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Abstract

We provide a general framework for learn-
ing precise, compact, and fast representations
of the Bayesian predictive distribution for a
model. This framework is based on mini-
mizing the KL divergence between the true
predictive density and a suitable compact
approximation. We consider various meth-
ods for doing this, both sampling based ap-
proximations, and deterministic approxima-
tions such as expectation propagation. These
methods are tested on a mixture of Gaussians
model for density estimation and on binary
linear classification, with both synthetic data
sets for visualization and several real data
sets. Our results show significant reductions
in prediction time and memory footprint.

1. Introduction

We consider the problem of representing the predictive
distribution of a complex probabilistic model using a
low-memory and fast-to-evaluate approximation. This
has application to tasks which require a large num-
ber of rapid online predictions, for example in tracking
or control scenarios. It is also useful for applications
which require a compact representation of the model,
for example when implementing a pattern recognition
system on a mobile phone or PDA.

In most useful models, obtaining the full Bayesian pre-
dictive distribution is intractable, and approximations
must be made, in either a deterministic manner, or via
sampling. Current approximation schemes focus on
approximating the posterior distribution over parame-
ters well, and then storing a representation of this dis-
tribution to make future predictions. The problem is
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that these approximations typically lead to large rep-
resentations which are costly both in time and mem-
ory to predict from. In this paper, we present meth-
ods that compress these approximations significantly
whilst still maintaining accuracy.

In the case of density estimation, we need to be able
to evaluate the density under our model at new data
points. The full Bayesian predictive distribution takes
into account our uncertainty in the model parameters
by averaging over them. We want a method that ac-
curately represents this averaging process, whilst still
remaining concise for prediction.

In the case of supervised learning, e.g. regression and
classification, we typically want to predict the value
of an output, given a new set of inputs. If this out-
put is then used in further downstream processing, the
full predictive distribution is especially important for
propagating uncertainty. Again, we want an approx-
imation to this distribution that has correctly taken
into account the averaging over model parameters.

2. The approximation framework

Suppose we have a probabilistic model p(y|w), param-
eterized by w, on which we have the prior distribution
p(w). We have observed a set of data D consisting
of N i.i.d. observations {yn}N

n=1. A standard ap-
proach is to approximate the posterior p(w|D), and use
this to make future predictions. If w is a real-valued
vector, then one might find a Gaussian approxima-
tion by Laplace’s method (Tierney & Kadane, 1986),
a variational method (Jaakkola & Jordan, 2000), or
expectation propagation (EP) (Minka, 2001). Alter-
natively a large number of samples from p(w|D) could
be obtained using Markov chain Monte Carlo (MCMC)
methods. Predictions can then be made by using this
approximation to compute the following average over
parameters:

p(y|D) =
∫

dw p(y|w)p(w|D) . (1)
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This is called the Bayesian predictive distribution, and
it is a Bayesian model average over w. Often instead,
only a single value of w is used to make predictions,
for example the posterior mean w̄ =

∫
dwwp(w|D) is

used via p(y|w̄), or other traditional point estimates
such as ML or MAP parameters.

However the quantity we are interested in is the pre-
dictive distribution p(y|D), and it is this we will try to
approximate with some other parameterized distribu-
tion p(y|θ). The main motivation for seeking a sepa-
rate approximation is that we hope to find a compact
representation explicitly tailored for prediction. The
representations we usually have for the posterior are
often not compact, especially in high dimensions. For
MCMC methods that sample from p(w|D), keeping
around a large number of samples in memory is costly,
both taking up storage and slowing down predictions,
and yet only keeping a small number may sacrifice ac-
curacy in predictive probability. The goal of this pa-
per is to find a representation that is both a compact
and sufficiently accurate representation of the predic-
tive distribution. Our motivation is not only a concern
with memory requirements of the representation, but
also with the speed with which the predictive density
can be evaluated. By finding an explicit parametric
representation, future predictions can be made quickly
when compared with evaluating the potentially costly
integral (1) on the fly.

We will return to the issue of choosing the form for this
approximating distribution in the next section 2.1, suf-
fice to say there are a number of possibilities depending
on the model involved. A natural way to make the ap-
proximation is to try to minimize the KL divergence
between the predictive distribution and the approxi-
mating distribution:

θ̂ = arg min
θ

KL
[
p(y|D) || p(y|θ)

]
= arg max

θ

∫
dy p(y|D) log p(y|θ) .

(2)

The KL divergence is zero iff p(y|θ) = p(y|D) and
provides a principled information theoretic measure of
how close p(y|θ) is to p(y|D).

2.1. Choosing the approximating density

One simple possibility is to choose the approximating
density to be of exactly the same form as the origi-
nal model density p(y|w). Then the problem in (2)
becomes one of finding the single best setting of the
parameters ŵ of the original model, so that KL is min-
imized between this and the predictive distribution:

ŵ = arg max
w

∫
dy p(y|D) log p(y|w) . (3)

This ‘best setting’ is commonly known as the Bayes
point, although precise definitions vary (Ruján, 1997;
Herbrich et al., 2001). Often the posterior mean w̄ is
taken as an approximation to this Bayes point.

Such a single point approximation is often unsuitable
as a representation for predictions, because the na-
ture of the averaging process of (1) tends to lead to a
predictive density that is of a more complex class of
distributions than the original model density. A better
alternative is to take an equal weighted mixture of a
small number of original model densities:

p(y|θ) =
1
M

M∑
m=1

p(y|wm) , (4)

where θ = {wm}M
m=1. One can then search for the

{wm} to minimize KL in (2). This has the nice inter-
pretation of finding a small number of ‘best samples’
from the posterior to act as the predictive representa-
tion, since (4) is exactly the way one would combine
samples to approximate the integral of (1). We also
know that if we choose M large enough we will be
able to approximate the predictive distribution to ar-
bitrary accuracy without overfitting. In practice we
will want to choose M to be as small as we can get
away with, and adjusting M provides an easy way to
make a compactness/accuracy trade-off. Of course we
could also consider finding weights for these mixture
components, rather than just weighting them equally.

Finally, we do not have to restrict ourselves to working
with the same type of approximating distribution as
the model distribution at all. We could choose an en-
tirely different class of distribution, preferably some-
thing that is of greater complexity than the original
model.

3. Density Estimation

In the previous section we presented the framework
within which one can find an approximating predic-
tive distribution, but we are left with the problem of
how to perform the maximization of (2). In this sec-
tion we propose a sampling based scheme for density
estimation. A deterministic alternative discussed in
section 6 is a possibility for the future.

3.1. A sampling based scheme using ‘fake data’

One obvious way to evaluate (2) is to generate samples
from p(y|D), or ‘fake data’. First we sample from the
posterior p(w|D) using our favorite sampling method
and obtain a large set of samples {ws}S

s=1. Given these
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samples our estimate for the predictive distribution is:

p(y|D) ≈ 1
S

S∑
s=1

p(y|ws) . (5)

We could just use this as our representation for pre-
diction, but it involves keeping around a large number
of samples, and then evaluating the density of a large
mixture of the original model, which may be too costly
and memory intensive. Instead we can sample again
from the mixture (5) to generate ‘fake predictive data’
{yi}I

i=1. The method for finding the approximation
(2) is then a maximum likelihood (ML) problem on
the generated ‘fake data’:

θ̂ = arg max
θ

∑
i

log p(yi|θ) . (6)

If we choose as our approximation the mixture (4),
then we have succeeded in reducing the size of the pre-
dictive representation from S samples from the poste-
rior, to a small number M of ‘best samples’, and our
future predictions will be both quick and accurate.

For complete simplicity and concreteness, let us con-
sider the case where the original model is an equal
weighted mixture of one dimensional Gaussians with
fixed variances: p(y|w) = 1

J

∑J
j=1Ny(w(j), v(j)).

Having obtained samples from the posterior {ws},
we generate ‘fake data’ from the (J × S) mixture
1

JS

∑
jsNy(w(j)

s , v(j)). We then perform an ML fit to
this generated data with a mixture of K Gaussians,
where K > J , and where we may well also want to fit
variances and mixing proportions too. The outcome
of this procedure is that we have reduced the predic-
tive representation obtained from sampling, which is a
mixture of J × S Gaussians, down to a mixture of K
Gaussians, where K can be chosen to trade off com-
pactness and accuracy. The results of doing this are
shown later in section 5.1.

4. Supervised Learning

We extend the framework of the previous section to su-
pervised learning, where we have a conditional model
representing the relationship between an input x and
an output y. Here it does not make sense to minimize
KL divergence for a particular input x, so instead we
consider average KL divergence over an input density
p(x):

θ̂ = arg min
θ

∫
dx p(x) KL

[
p(y|x,D) || p(y|x, θ)

]
.

(7)

This will be optimal in the sense of KL loss, but we
could have a more general decision-theoretic loss func-
tion l(y′, y) – the cost of predicting y′ when the true
output was y. In this case we would want our ap-
proximation to minimize expected loss. Different loss
functions could lead to interesting different approxi-
mations, but we do not explore this further here. See
Herbrich et al. (2001) for further discussion of loss
functions in binary classification.

Specifying an input density gives us the flexibility to
be able to tune the approximation to be best in a par-
ticular region of input space where we expect to make
predictions. For example we may specify a Gaussian
density for p(x), in which case the integral of (7) can
be computed by drawing a suitable number of input
samples {xi}. Alternatively we may have access to a
large amount of unlabeled data, which we can use as
a surrogate for samples from an input density. Either
way the approximation is found by:

θ̂ = arg max
θ

I∑
i=1

∫
dy p(y|xi,D) log p(y|xi, θ) . (8)

4.1. Binary linear classifiers

To be concrete let us consider the particular case of a
binary linear classifier, where y ∈ {±1} and x is a real
valued D-dimensional vector:

p(y|x,w) = φ(w>xy) . (9)

Here φ is an appropriate link function, for example a
logistic function for logistic regression, or a cumulative
normal for the probit model. In the case of binary
classification, (8) can be rewritten as:

θ̂ = arg max
θ

I∑
i=1

[
ai log p(y = +1|xi, θ)

+ (1− ai) log p(y = −1|xi, θ)
]

, (10)

where ai = p(y = +1|xi,D). This has the interesting
interpretation as a weighted maximum likelihood fit to
the input sampled data. Of course, we need to be able
to calculate the weights {ai} corresponding to the in-
put samples, and this can be done in a number of ways.
Once again we consider a sampling based approxima-
tion in section 4.1.1, followed by a deterministic ap-
proximation in section 4.1.2, and we choose a small
mixture representation (4) for the approximation:

p(y|x, θ) =
1
M

M∑
m=1

p(y|x,wm) =
1
M

M∑
m=1

φ(w>
mxy) .

(11)
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4.1.1. A sampling scheme

We can obtain a large number of parameter samples
from the posterior, and use these samples to make pre-
dictions at the {xi}:

ai = p(y = +1|xi,D) ≈ 1
S

S∑
s=1

φ(w>
s xi) . (12)

Clearly one could just keep around all these samples
to make future predictions, rather than try to fit the
distribution p(y|x, θ), but memory and computational
limitations might make this highly impractical. The
procedure described in (10) provides a neat way to se-
lect a small number of parameter ‘samples’ from which
to make predictions, and it significantly out-performs
just randomly picking a few samples to keep, as we
show in section 5.2.

4.1.2. A deterministic scheme

An alternative is to use a deterministic approximation
procedure such as expectation propagation (Minka,
2001). EP is an iterative method that approximates a
product of factors by a product of simpler factors, for
example Gaussians, the integral of which can be com-
puted analytically. We can use EP to find a Gaussian
approximation to the posterior, q(w) ≈ p(w|D), and
then use this approximation to calculate the {ai}:

ai = p(y = +1|xi,D)

≈
∫

dw p(y = +1|xi,w)q(w)

=
∫

dw φ(w>xi)Nw(m, V ) ,

(13)

where Nw(m, V ) is a Gaussian distribution on w with
mean m and covariance V . This integral is only one
dimensional, because the linear model projects the in-
tegral onto the direction of xi. Depending on the link
function φ, this integral can be computed in a variety
of ways. For example, in the probit model, it involves
the evaluation of an error function. For the logistic
model, the integral can be done by quadrature, and is
best done by a pre-computed lookup table for speed.

The standard approach to deterministic approxima-
tion would be to keep around the mean and covari-
ance of the Gaussian approximation to the posterior,
and use these to make all future predictions. However,
depending on the model, the predictions are rather
costly to evaluate via (13). E.g. in logistic regression
there is a memory/speed trade-off when making this
calculation by a lookup table for a large number of pre-
dictions. On the other hand, it can be extremely quick
to evaluate p(y|x, θ) on a large test set, as we show in
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Figure 1. A one dimensional mixture of Gaussians model.
The cyan/faint line shows the mixture of 3 Gaussians from
which the 10 data points shown as black dots were gen-
erated. The dotted line shows the predictive distribution
obtained by extensive MCMC sampling. The dashed line
shows the distribution obtained by keeping just 5 random
parameter samples from the MCMC. The solid line shows
the ML fit of a mixture of 5 Gaussians to ‘fake data’ (see
section 3.1).

section 5.3. The other advantage to our method is that
in a high dimensional model the predictive representa-
tion is much more concise. The covariance matrix of
the Gaussian approximation to p(w|D) grows in size
as D2, whereas the mixture representation based on
(4) is linear with D. This can lead to a significant
reduction in memory requirements, and a significant
increase in speed in evaluating future predictions.

5. Results

We have tested the schemes described in the previous
sections on a number of examples. We start with very
simple examples to illustrate key ideas clearly.

5.1. Density estimation

Ten data points were generated i.i.d. from an equal
weighted mixture of J = 3 1-d fixed variance Gaus-
sians, as shown in Figure 1. The sampling method of
3.1 was then followed, with a broad spherical Gaus-
sian prior placed on the means. First a large number
of samples were drawn from the posterior p(w|D) us-
ing MCMC, ‘fake data’ was generated from (5), and a
mixture of K = 5 Gaussians fitted to this data using
(6). The variances and mixing proportions were also
adjusted in this fit – 15 parameters overall.

Figure 1 shows that the ‘true’ predictive distribution,
as calculated by using all the samples, is almost exactly
approximated by using a mixture of only 5 Gaussians.
Thus this is an extremely concise representation for
making future predictions. The figure also shows that
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(c) 10 best samples (d) 10 random samples
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Figure 2. Contour plots showing approximations to the
predictive distribution p(y = +1|x,D). The gray lines are
lines of constant predictive probability of value shown by
the side-bar. The blue circles (−1) and the red crosses (+1)
are the original data. (a) Predictive distribution from ex-
tensive sampling using MCMC. (b) Direct predictions us-
ing Gaussian obtained from EP. (c) Mixture of 10 ‘best
samples’. (d) 10 random samples from the MCMC proce-
dure. The third row contains another 10 ‘best samples’,
relearned with a random initialization, and another 10 dif-
ferent random samples from the MCMC.

fitting the mixture of Gaussians is a lot better than
just picking 5 random samples from the posterior (an
equivalent number of parameters because this corre-
sponds to a mixture of J × 5 = 15 Gaussians).

5.2. Supervised learning – sampling based

The second example we consider is logistic regression,
where for visualization purposes we consider a 2D case
first. 24 data points were generated, half labeled +1,
the half other −1; these points are shown as circles and
crosses in Figure 2. A large number of samples from
the posterior p(w|D) were generated, using a spherical
Gaussian prior, and a fraction of these are shown in
Figure 3. Figure 2(a) shows a contour plot of the pre-
dictive distribution obtained from using all the sam-
ples, in a region of space surrounding the training data.
This plot can be regarded as ground truth, to which
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Figure 3. The posterior for the binary logistic classifier
with data as shown in Figure 2. The axes are the two
weights (w1, w2) = w of the logistic classifier. The dots
represent samples from the posterior p(w|D). The solid
line is the two standard deviation ellipse for the EP ap-
proximation to the posterior. The stars are 10 random
samples from the posterior (see Fig. 2(d)). The crosses are
10 ‘best samples’ as found by using the approximation of
section 4.1.1 (see Fig. 2(c)).

our approximation methods are aiming to match.

Then a Gaussian approximation to the posterior was
found using EP. The details of the derivation of the EP
procedure for logistic regression are lengthy and are
not shown here, but they follow Minka (2001) closely.
Figure 2(b) shows the predictive distribution obtained
directly from this approximation using the same for-
mula as (13). One can see that in this case the EP ap-
proximation is not good; this can also be understood
by looking at the EP two standard deviation ellipse
plotted in Figure 3, where we see that the EP Gaus-
sian approximation misses a large extended region of
the posterior density. For such an example where EP
does not provide a good approximation, then a sam-
pling based approximation is the way to go. For this
example, we therefore show how the method of 4.1.1
leads to a concise and accurate representation of the
‘truth’ 2(a).

To obtain the 10 mixture fit of 2(c), 500 input samples
from a broad Gaussian input density were used, and
by the procedure of 4.1.1, 10 ‘best posterior samples’
were learned so as to approximate the true predictive
distribution 2(a). As we can see, the predictive distri-
bution in 2(c) looks very similar to that in 2(a), and
is significantly better than either the EP approxima-
tion, or the distribution predicted by choosing to keep
10 random samples as our representation (2(d)). The
second row of Figure 2 also shows that our method is
very robust to different random initializations of the
gradient algorithm. This is in contrast to choosing
different batches of 10 random samples, in which case
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Figure 4. The accuracy of the predictive representation is
plotted as a function of the number of random samples
(red dashed) and ‘best samples’ (solid blue). The dotted
lines are 1 standard deviation lines for the random sample
method. The variability of the ‘best sample’ method is so
small that it would not show up on this plot.

there is high variability to the predictive contours.

The difference between carefully tuning our ‘samples’
by KL minimization, to just picking some random sam-
ples, is further highlighted by Figure 4. This figure was
generated by taking the absolute difference in proba-
bility1 between the distributions of Figure 2(c) or 2(d)
and the ground truth 2(a), spatially averaged over a
fine grid of points. This was done 1000 times, with
different random initializations for the ‘best samples’
gradient algorithm, and with different random batches
of samples for the random samples method. Finally
the experiment was repeated varying the number of
samples (random or best) over a large range.

We have already demonstrated that tuning ‘samples’
using (10) leads to greater accuracy than using the
same number of random samples. However one might
think that we could just use a few more random sam-
ples, and achieve a comparable accuracy, without all
the expense of choosing them by KL minimization.
Figure 4 shows that, at least for this example, this
is not the case. The gain in accuracy with increas-
ing number of random samples is a very slow process.
In fact one would need about 500 random samples to
achieve the same mean accuracy as just 10 ‘best sam-
ples’. Even then, the variance of the error for the ran-
dom sample method is very high, whereas the variance
is essentially non-existent for the ‘best sample’ method
– it finds the same quality of solution every time.

5.2.1. Experiments on real data sets

We applied the sampling based method of the previ-
ous section to several real datasets. Two data sets

1E.g. a difference in predictive probability of 0.006
might mean that the true probability at input x was
p(y = +1|x,D) = 0.4 whereas our method gave 0.394.

(Pima, Spambase) were taken from the UCI reposi-
tory (Blake & Merz, 1998) and two (SA heart disease,
USPS digits) from Hastie et al. (2001). Our method
is particularly useful in the case where one has a small
amount of data, and consequently uncertainty is high.
For this reason, from each of the data sets we took
just 50 data points for training, and left the rest (usu-
ally a large number) for testing. As in the previous
section, we placed a Gaussian prior on the weights
for a logistic classifier, and sampled extensively from
the posterior distribution of the weights to obtain the
‘ground truth’ predictive distribution. To find a com-
pact representation for prediction, as before we tuned
a small number of ‘best samples’ to this distribution.
As a comparison we also chose the same number of
samples randomly from the posterior distribution. To
measure performance on the test sets, we thresholded
these predictive distributions to obtain a measure of
classification error.

The results are shown in Figure 5. The actual value of
test error is not important, as firstly we only trained
on a very small number of points, and secondly we are
using a very simple logistic classifier. The important
comparison is between the ‘ground truth’ error rate
(obtained by extensive sampling and marked by the
straight lines) and the different compact approxima-
tions. For each of the data sets we see a very simi-
lar effect to that of the synthetic 2D data in Figure
4. We find that choosing random samples instead of
tuning them degrades mean performance, and leads to
very high variance. In contrast, spending a little extra
time in training by searching for ‘best samples’ gives
an error rate very close to ‘ground truth’, with very
high reliability. Suppose we initially took 5000 sam-
ples from the posterior, and we choose to represent the
predictive distribution with 50 tuned ‘samples’, then
we have reduced by a factor of 100 both the time for
future predictions and the memory requirement.

Although the difference in error rates between tuned
and random sampling shown in the plots is not large,
we expect these differences to increase if one was to use
a more sophisticated classification model than logis-
tic regression. This is because a linear classifier tends
to produce a relatively simple posterior distribution
in parameter space. A more complex classifier, with
many different types of parameters, is likely to give a
complicated posterior distribution, and here random
selection of samples is expected to perform even worse
than shown. It is worth remembering that we can use
our method to tune ‘samples’ on any Bayesian model
where derivatives can be taken with respect to the pa-
rameters.
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Figure 5. The classification test error rate is shown for 4 different real data sets as a function of the number of random
samples (red dashed/dotted), or the number of best ‘samples’ (blue solid/dotted). The dotted lines are 1 standard
deviation lines from multiple trials. The error rate from extensive sampling is shown as the straight black dot-dashed line.

5.3. Supervised learning – deterministic

Another regime in which the mixture representation
really helps is when we know we are going to have
to make a large number of predictions in a high di-
mensional problem, and where we believe that a de-
terministic approximation such as EP achieves high
enough accuracy. As discussed in 4.1.2, the size of
the EP representation scales as D2, as opposed to the
linear scaling of the mixture representation, and the
integral (13) proves costly over a large test set. To
simulate this regime, a similar training set to the pre-
vious example was generated, but with a large number
of dimensions D, and a large test set of size 100,000
was also generated. Then computation times (in Mat-
lab) for prediction were measured, including the extra
training time taken by our method to find the ‘best
samples’, whilst checking that the accuracy of predic-
tions of the two methods remained equivalent. The
results are summarized in Table 1.

Just 10 mixture components were used in the fitted
model, and yet the accuracy remains extremely good,
as shown by the final column which measures how
much the mixture approximation deviates from the
‘truth’ (MCMC) over the test set1. So to summa-
rize, we buy ourselves three things in high dimensions.
Firstly, as the table shows, the actual prediction times

D 100 150 200
EP prediction time /s 8.92 58.3 147
extra training time
for mixture /s 2.78 3.77 9.32
mixture prediction time /s 0.825 1.15 1.56
mean difference in
predictive probability1 0.006 0.007 0.008

Table 1. Comparison of training and prediction times on a
high dimensional problem

on the large test set are much faster when using the
mixture representation (by about a factor of 100 for
D = 200, and scaling linearly rather than quadrati-
cally in D). Secondly the storage requirement of this
representation is much smaller. Thirdly, in the case
of logistic regression, we do not have to store a huge
lookup table for the integral of (13) in order to make
the predictions (though we do still need it for training).

6. Extensions and related work

One of the limitations with the approaches presented
in this paper so far is that the final predictive approxi-
mation can only be as accurate as the intermediate ap-
proximation of the posterior, never more so. Of course
we do gain greatly in compactness and speed in all the
ways described in the previous section. However, it
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may be possible to find a more accurate direct deter-
ministic approximation to the predictive distribution
that bypasses the approximation of the posterior. We
demonstrate this idea for the case of density estimation
by considering directly approximating (2). Expanding:

L(θ) =
∫

dy p(y|D) log p(y|θ)

∝
∫

dy

[∫
dw p(y|w)

N∏
n=1

p(yn|w)p(w)

]
log p(y|θ)

=
∫

dw
N∏

n=1

p(yn|w)p(w)
[∫

dy p(y|w) log p(y|θ)
]

︸ ︷︷ ︸
tN+1(w)

=
∫

dw
N+1∏
n=0

tn(w) , (14)

where we have substituted (1) and assumed i.i.d. data.
Here t0(w) , p(w) and tn(w) , p(yn|w), n = 1 . . . N .
Since (14) ends up being an integral of a product of
factors, we can use EP to approximate this integral.
The way EP is employed here is similar to the usual
calculation of the evidence, but with one extra term
tN+1. When it comes to matching moments in EP, we
need to be able to compute quantities such as:

ZN+1 =
∫

dw q(w)tN+1(w)

=
∫

dy
[∫

dw q(w)p(y|w)
]

log p(y|θ) ,

(15)

where q(w) is a Gaussian approximation. Suppose w
represents the means in the simple fixed variance mix-
ture of Gaussians model of section 3.1. Then the inner
bracketed integral can be done analytically, and is an-
other mixture of Gaussians itself. We are then left
with the outer integral over y. This can be done nu-
merically, for example quadrature for low-dimensions,
or sampling from the bracketed mixture of Gaussians
for high dimensions.

To maximize L(θ), we also want gradients with respect
to θ. These gradients can be approximated in the same
fashion where the extra term in the product becomes:

∇θtN+1(w) =
∫

dy p(y|w)
∇θ p(y|θ)

p(y|θ)
. (16)

The problem with this method is that it is not possible
to approximate this extra derivative term with a Gaus-
sian, as it is possibly a complicated function of w with
positive, negative and zero regions. Although not cur-
rently viable with tools in the EP framework, this ap-
proach may become possible with some modifications,
or with other approximate integration techniques.

The idea of focusing approximations on predictive per-
formance has been explored in the context of Bayesian
network (BN) model selection (Heckerman & Chicker-
ing, 2000). The authors compare the structure of the
most probable BN with the BN which best matches
the predictive distribution. They found that the lat-
ter was generally more complex, which agrees with our
arguments in section 2.1. A natural extension of their
work, in line with our approach, would be to fit a mix-
ture of BNs as the approximating model.

7. Conclusions

We have described a general framework for making
approximations to predictive distributions that can be
applied to a wide variety of models. We have demon-
strated significant advantages over more traditional
approaches – we can find a compact representation for
fast prediction, whilst still retaining the desired prop-
erties of parameter averaging. For logistic regression
we have shown that tuning a few ‘best samples’ using a
large number of true samples, reduces storage require-
ments for prediction by a factor of 50 over choosing
a random subset, and massively reduces variability in
the predictive distribution (Figure 4). We see the same
effect when we test the method on real data sets, ex-
cept that this time the effect is measured through ac-
tual test classification error. Moreover prediction time
can also be reduced by about two orders of magnitude
for a high dimensional problem (Table 1).
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