-step re-estimates the means and covariances of the Gaussians® using the data set weighted by the

hij:
~k+1 vazl hz’in 7
/-L]‘ - N 9 ( )
> izt hij
N ~k ~k
$kH1 _ > oimy hij(xi — M]‘—H)(Xi - Nj+1)T
=

8
Sy hij ®)

To incorporate missing data we begin by rewriting the log likelihood of the complete data,

N M
L(O|X°, ™ Z) = Y zijlog P(x]zi,0) +
T g

N M

ZZZH log P(z;]6). (9)

? J

We can ignore the second term since we will only be estimating the parameters of the P(x;|z;,#). Special-
izing equation (9) to the mixture of Gaussians we note that if only the indicator variables z; are missing,
the E step can be reduced to estimating E[z;;|x;,0] as before. For the case we are interested in, with
both z; and x!™ missing, we expand equation (9) using m and o superscripts to denote subvectors and
submatrices of the parameters matching the missing and observed components of the data,® to obtain

N M
1
L6, X, 2) = 3zl log2m + S log |3
“ g

1 o o\Tyi—1,00/_o o
_§(Xi - M]‘) E]‘ (x§ — M]‘)
o oNTv—1l,om/_m m
—(x7 — p7)" B (X" - u))

1 m m —1lmm/_ m m
_§(Xi - K )TE]‘ (x" — ©; -

Note that after taking the expectation, the sufficient statistics for the parameters include three un-
known terms, z;, z;x, and zijxgnxgnT. Thus we must compute: Flz;|x?,0;], E[z;x"x¢,60;], and
ElzixPxPT|x9, 0]

One intuitive approach to dealing with missing data is to use the current estimate of the data density
to compute the expectation of the missing data in an E-step, complete the data with these expectations,

m
7 7

and then use this completed data to re-estimate parameters in an M-step. However, as we have seen in
section 1, this intuition fails even when dealing with a single two-dimensional Gaussian; the expectation of
the missing data always lies along a line, which biases the estimate of the covariance. On the other hand,
the approach arising from application of the EM algorithm specifies that one should use the current density
estimate to compute the expectation of whatever incomplete terms appear in the likelihood maximization.
For the mixture of Gaussians these incomplete terms are the interactions between the indicator variable
z;; and the first and second moments of x;". Thus, simply computing the expectation of the missing data
z; and x]" from the model and substituting those values into the M step is not sufficient to guarantee an
increase in the likelihood of the parameters.

*Though this derivation assumes equal priors for the Gaussians, if the priors are viewed as mixing parameters they can

also be learned in the maximization step.
00 Eom (e}

e . b)) . .
*For example, ¥ is divided into ( Sme [ ymm ) corresponding to x = (:—m) . Also note that the superscript (—1, 00)

denotes inverse followed by submatrix operations, whereas (00_1) denotes the reverse order.
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To compute the above expectations we define

R -1
S0 = E[xPz; = Lx0, 03] = w4 7080 (x0 — ),

which is the least-squares linear regression between x" and x? predicted by Gaussian 7. Then, the first
expectation is E[z;;|x7, 0] = hi;, the probability as defined in (6) measured only on the observed dimensions

of x;. Similarly, we get
Elzx®|x, 0k] = hijxi},

and
T -1 T smy

Elzixxi [x7,0p] = by (X7 — XP08N7° X7 4 x??x?}T). (10)
The M-step uses these expectations substituted into equations (7) and (8) to re-estimate the means and
covariances. To re-estimate the mean vector, p;, we substitute the values of X for the missing components
of x; in equation (7). To re-estimate the covariance matrix we substitute the values of the bracketed term

in (10) for the outer product matrices involving the missing components of x; in equation (8).

Discrete-valued data: mixture of Bernoullis

Binary data can be modeled as a mixture of Bernoulli densities. That is, each D-dimensional vector
X =(21,...,%d,...ZD), q € {0,1}, is modeled as generated from the mixture of M Bernoulli densities:

M D
P(x]0) = > P(w;) TT #53(1 = pja) 7).
7=1 d=1

For this model the complete data E-step computes

ITi- fiit (1 - fijq) )
Z;\il HdD:1 ﬂfjd(l — ﬂld)(l—l’id) ’

and the M-step re-estimates the parameters by

N
i = 2i=1 hijXi

hi; = (11)

! Sy hyj

As before, to incorporate missing data we must compute the appropriate expectations of the sufficient
statistics in the E-step. For the Bernoulli mixture these include the incomplete terms E[z;|x9,6;] and
Elz;;x"|x?,0]. The first is equal to h;; calculated over the observed subvector of x;. The second, since we
assume that within a class the individual dimensions of the Bernoulli variable are independent, is simply
hijp. The M-step uses these expectations substituted into equation (12).

More generally, discrete or categorical data can be modeled as generated by a mixture of multinomial
densities and similar derivations for the learning algorithm can be applied. Finally, the extension to data
with mixed real, binary, and categorical dimensions can be readily derived by assuming a joint density
with mixed components of the three types. Such mixed models can serve to solve classification problems,
as will be discussed in a later section.

(12)

4.2 Clustering

Gaussian mixture model estimation is a form of soft clustering (Nowlan, 1991). Furthermore, if a full
covariance model is used the principal axes of the Gaussians align with the principal components of the
data within each soft cluster. For binary or categorical data soft clustering algorithms can also be obtained
using the above Bernoulli and multinomial mixture models. We illustrate the extension of these clustering
algorithms to missing data problems with a simple egample from character recognition.
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Figure 2: Learning digit patterns. First row: the ten 5 X 7 templates used to generate the data set.
Second row: templates with Gaussian noise added. Third row: templates with noise added and 50%
missing pixels. The training set consisted of ten such noisy, incomplete samples of each digit. Fourth row:
means of the twelve Gaussians at asymptote (~ 30 passes through the data set of 100 patterns) using the
mean imputation heuristic. Fifth row: means of the twelve Gaussians at asymptote (~ 60 passes, same
incomplete data set) using the EM algorithm. Gaussians constrained to diagonal covariance matrices.

In this example (Fig. 2), the Gaussian mixture algorithm was used on a training set of 100 35-dimensional
noisy greyscale digits with 50% of the pixels missing. The EM algorithm approximated the cluster means
from this highly deficient data set quite well. We compared EM to mean imputation, a common heuristic
where the missing values are replaced with their unconditional means. The results showed that EM
outperformed mean imputation when measured both by the distance between the Gaussian means and the
templates (see Fig. 2), and by the likelihoods (log likelihoods £ 1 s.e.: EM —4633 + 328; mean imputation
—10062 + 1263; n = 5).

4.3 Function approximation

So far, we have alluded to data vectors with no reference to “inputs” and “targets.” In supervised learning,
however, we generally wish to predict target variables from some set of input variables—that is, we wish
to approximate a function relating these two sets of variables. If we decompose each data vector x; into
an “input” subvector, x!, and a “target” or output subvector, x!, then the relation between input and
target variables can be expressed through the conditional density P(x!|x!). This conditional density can
be readily obtained from the joint input/target density, which is the density which all the above mixture
models seek to estimate. Thus, in this framework, the distinction between supervised learning, i.e. function
approximation, and unsupervised learning, i.e. density estimation, is semantic, resulting from whether the
data is considered to be composed of inputs and targets or not.

Focusing on the Gaussian mixture model we note that the conditional density P(x!|xl) is also a Gaussian
mixture. Given a particular input the estimated output should summarize this density.

If we require a single estimate of the output, a natural candidate is the least squares estimate (LSE),



which takes the form %(x}) = F(x!|x!). Expanding the expectation we get

M
ot/ iyl i i
R(x}) = hled + TP (x) - )], (13)

i=1

which is a convex sum of the least squares linear approximations given by each Gaussian. The weights in
the sum, h;;, vary nonlinearly over the input space and can be viewed as corresponding to the output of a
classifier that assigns to each point in the input space a probability of belonging to each Gaussian.® The
least squares estimator has interesting relations to models such as CART (Breiman et al., 1984), MARS
(Friedman, 1991), and mixtures of experts (Jacobs et al., 1991; Jordan and Jacobs, 1994), in that the
mixture of Gaussians competitively partitions the input space, and learns a linear regression surface on
each partition. This similarity has also been noted by Tresp et al. (1994).

If the Gaussian covariance matrices are constrained to be diagonal, the least squares estimate further
simplifies to

M
XU(xh) = hipt,
in

the average of the output means, weighted by the proximity of xi» to the Gaussian input means. This
expression has a form identical to normalized radial basis function (RBF) networks (Moody and Darken,
1989; Poggio and Girosi, 1989), although the two algorithms are derived from disparate frameworks. In the
limit, as the covariance matrices of the Gaussians approach zero, the approximation becomes a nearest-
neighbor map.

Not all learning problems lend themselves to least squares estimates—many problems involve learning
a one-to-many mapping between the input and target variables (Ghahramani, 1994). The resulting con-
ditional densities are multimodal and no single value of the output given the input will appropriately
reflect this fact (Shizawa, 1993; Ghahramani, 1994; Bishop, 1994). For such problems a stochastic estima-
tor, where the output is sampled according to %*(x}) ~ P(x!|x}), is to be preferred to the least squares
estimator.

For learning problems involving discrete variables the LSE and stochastic estimators have a different
interpretation. If we wish to obtain the posterior probability of the output given the input we would use
the LSE estimator. On the other hand, if we wish to obtain output estimates that fall in our discrete
output space we would use the stochastic estimator.

4.4 Classification

Classification, though strictly speaking a special case of function approximation, merits attention of its
own. Classification problems involve learning a mapping from an input space of attributes into a set of
discrete class labels. The mixture modeling framework presented here lends itself readily to classification
problems by modeling the class label as a multinomial variable. For example, if the attributes are real-
valued and there are D class labels, a mixture model with Gaussian and multinomial components can be
used;

M
Hjd
P(x,C=d|f) = Plwo)—12¢
(X7 | ) ]Z:; (w])(Qﬂ_)n/2|E]|1/2

exp{— 50— 1) TS (- )}

®The h;; in equation (13) are computed by substituting % into equation (6) and evaluating the exponentials over the
dimensions of the input space.
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Classification with missing inputs
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Figure 3: Classification of the iris data set. 100 data points were used for training and 50 for testing.
Each data point consisted of 4 real-valued attributes and one of three class labels. The figure shows
classification performance £+ 1 standard error (n = 5) as a function of proportion missing features for the
EM algorithm and for mean imputation (MI), a common heuristic where the missing values are replaced
with their unconditional means.

denotes the joint probability that the data point has attributes x and belongs to class d, where the y;q are
the parameters for the multinomial class variable. That is, p;q = P(C = d|w;,8), and P pid = 1.

Missing attributes and missing class labels (i.e., unlabeled data points) are readily handled via the EM
algorithm. In the Ii-step, missing attributes are completed using the same formulas as for the Gaussian
mixture except that

- P(x%lw:. B
hi; = P(x5,C; = d|w;, 8) = ]\’lzjd (x; |wj’ ) )
2= P P(x2lwr, 0)

On the other hand, if a class label is missing h;; becomes P(x;|w;,8)/ M, P(x;|wy, 8), exactly as in the

Gaussian mixture. The class label is then completed with a probability vector whose ath component is
0Ly hija-

Once the classification model has been estimated, the most likely label for a particular input x may
be obtained by computing P(C = d|x,#). Similarly, the class conditional densities can be computed by
evaluating P(x|C = d, ). Conditionalizing over classes in this way yields class conditional densities which
are in turn mixtures of Gaussians. Figure 3 shows the performance of the EM algorithm on a sample
classification problem with varying proportions of missing features.

This mixture-based approach to classification is closely related to the mixture discriminant analysis
(MDA) approach recently proposed by Hastie and Tibshirani (1994). In MDA, classes are also fit by
mixture densities using the EM algorithm and an optimal discriminant is obtained. Hastie and Tibshirani
extend this basic MDA procedure by combining it with reduced rank discrimination. Like Fisher-Rao
linear discriminant analysis this results in an interpretable, low dimensional projection of the data and
often also leads to improved classification performance. While the authors do not mention missing data,
it seems likely that EM methods can be used in the context of their algorithm.

Previous approaches to classification from incomplete patterns have proceeded along different lines.
Cheeseman et al. (1988) describe a Bayesian classification method in which each class is modeled as having
Gaussian real-valued attributes and multinomial discrete attributes. The learning procedure finds the
maximum a posteriori parameters of the model by differentiating the posterior probability of the class
parameters and setting to zero. This yields a coupled set of nonlinear equations, similar to the EM steps,
which can be iterated to find the posterior mode oflthe parameters (Dempster et al., 1977). To handle



missing data the authors state that “for discrete attributes it can be shown that the correct procedure
for treating an unknown value is equivalent to adding an ‘unknown’ category to the value set” (p. 62).
For real-valued attributes they add a ‘known’/‘unknown’ category to each attribute and set its value
appropriately. Three comments can be made about this approach. First, each ‘unknown’ category added
to the multinomial value set results in an extra parameter that has to be estimated. Furthermore, adding
an ‘unknown’ category does not reflect the fact that the unobserved data actually arises from the original
multinomial value set (an argument also made by Quinlan, 1986; see below). For example, for a data set in
which one attribute is often unknown the algorithm may form a class based on that attribute taking on the
value ‘unknown’—a situation which is clearly undesirable in a classifier. Finally, as each class is modeled
by a single Gaussian or multinomial and the data points are assumed to be unlabeled, the Cheeseman et
al. (1988) algorithm is in fact a form of soft clustering.

Southcott and Bogner (1993) have approached the problem of classification of incomplete data using
an approximation to EM for clustering. In the E-step, the observed data are classified using the current
mixture model, and each data point is assigned to its most likely class. The parameters of each class are
then re-estimated in the M-step. In our notation this approximation corresponds to setting the highest /;;
for each data point to 1 and all the others to 0. They compared this method with a neural network based
algorithm in which each missing input is varied through the possible range of (discrete) attribute values
to find the completion resulting in minimum classification error. They reported that their approximation
to EM outperformed both the neural network algorithm and an algorithm based on linear discriminant
analysis. They did not include the exact EM algorithm in their comparison.

Quinlan (1986,1989) discusses the problem of missing data in the context of decision tree classifiers.
Quinlan’s decision tree framework uses a measure of information gain to build a classifier, resulting in a
tree structure of queries on attribute values and a set of leaves representing class membership. The author
concludes that treating ‘unknown’ as a separate value is not a good solution to the missing value problem,
as querying on attributes with unknown values will have higher apparent information gain (Quinlan, 1986).
The approach that he advocates instead is to compute the expected information gain, by assuming that the
unknown attribute is distributed according to the observed values in the subset of the data at that node
of the tree. This approach is consistent with the information theoretic framework adopted in his work
and parallels the EM and Bayesian treatments of missing data which suggest integrating over the possible
missing values.

An alternative method of handling missing data in decision trees is presented by Breiman et al. (1984)
for the CART algorithm. CART initially constructs a large decision tree based on a splitting criterion
closely related to the above measure of information gain. The tree is then pruned recursively using a
measure of model complexity proportional to the number of terminal nodes, resulting in a smaller, more
interpretable tree with better generalization properties. If a case is missing the value of an attribute
then it is not considered when evaluating the goodness of splits on that attribute. Cases are assigned to
branches of a split on an attribute where they have missing values using the best ‘surrogate split’—i.e.
the split on another attribute which partitions the data most similarly to the original split. This method
works well when there is a single, highly correlated attribute that predicts the effects of a split along the
missing attribute. However, if no single attribute can predict the effects of the split this method may not
perform well. An approach based on computing the expected split from all the observed variables, similar
to Quinlan’s, would be more suitable from a statistical perspective and may provide improved performance
with missing data.

5 Bayesian methods

In Bayesian learning the parameters are treated as unknown random variables characterized by a probability
distribution. Bayesian learning utilizes a prior distribution for the parameters, which may encode world
knowledge, initial biases of the learner, or constraints on the probable parameter values. Learning proceeds

12



by Bayes’ rule—multiplying the prior probability of the parameters by the likelihood of the data given the
parameters, and normalizing by the integral over the parameter space—resulting in a posterior distribution
of the parameters. The information learned about the unknown parameters is expressed in the form of this
posterior probability distribution.

In the context of learning from incomplete data, the Bayesian use of priors can have impact in two
arenas. First, the prior may reflect assumptions about the initial distribution of parameter values as
described above. The learning procedure converts this prior into a posterior via the data likelihood. We
have seen that to perform this conversion independently of the missing data mechanism requires both that
the mechanism be missing at random and that the prior be factorizable. Second, the prior may reflect
assumptions about the initial distribution of the missing values. Thus, if we have a prior distribution for
input values we can complete the missing data by sampling from this distribution.

For complete data problems and simple models the judicious choice of conjugate priors for the param-
eters often allows analytic computation of their posterior distribution (Box and Tiao, 1973). However,
in incomplete data problems the usual choices of conjugate priors do not generally lead to recognizable
posteriors, making iterative simulation and sampling techniques for obtaining the posterior distribution
indispensable (Schafer, 1994).

5.1 Data augmentation and Gibbs sampling

One such technique, which is closely related in form to the EM algorithm, is data augmentation (Tanner
and Wong, 1987). This iterative algorithm consists of two steps. In the Imputation or I-step, instead of
computing the expectations of the missing sufflicient statistics, we simulate m random draws of the missing
data from their conditional distribution P(A™|X°, 8). In the Posterior or P-step we sample m times from
the posterior distribution of the parameters, which can now be more easily computed with the imputed
data: P(8|AX°, A™). Thus, we obtain samples from the joint distribution of P(A™, 8|AX°) by alternately
conditioning on one or the other of the unknown variables, a technique known as Gibbs sampling (Geman
and Geman, 1984). Under some mild regularity conditions this algorithm can be shown to converge in
distribution to the posterior (Tanner and Wong, 1987). Note that the augmented data can be chosen so as
to simplify the P-step in much the same way as indicator variables can be chosen to simplify the M-step
in EM.

Data augmentation techniques have been recently combined with the Metropolis—Hastings algorithm (Schafer,
1994). In Metropolis—Hastings (Metropolis et al., 1953; Hastings, 1970), one creates a Monte Carlo Markov
chain by drawing from a probability distribution meant to approximate the distribution of interest and
accepting or rejecting the drawn value based on an acceptance ratio. The acceptance ratio, e.g. the ratio
of probabilities of the drawn state and the previous state, can often be chosen to be easy to calculate as it
does not involve computation of the normalization factor. If the transition probabilities allow any state to
be reached eventually from any other state (i.e. the chain is ergodic) then the Markov chain will approach
its stationary distribution, chosen to be the distribution of interest, from any initial distribution. The
combination of data augmentation and Metropolis—Hastings can be used, for example, in problems where
the posterior itself is difficult to sample from in the P-step. For such problems one may generate a Markov
chain whose stationary distribution is P(#|X°, A™).

5.2 Multiple imputation and Bayesian backpropagation

Multiple imputation (Rubin, 1987) is a technique in which each missing value is replaced by m simulated
values which reflect uncertainty about the true value of the missing data. After multiple imputation, m
completed data sets exist, each of which can be analyzed using complete data methods. The results can then
be combined to form a single inference. Though multiple imputation requires sampling from P(X™|X°,0),
which may be difficult, iterative simulation methods can also be used in this context (Schafer, 1994).
The Bayesian backpropagation technique for missing data presented by Buntine and Weigend (1991) is a
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special case of multiple imputation. In Bayesian backpropagation, multiple values of the input are imputed
according to a prior distribution so as to approximate the integral in (3), which in turn is used to compute
the gradient required for backpropagation. This procedure is similar to that of Tresp et al. (1994), except
that whereas the former completes the data by sampling from a prior distribution of inputs, the latter
estimates this distribution directly from the data.”

6 Boltzmann machines and incomplete data

Boltzmann machines are networks of binary stochastic units with symmetric connections, in which learning
corresponds to minimizing the relative entropy between the probability distribution of the visible states
and a target distribution (Hinton and Sejnowski, 1986). The relative entropy cost function can be rewritten
to reveal that, if the target distribution is taken to be the empirical distribution of the data, it is equivalent
to the model likelihood. Therefore, the Boltzmann learning rule implements maximum likelihood density
estimation over binary variables.

The Boltzmann learning procedure first estimates correlations between unit activities in a stage where
both input and target units are clamped and in a stage where the target units are unclamped. These corre-
lations are then used to modify the parameters of the network in the direction of the relative entropy cost
gradient. This moves the output unit distribution in the unclamped phase closer to the target distribution
in the clamped phase.

Reformulated in terms of maximum likelihood conditional density estimation, the Boltzmann learning
rule is an instance of the generalized EM algorithm (GEM; Dempster, Laird, and Rubin, 1977): the
estimation of the unit correlations given the current weights and the clamped values corresponds to the
E-step, and the update of the weights corresponds to the M-step (Hinton and Sejnowski, 1986). It is
generalized EM in the sense that the M-step does not actually maximize the likelihood but simply increases
it by gradient ascent.

The incomplete variables in the Boltzmann machine are the states of the hidden units—those that are
not denoted as the visible input or output units. This suggests that the principled way of handling missing
inputs or targets in a Boltzmann machine is to treat them as hidden units, that is, to leave them unclamped.
Exactly as in the formulation for mixture models presented above, the EM algorithm will then estimate
the appropriate sufficient statistics—the first order correlations—in the E-step. These sufficient statistics
will then be used to increase the model likelihood in the M-step.

7 Conclusions

There are several ways of handling missing data during learning. Heuristics, such as filling in the missing
data with unconditional or conditional means, are not always efficient, discarding information latent in the
data set. More principled statistical approaches yield interpretable results, providing a guarantee to find
the maximum likelihood parameters despite the missing data.

These statistical approaches argue convincingly that the missing data has to be integrated out using an
estimate of the data density. One class of models in which this can be performed naturally and efficiently are
mixture models. For these models, we have described applications to clustering, function approximation,
and classification from real and discrete data. In particular, we have shown how missing inputs and targets
can be incorporated into the mixture model framework—essentially by making a dual use of the ubiquitous
EM algorithm.

Finally, our principal conclusion is that virtually all of the incomplete data techniques reviewed from
the neural network and machine learning literatures can be placed within this basic statistical framework.

"From a strictly Bayesian point of view both procedures are improper in that they don’t take into account the variability
of the parameters in the integration.
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