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Abstract 

Unifying principles of movement have emerged from the computational study of motor 
control. We review several of these principles and show how they apply to processes 
such as motor planning, control, estimation, prediction and learning. Our goal is to 
demonstrate how specific models emerging from the computational approach provide a 
theoretical framework for movement neuroscience.  

Introduction 

From a computational perspective the sensorimotor system allows us to take actions to 
achieve goals in an uncertain and varying world. We will consider a very general 
framework to phrase the computational problems of motor control and show how the 
main concepts of sensorimotor control arise from this framework. Consider a person who 
interacts with the environment by producing actions. The actions or motor outputs will 
cause muscle activations, and based on the physics of the musculoskeletal system and the 
outside world will lead to a new state of both the person and environment. By state we 
refer to the set of time-varying parameters which taken together with the fixed parameters 
of the system, the equations of motion of the body and world, and the motor output allow 
a prediction of the consequences of the action. For example to predict how a pendulum 
responds to a torque acting on it you would need to know the pendulum’s angle and 
angular velocity, which together would form its state. However, fixed parameters such as 
the length and mass of the pendulum would not form part of the state.  In general, the 
state, for example the set of activations of groups of muscles (synergies) or the position 
and velocity of the hand, changes rapidly and continuously within a movement. However, 
other key parameters change discretely, like the identity of a manipulated object, or on a 
slower time-scale, like the mass of the limb. We refer to such discrete or slowly changing 
parameters as the context of the movement. Our ability to generate accurate and 
appropriate motor behavior relies on tailoring our motor commands to the prevailing 
movement context. 

The central nervous system (CNS) does not have direct access to the state but receives as 
its input sensory feedback. The sensory inputs provide information about the state of 
world, such as the location of objects, as well as information about the state of our own 
body, such as the position and velocity of the hand. In addition to these sensory inputs, 
the central nervous system can monitor its own activity. For example, a copy of the motor 
output can be used to provide information about the ongoing movement. This signal is 
known as an efference copy to reflect that it is copy of the signal flowing out of the 



central nervous system to the muscles. We can also consider some sensory inputs as 
providing reward, for example the taste of chocolate or warmth on a cold day, or 
punishment, such as hunger or pain. While some rewards or punishments are directly 
specified by the environments others may be indirectly or internally generated. 

Within this framework we can consider the goal of motor control as selecting actions to 
maximize future rewards. For example, an infant may generate actions and receive 
reward if the actions bring food into its mouth, but punishment (negative rewards) if it 
bites its own fingers. Therefore, it has to choose actions to maximize food intake while 
minimizing the chance of biting itself. Often in computational motor control we specify a 
discount factor so that we regard an action that will lead to a reward tomorrow of less 
value than another action which will lead to the same reward immediately. Conversely, 
we only choose an action that will achieve a reward at some distant time if the reward 
greatly exceeds the immediate reward we would get for all other actions.   

We will show how all the main themes of computational motor control, such as planning, 
control and learning arise from considering how optimality can be used to plan 
movements, motor commands are generated, states and contexts are estimated and 
predicted, and internal models are represented and learned. Recent progress in motor 
control has come both from more sophisticated theories and from the advent of virtual 
reality technologies and novel robotic interfaces. Using these technologies it has been 
possible, for the first time, to create sophisticated computer-controlled environments. 
Having such control over the physics of the world that subjects interact with has allowed 
detailed tests of computational models of planning, control and learning  (e.g. Shadmehr 
and Mussa-Ivaldi 1994 ; Wolpert et al. 1995 ; Gomi and Kawato 1996; Ghahramani and 
Wolpert 1997; Cohn et al. 2000).  

 
Optimal Control 
 
Everyday tasks are generally specified at a high, often symbolic level, such as taking a 
drink of water from a glass. However, the motor system has to eventually work at a 
detailed level, specifying muscle activations leading to joint rotations and the path of the 
hand in space. There is clearly a gap between the high-level task and low-level control 
kinematics (Bernstein 1967). In fact, almost any task can in principle be achieved in 
infinitely many different ways. Given all these possibilities, it is surprising that almost 
every study of the way the motor system solves a given task shows highly stereotyped 
movement patterns, both between repetitions of a task and between individuals on the 
same task location (e.g. Morasso 1981; Flash and Hogan 1985).  The concept that some 
movements will lead to reward and other to punishment links naturally to the field of 
optimal motor control. Specifically, a cost (that can be thought of as punishment-reward) 
is specified as some function of the movement, and the movement with the lowest cost is 
executed. In the same way that being able to rank different routes from home to work 
allows us to select a particular route from those available, having a criterion with which 
to evaluate possible movements for a task would allow the CNS to select the best. 
Optimal control is, therefore,  an elegant framework for dealing with just such a selection 



problem and can, therefore, translate from high-level tasks into detailed motor programs 
(Bryson and Ho 1975). While optimal control can be motivated from the point of view of 
reducing redundancy, one should always take into account the ultimate evolutionary role 
of behavior. From an evolutionary point of a view the purpose of action is to maximize 
the chances of passing on genetic material. Clearly some forms of action are more likely 
to lead to passing on genetic material, and the brain may have learned to indirectly 
represent this through costs functions ranking actions. The challenge has been to try to 
reverse-engineer the cost function, than is what is being optimized, from observed 
movement patterns and perturbation studies.  
 
Flash & Hogan (1985) and Uno and colleagues (1989) proposed optimal control models 
of movement based on maximizing smoothness of the hand trajectory and of the torque 
commands respectively. Although these models have been successful at reproducing a 
range of empirical data it is unclear why smoothness is important, and how it is measured 
by the CNS over the movement. Moreover, these models are limited to a single motor 
system such as the arm. Harris & Wolpert (1998) have proposed an alternative cost which 
provides a unifying model for goal-directed eye and arm movements. This model 
assumes that there is noise in the motor command and that the amount of noise scales 
with the magnitude of the motor command. In the presence of such signal-dependent 
noise the same sequence of intended motor commands if repeated many times will lead to 
a probability distribution over movements. Aspects of this distribution, such as the spread 
of positions or velocities of the hand at the end of the movement, can be controlled by 
modifying the sequence of motor commands. In this model the task specifies the way 
aspects of the distribution are penalized, and it is this which forms the cost. For example, 
in a simple aiming movement, the task is to minimize the final error, as measured by the 
variance about the target. Figure 1 shows the consequences of two possible sequences of 
motor commands, one of which leads to higher endpoint variability (blue ellipsoid) then 
the other. The aim of the optimal control strategy is to minimize the volume of the 
ellipsoid thereby being as accurate as possible. This model accurately predicts the 
trajectories of both saccadic eye movements and arm movements. Non-smooth 
movements require large motor commands which generate increased noise; smoothness 
thereby leads to accuracy but is not a goal in its own right. The cost, movement error, is 
behaviorally relevant and is simple for the CNS to measure. Recently, Todorov and 
Jordan (2002) have shown that optimal feedback control in the presence of signal-
dependent noise may form a general strategy for movement production. This model 
suggests that parameters that are relevant to achieving the task are controlled at the 
expense of increase in variance in task-irrelevant parameters. For example, in a tracking 
movement with the hand the variability of the shoulder, elbow and wrist joints may each 
be high, but by controlling correlations between them, the hand variability is kept low. 
Moreover, the optimal feedback control model shows that control can be achieved 
without the need for the CNS to specify a desired trajectory, such as a time series of 
desired hand positions or velocities. 
 
Figure 1 near hear   
 



State Estimation and Prediction 

For the CNS to implement any form of control, it needs to know the current state of the 
body. However, the CNS faces two problems. First, considerable delays exist in the 
transduction and transport of sensory signal to the CNS. Second, the CNS must estimate 
the state of the system from the sensory signals which may be contaminated by noise and 
may only provide partial information as to the state. For example, consider a tennis ball 
we have just hit. If we simply used the retinal location of the ball to estimate its position 
our estimate would be delayed by around 100 ms. A better estimate can be made by 
predicting where the ball actually is now using a predictive model. The relationship 
between our motor commands and the consequences are governed by the physics of 
musculoskeletal system and outside environment. Therefore, to make such a prediction 
requires a model of this transformation. Such a system is termed an internal forward 
model as it models the causal or forward relationship between actions and their 
consequences. The term internal is used to emphasize that this model is internal to the 
CNS. The primary role of these models is to predict the behavior of the body and world, 
so we use the terms predictors and forward models synonymously. Second, components 
of the ball’s state such as its spin cannot be observed easily. However, the spin can be 
estimated using sensory information integrated over time. The balls spin will influence its 
path. By observing the position of the ball over time, an estimate of its spin can be 
obtained. The estimate from sensory feedback can be improved by incorporating 
information based on the forward model’s predictions (even in a system with no delays). 

This combination, using sensory feedback and forward models to estimate the current 
state is known as an observer (Goodwin and Sin 1984). The major objectives of the 
observer are to compensate for the delays in the sensorimotor system and to reduce the 
uncertainty in the state estimate which arises due to noise inherent in both the sensory 
and motor signals. For a linear system, the Kalman filter is the optimal observer in that it 
produces estimates of the state with the least squared error (Figure 2). Such a model has 
been supported by empirical studies examining estimation of hand position (Wolpert et 
al. 1995 ), posture (Kuo 1995) and head orientation (Merfeld et al. 1999). 

Figure 2 near here 

Using the observer framework it is a simple computational step from estimating the 
current state, to predicting future states and sensory feedback. Such prediction have many 
potential benefits (Wolpert and Flanagan 2001). State prediction, by estimating the 
outcome of an action before sensory feedback is available, can reduce the effect of 
feedback delays in sensorimotor loops. Such a system is thought to underlie skilled 
manipulation. For example, when an object held in the hand is accelerated, the fingers 
tighten their grip in anticipation to prevent the object slipping, a process shown to rely on 
prediction (for a review see Johansson and Cole 1992 ). Modeling the performance of 
subjects who were asked to balance a pole on their fingertip has also provided evidence 
for predictive models.  Examining a variety of control schemes, Mehta and Schaal (2002) 
concluded, through a process of elimination, that a forward predictive model was likely 
to be employed.  



 

 

A sensory prediction can be derived from the state prediction and used to cancel the 
sensory effects of movement, that is reafference. By using such a system, it is possible to 
cancel out the effects of sensory changes induced by self-motion, thereby enhancing 
more relevant sensory information. Such a mechanism has been extensively studied in the 
electric fish, and relies on a cerebellum-like structure (e.g. Bell et al. 1997 ). In primates, 
neurophysiological studies by Duhamel and colleagues (1992) have shown predictive 
updating in parietal cortex anticipating the retinal consequences of an eye movement. In 
man, predictive mechanisms are believed to underlie the observation that the same tactile 
stimulus, such as a tickle or force, is felt less intensely when it is self-applied. It has been 
shown that the reduction of the felt intensity of self-applied tactile stimuli critically 
depends upon on the precise spatio-temporal alignment between the predicted and actual 
sensory consequences of the movement (Blakemore et al. 1999).  

Motor Command Generation 

In general the CNS can employ two distinct strategies to generate actions. One strategy is 
to represent the muscle activations or forces required to compensate for the dynamics of 
the body or an externally imposed perturbation. This compensation can be achieved by a 
system which can map desired behavior into the motor commands required to achieve the 
behavior. Such a system is termed an inverse model as it inverts the relationship of the 
motor system which converts motor command to inputs. When a perfect inverse model is 
cascaded with the motor system it should produce an identity mapping in that the actual 
outcome should match the desire outcome. Therefore, to learn model-based 
compensations for the dynamics of objects we interact with, our CNS  needs to learn 
internal models of these objects. An alternative to this model-based compensation is to 
use co-contraction of the  muscles to increased the stiffness of the arm, thereby reducing 
the displacement caused by an external or inter-segmental forces (Fel'dman 1966 ; Bizzi 
et al. 1984; Hogan 1984). 
 
Both forms of compensation to perturbations are seen experimentally when subjects are 
exposed to novel force-fields (Figure 3). By force field we mean a force usually 
generated by a robotic interface that is related to the state of the hand such as its position. 
When reaching in a predictable force-field the CNS tends to employ a low-stiffness 
strategy and learns to represent the compensatory forces. Early in learning the stiffness of 
the arm reduces systematically as these compensatory responses are learned (Shadmehr 
and Mussa-Ivaldi 1994 ; Nezafat et al. 2001; Wang et al. 2001).   When manipulating an 
external object with internal degrees of freedom, like a mass-spring system, people also 
employ low-stiffness control (Dingwell et al. 2002). However, in several situations it is 
not possible to reliably predict the forces the hand will experience, and therefore model-
based compensation is difficult. For example, when drilling into a wall with a power drill, 
the aim is to maintain the drill bit perpendicular to the wall while applying an orthogonal 
force. This situation is inherently unstable in that any deviations from orthogonality lead 



to forces which destabilize the posture (Rancourt and Hogan 2001). In this situation the 
stiffness of the hand can be increased in all directions thereby stabilizing the system. 
Burdet et al (2001) have used an analogous task in which the instability was present in 
only one direction (shown schematically in Figure 3 right). Subjects reached in a force 
field in which any deviation of the hand from the straight line between starting point and 
target was exacerbated by a force perpendicular to the line. They showed that subjects 
tailored the stiffness of the hand to match the requirements of the task, stiffening the hand 
only in the perpendicular direction. This is the first demonstration that stiffness can be 
controlled independently in different directions. Therefore, it seems that the CNS 
employs both high- and low-stiffness control strategies with the high-stiffness control 
reducing the effect of any perturbations that a compensation mechanism can not 
represent.   
 
Figure 3 near here 
  

Bayesian Context Estimation 

When we interact with objects with different physical characteristics, the context of our 
movement changes in a discrete manner. Just as it is essential for the motor system to 
estimate the state it must also estimate the changing context. One powerful formalism for 
such an estimation problem is the Bayesian approach which can be used to estimate 
probabilities for each possible context. The probability of each context can be factored 
into two terms, the likelihood and the prior. The likelihood of a particular context is the 
probability of receiving the current sensory feedback given the hypothesized context. To 
estimate this likelihood, a sensory forward model of that context is used to predict the 
sensory feedback from the movement. The discrepancy between the predicted and actual 
sensory feedback is inversely related to the likelihood: the smaller the prediction error, 
the more likely the context. These computations can be carried out by a modular neural 
architecture in which multiple predictive models operate in parallel (Wolpert and Kawato 
1998; Haruno et al. 2001). Each is tuned to one context and estimates the relative 
likelihood of its context. This array of models therefore acts as a set of hypothesis testers. 
The prior contains information about the structured way contexts change over time and 
how likely a context is prior to a movement. The likelihood and the prior can be 
optimally combined using Bayes rule, which takes the product of these two probabilities 
and normalizes over all possible contexts, to generate a probability for each context.  

Figure 4 shows a schematic example of picking up what appears to be a full milk carton, 
which is in reality empty. This shows how the predictive models correct on-line for 
erroneous priors which initially weighted output of the controller for a full milk carton 
more than that for an empty. Bayes rule allows a quick correction to the appropriate 
control even though the initial strategy was incorrect. This example has two modules 
representing two contexts. However, the modular architecture can, in principle, scale to 
thousands of modules, that is contexts. Although separate architectures have been 
proposed for state and context estimation (Figure 2 & 4), they both can be considered on-
line ways of doing Bayesian inference in an uncertain environment.  



 

Figure 4 near here 

The interpretation of the processes necessary for context estimation is consistent with 
recent neurophysiological studies in primates showing that the CNS both models the 
expected sensory feedback for a particular context (Eskandar and Assad 1999), as well as 
representing the likelihood of the sensory feedback given the context (Kim and Shadlen 
1999). An elegant example of context estimation has been provided by Cohn and 
colleagues (Cohn et al. 2000). When subjects make a reaching movement while rotating 
their torso, they compensate for the velocity dependent Coriolis forces arising from the 
rotation, which act on the arm. When subjects experience illusory self-rotation induced 
by a large moving visual image, they make movements as though they expect, based on 
the visual priors, the context of Coriolis force. This leads to misreaching which over 
subsequent movements reduces as the sensory consequences of the expected Coriolis 
force are not experienced.  

 

Motor Learning 

Internal models, both forward and inverse, capture information about the properties of the 
sensorimotor system. These properties are not static but change throughout life both on a 
short time-scale, due to interactions with the environment, and on a longer time scale, due 
to growth. Internal models must therefore be adaptable to changes in the properties of the 
sensorimotor system. The environment readily provides an appropriate training signal to 
learn predictors of sensory feedback. The difference between the predicted and actual 
sensory feedback can be used as an error signal to update a predictive model. The neural 
mechanisms which lead to such predictive learning in the cerebellum-like structure of 
electric fish has recently been partially elucidated (Bell et al. 1997 ). 

Acquiring an inverse internal model through motor learning is generally a difficult task. 
This is because the appropriate training signal, the error in the output of the inverse 
model, that is the motor command error, is not directly available. When we fail to sink a 
putt no-one tells us how our muscle activations should change to achieve the task. Instead 
we receive error signals in sensory coordinates, and these sensory errors need to be 
converted into motor errors before they can be used to train an inverse model. An original 
proposal was to use direct inverse modeling (Widrow and Stearns 1985; Miller 1987; 
Kuperstein 1988; Atkeson and Reinkensmeyer 1988)  in  which an inverse model could 
be learned during a motor babbling stage. This controller would simply observer motor 
commands and sensory outcomes during babbling and try to learn how outcomes (as 
inputs to the inverse model) map to the motor commands that caused this outcome.. For 
linear systems such a process can be shown to usually converge to correct parameter 
estimates (Goodwin and Sin 1984).  However, there are several problems with such a 
system. First it is not goal directed; that is, it is not sensitive to particular output goals 
(Jordan and Rumelhart 1992). The learning process samples randomly during babbling 



and there is no guarantee that it will sample appropriately for a give task. Second, the 
controller is trained “off-line”, that is the input to the controller for the purposes of 
training is the actual output, not the desired output. For the controller to actually 
participate in the control process, it must receive the desired plant output as its input. The 
direct inverse modeling approach therefore requires a switching process; the desired plant 
output must be switched in for the purposes of control and the actual plant output must be 
switched in for the purposes of training. Finally, for nonlinear systems a difficulty arises 
that is related to the general “degrees-of-freedom problem” in motor control (Bernstein 
1967). The problem is due to a particular form of redundancy in nonlinear systems 
(Jordan 1992). In such systems, the “optimal” parameter estimates in fact may yield an 
incorrect controller.  Because of the redundancy in the motor system there may be many 
motor commands that lead to the same outcome and during direct inverse learning the 
system may see the same outcome many times caused by different motor commands 
Most learning systems when trying to learn to map a single outcome into the multiple 
motor commands which lead to this outcome will finally map this outcome to the average 
of all these motor commands. However, for nonlinear systems it is rarely the case that the 
average of all these motor command will lead to the same outcome, and therefore direct 
inverse modeling fails for such nonlinear systems.  

Two learning mechanism have been proposed to overcome these limitations. Kawato and 
colleagues (1987; 1992) have proposed an ingenious solution to this problem, feedback-
error-learning (Figure 5). They suggest that a hard-wired, but not perfect, feedback 
controller exists which computes a motor command based on the discrepancy between 
desired and estimated state. The motor command is the sum of the feedback controller 
motor command and the output of an adaptive inverse model. They reasoned that if the 
feedback controller ended up producing no motor command, then there must be no 
discrepancy between desired and estimated state, that is no error in performance, and the 
inverse model would be performing perfectly. Based on this they regarded the output of 
the feedback controller as the error signal, and used it to train the inverse model, an 
approach which is highly successful. Therefore, feedback error learning makes use of a 
feedback controller to guide the learning of the feedforward controller. The feedforward 
controller is trained “on-line”, that is it is used as a controller while it is being trained. is 
goal directed. Neurophysiological evidence (Shidara et al. 1993) supports this learning 
mechanism within the cerebellum for the simple reflex eye movement, called the ocular 
following response. The suggestion is that the cerebellum constructs an inverse model of 
the eye's dynamics.  

Figure 5 near here 
 

Another solution is to use distal supervised learning (Jordan and Rumelhart 1992). In 
distal supervised learning, the controller is learned indirectly, through the intermediary of 
a forward model of the motor apparatus. The forward model must itself be learned from 
observations of the inputs and outputs of the system. The distal supervised learning 
approach is therefore composed of two interacting processes, one process in which the 
forward model is learned, and another process in which the forward model is used in the 



training of the controller. The controller and the forward model are joined together and 
are treated as a single composite learning system. If the controller is to be an inverse 
model, then the composite learning system should be an identity transformation (i.e., a 
transformation whose output is the same as its input). This suggests that the controller 
can be trained indirectly by training the composite learning system to be an identity 
transformation. During this training process, the parameters in the forward model are held 
fixed. Thus the composite learning system is trained to be an identity transformation by a 
constrained learning process in which some of the parameters inside the system are held 
fixed. By allowing only the controller parameters to be altered, this process trains the 
controller indirectly. 

Distal supervised learning and other models (Haruno et al. 2001) have suggested that we 
use a forward model to train a controller In an experiment designed to simultaneously 
assess both forward and inverse model learning subjects were required  move an object 
along a straight line, while the load on the object was varied during the trial (Flanagan et 
al. 2003). Over repeated trials, the subjects learned to compensate for the load so that 
they could produce a straight trajectory. The hand trajectory was used to measure how 
quickly subjects learned to control the movement, whereas prediction was measured by 
looking at changes in grip force. In early trials, grip force was changed reflexively as the 
hand path (and therefore the load force) was perturbed, but subjects quickly learned to 
alter their grip force predictively. By contrast, it took many trials for them to learn to 
control the load. This suggests that we learn to predict the consequences of our actions 
before we learn to control them. 
 
 

Unifying principles 

Computational approaches have started to provide unifying principles for motor control. 
Several common themes have already emerged in this review. First, internal models are 
fundamental for understanding a range of processes such as state estimation, prediction, 
context estimation, control and learning. Second, optimality underlies many theories of 
movement planning, control and estimation and can account for a wide range of 
experimental findings. Third, the motor system has to cope with uncertainty about the 
world and noise in its sensory inputs and motor commands and the Bayesian approach 
provide a powerful framework for optimal estimation in the face of such uncertainty. It is 
our belief that these and other unifying principles will be found to underlie the control of 
motor systems as diverse as the eye, arm, speech, posture, balance and locomotion.  
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Figure 1. A schematic of the Task Optimization in the Presence of Signal-dependent 
noise (TOPS) model of Harris & Wolpert. Shown are average paths and expected final 
position distributions for two different motor sequences. Although the sequences bring 
the hand on average to the same final position, due to noise on the motor commands, they 
have different final distributions. Movement A has smaller spread than B and therefore 
has lower cost than B. In general the task determines the desired statistics of the 
movement and the trajectory which optimizes the statistics is selected.  
 
Figure 2. A schematic of one step of a Kalman filter model recursively estimating the 
finger's location during a movement. The current state is constructed from the previous 
state estimate (top left), which represents the distribution of possible finger positions, 
shown as a cloud of uncertainty. Using a copy of the motor command, that is efference 
copy, and a model of the dynamics the current state distribution is predicted from this 
previous state. In general, the uncertainty is increased. This new estimate is then refined 
by using it to predict the current sensory feedback. The error between this prediction and 
the actual sensory feedback is used to correct the current estimate. The Kalman gain 
changes this sensory error into state errors and also determines the relative reliance 
placed on the efference copy and sensory feedback. The final state estimate (top right) 
now has a reduced uncertainty. Although there are delays in sensory feedback which 
must be compensated, they have been omitted from the diagram for clarity.  
 

Figure 3. Schematic of two strategies for control when learning to move in a force field. 
Subjects reach between the two circular targets under a force field generated by a robot 
(not shown), that depends on the position of the hand. The force experienced for different 
positions are shown by the arrows. a) Under a stable and predictable force field acting to 
the left the subjects will learn to produce a straight line movement. If the field is 
unexpectedly turned off for a moavment subjects will show an after-effect (black 
trajectory) reflecting the compensation they are producing in their motor command to 
counteract the field.  b) The field is unstable as any deviation for a straight hand path will 
generate force acting in the same direction.  Subjects learn to move in straight line but 
show no after-effects on removal of the field.  The task is achieved by increasing the 
stiffness of the arm, but only in the direction of maximum instability.  The stiffness 
ellipse represents restoring force to a step displacement of the hand in different directions 
(dotted prior to learning and solid after). 

 
Figure 4. A schematic of Bayesian context estimation with just two contexts, that a milk 
carton is empty or full. Initially sensory information from vision is used to set the prior 
probabilities of the two possible contexts and, in this case, the carton appears more likely 
to be full. When the motor commands appropriate for a full carton are generated an 
efference copy of the motor command is used to simulate the sensory consequences 
under the two possible contexts. The predictions based on an empty carton suggest a 



large amount of movement compared to the full carton context. These predictions are 
compared with actual feedback. As the carton is, in fact, empty the sensory feedback 
matches the predictions of the empty carton context. This leads to a high likelihood for 
the empty carton and a low likelihood of the full carton. The likelihoods are combined 
with the priors using Bayes rule to generate the final (posterior) probability of each 
context.  
 
 
 
Figure 5. A schematic of feedback-error learning. The aim is to learn an inverse model 
which can generate motor commands given a series of desired states. A hard-wired and 
low gain feedback controller is used to correct for errors between desired and estimated 
states. This generates a feedback motor command which is added to the feedforward 
motor command generated by the inverse model. If the feedback motor command goes to 
zero then the state error will, in general, also be zero. Therefore the feedback motor 
command is a measure of the error of the inverse model and is used as the error signal to 
train it.  
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