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Abstract

We generalise the Gaussian process (GP) framework for regression by
learning a nonlinear transformation of the GP outputs. This allows for
non-Gaussian processes and non-Gaussian noise. The learning algo-
rithm chooses a nonlinear transformation such that transformed data is
well-modelled by a GP. This can be seen as including a preprocessing
transformation as an integral part of the probabilistic modelling problem,
rather than as an ad-hoc step. We demonstrate on several real regression
problems that learning the transformation can lead to significantly better
performance than using a regular GP, or a GP with a fixed transformation.

1 Introduction

A Gaussian process (GP) is an extremely concise and simple way of placing a prior on
functions. Once this is done, GPs can be used as the basis for nonlinear nonparametric
regression and classification, showing excellent performance on a wide variety of datasets
[1, 2, 3]. Importantly they allow full Bayesian predictive distributions to be obtained, rather
than merely point predictions.

However, in their simplest form GPs are limited by the nature of their simplicity: they
assume the target data to be distributed as a multivariate Gaussian, with Gaussian noise on
the individual points. This simplicity enables predictions to be made easily using matrix
manipulations, and of course the predictive distributions are Gaussian also.

Often it is unreasonable to assume that, in the form the data is obtained, the noise will be
Gaussian, and the data well modelled as a GP. For example, the observations may be posi-
tive quantities varying over many orders of magnitude, where it makes little sense to model
these quantities directly assuming homoscedastic Gaussian noise. In these situations it is
standard practice in the statistics literature to take thelog of the data. Then modelling pro-
ceeds assuming that this transformed data has Gaussian noise and will be better modelled
by the GP. Thelog is just one particular transformation that could be done; there is a con-



tinuum of transformations that could be applied to the observation space to bring the data
into a form well modelled by a GP. Making such a transformation should really be a full
part of the probabilistic modelling; it seems strange to first make an ad-hoc transformation,
and then use a principled Bayesian probabilistic model.

In this paper we show how such a transformation or ‘warping’ of the observation space
can be made entirely automatically, fully encompassed into the probabilistic framework
of the GP. The warped GP makes a transformation from a latent space to the observation,
such that the data is best modelled by a GP in the latent space. It can also be viewed as a
generalisation of the GP, since in observation space it is a non-Gaussian process, with non-
Gaussian and asymmetric noise in general. It is not however just a GP with a non-Gaussian
noise model; see section 6 for further discussion.

For an excellent review of Gaussian processes for regression and classification see [4].
We follow the notation there throughout this paper and present a brief summary of GP
regression in section 2. We show in sections 4 and 5, with both toy and real data, that the
warped GP can significantly improve predictive performance over a variety of measures,
especially with regard to the whole predictive distribution, rather than just a single point
prediction such as the mean or median. The transformation found also gives insight into
the properties of the data.

2 Nonlinear regression with Gaussian processes

Suppose we are given a datasetD, consisting ofN pairs of input vectorsXN ≡ {x(n)}N
n=1

and real-valued targetstN ≡ {tn}N
n=1. We wish to predict the value of an observation

tN+1 given a new input vectorx(N+1), or rather the distributionP (tN+1|x(N+1),D). We
assume there is an underlying functiony(x) which we are trying to model, and that the
observations lie noisily around this. A GP places a prior directly on the space of functions
by assuming that any finite selection of pointsXN gives rise to a multivariate Gaussian dis-
tribution over the corresponding function valuesyN . The covariance between the function
value ofy at two pointsx andx′ is modelled with a covariance functionC(x,x′), which
is usually assumed to have some simple parametric form. If the noise model is taken to be
Gaussian, then the distribution over observationstN is also Gaussian with the entries of
the covariance matrixC given by

Cmn = C(x(m),x(n);Θ) + δmng(x(n);Θ) , (1)

whereΘ parameterises the covariance function,g is the noise model, andδmn is the Kro-
necker delta function.

Often the noise model is taken to be input-independent, and the covariance function is taken
to be a Gaussian function of the difference in the input vectors (astationarycovariance
function), although many other possibilities exist, see e.g. [5] for GPs with input dependent
noise. In this paper we consider only this popular choice, in which case the entries in the
covariance matrix are given by

Cmn = v1 exp
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Hererd is a width parameter expressing the scale over which typical functions vary in the
dth dimension,v1 is a size parameter expressing the typical size of the overall process in
y-space,v0 is the noise variance of the observations, andΘ = {v0, v1, r1, . . . , rD}.
It is simple to show that the predictive distribution for a new point given the observed
data,P (tN+1|tN ,XN+1), is Gaussian. The calculation of the mean and variance of this



distribution involves doing a matrix inversion of the covariance matrixCN of the training
inputs, which using standard exact methods incurs a computational cost of orderN3.

Learning, or ‘training’, in a GP is usually achieved by finding a local maximum in the
likelihood using conjugate gradient methods with respect to the hyperparametersΘ of the
covariance matrix. The negativelog likelihood is given by

L = − log P (tN |XN ,Θ) =
1
2

log detCN +
1
2
t>NC−1

N tN +
N

2
log 2π . (3)

Once again, the evaluation ofL, and its gradients with respect toΘ, involve computing the
inverse covariance matrix, incurring an orderN3 cost. Rather than finding a ML estimate
ΘML , a prior overΘ can be included to find a MAP estimateΘMAP, or even betterΘ can be
numerically integrated out when computingP (tN+1|x(N+1),D) using for example hybrid
Monte Carlo methods [2, 6].

3 Warping the observation space

In this section we present a method of warping the observation space through a nonlinear
monotonic function to a latent space, whilst retaining the full probabilistic framework to
enable learning and prediction to take place consistently. Let us consider a vector of latent
targetszN and suppose that this vectoris modelled by a GP,

− log P (zN |XN ,Θ) =
1
2

log detCN +
1
2
z>NC−1

N zN +
N

2
log 2π . (4)

Now we make a transformation from the true observation space to the latent space by
mapping each observation through the same monotonic functionf ,

zn = f(tn;Ψ) ∀n , (5)

whereΨ parameterises the transformation. We requiref to be monotonic and mapping on
to the whole of the real line; otherwise probability measure will not be conserved in the
transformation, and we will not induce a valid distribution over the targetstN . Including
the Jacobian term that takes the transformation into account, the negativelog likelihood,
− log P (tN |XN ,Θ,Ψ), now becomes:

L =
1
2

log detCN +
1
2
f(tN )>C−1

N f(tN )−
N∑

n=1

log
∂f(t)

∂t
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tn

+
N

2
log 2π . (6)

3.1 Training the warped GP

Learning in this extended model is achieved by simply taking derivatives of the negative
log likelihood function (6) with respect to bothΘ andΨ parameter vectors, and using a
conjugate gradient method to compute ML parameter values. In this way the form of both
the covariance matrix and the nonlinear transformation are learnt simultaneously under the
same probabilistic framework. Since the computational limiter to a GP is inverting the
covariance matrix, adding a few extra parameters into the likelihood is not really costing us
anything. All we require is that the derivatives off are easy to compute (both with respect
to t andΨ), and that we don’t introduce so many extra parameters that we have problems
with over-fitting. Of course a prior over bothΘ andΨ may be included to compute a MAP
estimate, or in fact the parameters integrated out using a hybrid Monte Carlo method.

3.2 Predictions with the warped GP

For a particular setting of the covariance function hyperparametersΘ (for exampleΘML
or ΘMAP), in latentvariable space the predictive distribution at a new point is just as for a



regular GP: a Gaussian whose mean and variance are calculated as mentioned in section 2;

P (zN+1|x(N+1),D,Θ) = N
(
ẑN+1(Θ), σ2

N+1(Θ)
)

. (7)

To find the distribution in the observation space we pass that Gaussian through the nonlinear
warping function, giving

P (tN+1|x(N+1),D,Θ,Ψ) =
f ′(tN+1)√
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N+1
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The shape of this distribution depends on the form of the warping functionf , but in general
it may be asymmetric and multimodal.

If we require a point prediction to be made, rather than the whole distribution overtN+1,
then the value we will predict depends on our loss function. If our loss function is absolute
error, then the median of the distribution should be predicted, whereas if our loss function is
squared error, then it is the mean of the distribution. For a standard GP where the predictive
distribution is Gaussian, the median and mean lie at the same point. For the warped GP in
general they are at different points. The median is particularly easy to calculate:

tmed
N+1 = f−1(ẑN+1) . (9)

Notice we need to compute the inverse warping function. In general we are unlikely to have
an analytical form forf−1, because we have parameterised the function in the opposite
direction. However since we have access to derivatives off , a few iterations of Newton-
Raphson with a good enough starting point is enough.

It is often useful to give an indication of the shape and range of the distribution by giving
the positions of various ‘percentiles’. For example we may want to know the positions of
‘2σ’ either side of the median so that we can say that approximately 95% of the density
lies between these bounds. These points in observation space are calculated in exactly the
same way as the median - simply pass the values through the inverse function:

tmed±2σ
N+1 = f−1(ẑN+1 ± 2σN+1) . (10)

To calculate the mean, we need to integratetN+1 over the density (8). Rewriting this
integral back in latent space we get

E(tN+1) =
∫

dzf−1(z)Nz(ẑN+1, σ
2
N+1) = E(f−1) . (11)

This is a simple one dimensional integral under a Gaussian density, so Gauss-Hermite
quadrature may be used to accurately compute it with a weighted sum of a small number
of evaluations of the inverse functionf−1 at appropriate places.

3.3 Choosing a monotonic warping function

We wish to design a warping function that will allow for complex transformations, but we
must constrain the function to be monotonic. There are various ways to do this, an obvious
one being a neural-net style sum oftanh functions,

f(t;Ψ) =
I∑

i=1

ai tanh (bi(t + ci)) ai, bi ≥ 0 ∀i , (12)

whereΨ = {a,b, c}. This produces a series of smooth steps, witha controlling the size
of the steps,b controlling their steepness, andc their position. Of course the number of
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Figure 1: A 1D regression task. The dotted lines show the true generating distribution, the
dashed lines show a GP’s predictions, and the solid lines show the warped GP’s predictions.
(a) The triplets of lines represent the median, and2σ percentiles in each case. (b) Predictive
probability densities atx = −π/4; i.e. a cross section through (a) at the solid grey line

stepsI needs to be set, and that will depend on how complex a function one wants. The
derivatives of this function with respect to eithert, or the warping parametersΨ, are easy
to compute. In the same spirit, sums of error functions, or sums of logistic functions, would
produce a similar series of steps, and so these could be used instead.

The problem with using (12) as it stands is that it is bounded; the inverse functionf−1(z)
does not exist for values ofz outside the range of these bounds. As explained earlier, this
will not lead to a proper density int space, because the density inz space is Gaussian,
which covers the whole of the real line. We can fix this up by using instead:

f(t;Ψ) = t +
I∑

i=1

ai tanh (bi(t + ci)) ai, bi ≥ 0 ∀i . (13)

which has linear trends away from thetanh steps. In doing so, we have restricted ourselves
to only making warping functions withf ′ ≥ 1, but because the size of the covariance
functionv1 is free to vary, theeffectivegradient can be made arbitrarily small by simply
making the range of the data in the latent space arbitrarily big.

A more flexible system of linear trends may be made by including, in addition to the neural-
net style function (12), some functions of the form1β log

[
eβm1(t−d) + eβm2(t−d)

]
, where

m1,m2 ≥ 0. This function effectively splices two straight lines of gradientsm1 and
m2 smoothly together with a ‘curvature’ parameterβ, and at positiond. The sign ofβ
determines whether the join is convex or concave.

4 A simple 1D regression task

A simple 1D regression task was created to show a situation where the warped GP should,
and does, perform significantly better than the standard GP. 101 points, regularly spaced
from −π to π on thex axis, were generated with Gaussian noise about a sine function.
These points were then warped through the functiont = z1/3, to arrive at the datasett
which is shown as the dots in Figure 1(a).
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Figure 2: Warping functions learnt for the four regression tasks carried out in this paper.
Each plot is made over the range of the observation data, fromtmin to tmax.

A GP and a warped GP were trained independently on this dataset using a conjugate gradi-
ent minimisation procedure and randomly initialised parameters, to obtain maximum like-
lihood parameters. For the warped GP, the warping function (13) was used with just two
tanh functions. For both models the covariance matrix (2) was used. Hybrid Monte Carlo
was also implemented to integrate over all the parameters, or just the warping parameters
(much faster since no matrix inversion is required with each step), but with this dataset (and
the real datasets of section 5) no significant differences were found from ML.

Predictions from the GP and warped GP were made, using the ML parameters, for 401
points regularly spaced over the range ofx. The predictions made were the median and
2σ percentiles in each case, and these are plotted as triplets of lines on Figure 1(a). The
predictions from the warped GP are found to be much closer to the true generating distri-
bution than the standard GP, especially with regard to the2σ lines. The mean line was also
computed, and found to lie close, but slightly skewed, from the median line.

Figure 1(b) emphasises the point that the warped GP finds the shape of the whole predictive
distributionmuch better, not just the median or mean. In this plot, one particular point on
thex axis is chosen,x = −π/4, and the predictive densities from the GP and warped GP
are plotted alongside the true density (which can be written down analytically). Note that
the standard GP must necessarily predict a symmetrical Gaussian density, even when the
density from which the points are generated is highly asymmetrical, as in this case.

Figure 2(a) shows the warping function learnt for this regression task. Thetanh functions
have adjusted themselves so that they mimic at3 nonlinearity over the range of the obser-
vation space, thus inverting thez1/3 transformation imposed when generating the data.

5 Results for some real datasets

It is not surprising that the method works well on the toy dataset of section 4 since it was
generated from a known nonlinear warping of a smooth function with Gaussian noise. To
demonstrate that nonlinear transformations also help on real data sets we have run the
warped GP comparing its predictions to an ordinary GP on three regression problems.
These datasets are summarised in the following table which shows the range of the targets
(tmin, tmax), the number of input dimensions (D), and the size of the training and test sets
(Ntrain, Ntest) that we used.

Dataset D tmin tmax Ntrain Ntest

creep 30 18 MPa 530 MPa 800 1266
abalone 8 1 yr 29 yrs 1000 3177
ailerons 40 −3.0× 10−3 −3.5× 10−4 1000 6154



Dataset Model Absolute error Squared error − log P (t)
creep GP 16.4 654 4.46

GP +log 15.6 587 4.24
warped GP 15.0 554 4.19

abalone GP 1.53 4.79 2.19
GP +log 1.48 4.62 2.01
warped GP 1.47 4.63 1.96

ailerons GP 1.23× 10−4 3.05× 10−8 -7.31
warped GP 1.18× 10−4 2.72× 10−8 -7.45

Table 1: Results of testing the GP, warped GP, and GP withlog transform, on three real
datasets. The units for absolute error and squared error are as for the original data.

The datasetcreep is a materials science set, with the objective to predict creep rup-
ture stress (in MPa) for steel given chemical composition and other inputs [7, 8]. With
abalone the aim is to predict the the age of abalone from various physical inputs [9].
ailerons is a simulated control problem, with the aim to predict the control action on
the ailerons of an F16 aircraft [10, 11].

For datasetscreep andabalone , which consist of positive observations only, standard
practice may be to model thelog of the data with a GP. So for these datasets we have
compared three models: a GP directly on the data, a GP on the fixedlog-transformed data,
and the warped GP directly on the data. The predictive points and densities were always
compared in the original data space, accounting for the Jacobian of both thelog and the
warped transforms. The models were run as in the 1D task: ML parameter estimates only,
covariance matrix (2), and warping function (13) with threetanh functions.

The results we obtain for the three datasets are shown in Table 1. We show three measures
of performance over independent test sets: mean absolute error, mean squared error, and
the mean negativelog predictive density evaluated at the test points. This final measure
was included to give some idea of how well the model predicts the entire density, not just
point predictions.

On these three sets, the warped GP always performs significantly better than the standard
GP. Forcreep andabalone , the fixedlog transform clearly works well too, but partic-
ularly in the case ofcreep , the warped GP learns a better transformation. Figure 2 shows
the warping functions learnt, and indeed 2(b) and 2(c) are clearlylog-like in character. On
the other hand 2(d), for theailerons set, is exponential-like. This shows the warped GP
is able to flexibly handle these different types of datasets. The shapes of the learnt warp-
ing functions were also found to be very robust to random initialisation of the parameters.
Finally, the warped GP also makes a better job of predicting the distributions, as shown by
the difference in values of the negativelog density.

6 Conclusions, extensions, and related work

We have shown that the warped GP is a useful extension to the standard GP for regression,
capable of finding extra structure in the data through the transformations it learns. From
another viewpoint, it allows standard preprocessing transforms, such aslog, to be discov-
ered automatically and improved on, rather than be applied in an ad-hoc manner. We have
demonstrated an improvement in performance over the regular GP on several datasets.

Of course some datasets are well modelled by a GP already, and applying the warped GP
model simply results in a linear “warping” function. It has also been found that datasets that
have been censored, i.e. many observations at the edge of the range lie on a single point,



cause the warped GP problems. The warping function attempts to model the censoring
by pushing those points far away from the rest of the data, and it suffers in performance
especially for ML learning. To deal with this properly a censorship model is required.

As a further extension, one might consider warping the input space in some nonlinear fash-
ion. In the context of geostatistics this has actually been dealt with by O’Hagan [12],
where a transformation is made from an input space which can have non-stationary and
non-isotropic covariance structure, to a latent space in which the usual conditions of sta-
tionarity and isotropy hold.

Gaussian process classifiers can also be thought of as warping the outputs of a GP, through a
mapping onto the(0, 1) probability interval. However, the observations in classification are
discrete, not points in this warped continuous space. Therefore the likelihood is different.

It should be emphasised that the presented method can be beneficial in situations where the
noise variance depends on the output value. Gaussian processes where the noise variance
depends on theinputshave been examined by e.g. [5]. Forms of non-Gaussianity which
do not directly depend on the output values (such as heavy tailed noise) are also not cap-
tured by the method proposed here. We propose that the current method should be used in
conjunction with methods targeted directly at these other issues. The force of the method
it that it is powerful, yet very easy and computationally cheap to apply.
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