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Abstract

The Bayesian paradigm apparently only sometimes gives rise to Occam’s
Razor; at other times very large models perform well. We give simple
examples of both kinds of behaviour. The two views are reconciled when
measuring complexity of functions, rather than of the machinery used to
implement them. We analyze the complexity of functions for some linear
in the parameter models that are equivalent to Gaussian Processes, and
always find Occam’s Razor at work.

1 Introduction

Occam’s Razor is a well known principle of “parsimony of explanations” which is influen-
tial in scientific thinking in general and in problems of statistical inference in particular. In
this paper we review its consequences for Bayesian statistical models, where its behaviour
can be easily demonstrated and quantified. One might think that one has to build a prior
over models which explicitly favours simpler models. But as we will see, Occam’s Razor is
in fact embodied in the application of Bayesian theory. This idea is known as an “automatic
Occam’s Razor” [Smith & Spiegelhalter, 1980; MacKay, 1992; Jefferys & Berger, 1992].

We focus on complex models with large numbers of parameters which are often referred to
asnon-parametric. We will use the term to refer to models in which we do not necessarily
know the roles played by individual parameters, and inference is not primarily targeted at
the parameters themselves, but rather at the predictions made by the models. These types
of models are typical for applications in machine learning.

From a non-Bayesian perspective, arguments are put forward for adjusting model com-
plexity in the light of limited training data, to avoid over-fitting. Model complexity is often
regulated by adjusting the number of free parameters in the model and sometimes complex-
ity is further constrained by the use of regularizers (such as weight decay). If the model
complexity is either too low or too high performance on an independent test set will suffer,
giving rise to a characteristic Occam’s Hill. Typically an estimator of the generalization
error or an independent validation set is used to control the model complexity.
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From the Bayesian perspective, authors seem to take two conflicting stands on the question
of model complexity. One view is to infer the probability of the model for each of several
different model sizes and use these probabilities when making predictions. An alternate
view suggests that we simply choose a “large enough” model and sidestep the problem of
model size selection. Note that both views assume that parameters are averaged over. Ex-
ample: Should we use Occam’s Razor to determine the optimal number of hidden units in a
neural network or should we simply use as many hidden units as possible computationally?
We now describe these two views in more detail.

1.1 View 1: Model size selection

One of the central quantities in Bayesian learning is theevidence, the probability of the data
given the modelP (Y |Mi) computed as the integral over the parametersw of the likelihood
times the prior. The evidence is related to the probability of the model,P (Mi|Y ) through
Bayes rule:

P (Y |Mi) =
∫
P (Y |w,Mi)P (w|Mi) dw, P (Mi|Y ) =

P (Y |Mi)P (Mi)
P (Y )

,

where it is not uncommon that the prior on modelsP (Mi) is flat, such thatP (Mi|Y ) is
proportional to the evidence. Figure 1 explains why the evidence discourages overcomplex
models, and can be used to select1 the most probable model.

It is also possible to understand how the evidence discourages overcomplex models and
therefore embodies Occam’s Razor by using the following interpretation. The evidence is
the probability that if yourandomly selectedparameter values from your model class, you
would generate data setY . Models that are too simple will be very unlikely to generate
that particular data set, whereas models that are too complex can generate many possible
data sets, so again, they are unlikely to generate that particular data set at random.

1.2 View 2: Large models

In non-parametric Bayesian models there is nostatistical reason to constrain models, as
long as our prior reflects our beliefs. In fact, since constraining the model order (i.e. num-
ber of parameters) to some small number would not usually fit in with our prior beliefs
about the true data generating process, it makes sense to use large models (no matter how
much data you have) and pursue the infinite limit if you can2. For example, we ought not
to limit the number of basis functions in function approximation a priori since we don’t
really believe that the data was actually generated from a small number of fixed basis func-
tions. Therefore, we should consider models with as many parameters as we can handle
computationally.

Neal [1996] showed how multilayer perceptrons with large numbers of hidden units
achieved good performance on small data sets. He used sophisticated MCMC techniques
to implement averaging over parameters. Following this line of thought there is no model
complexity selection task: We don’t need to evaluate evidence (which is often difficult)
and we don’t need or want to use Occam’s Razor to limit the number of parameters in our
model.

1We really ought to average together predictions from all models weighted by their probabilities.
However if the evidence is strongly peaked, or for practical reasons, we may want to select one as an
approximation.

2For some models, the limit of an infinite number of parameters is a simple model which can be
treated tractably. Two examples are the Gaussian Process limit of Bayesian neural networks [Neal,
1996], and the infinite limit of Gaussian mixture models [Rasmussen, 2000].
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Figure 1: Left panel: the evidence as a function of an abstract one dimensional represen-
tation of “all possible” datasets. Because the evidence must “normalize”, very complex
models which can account for many datasets only achieve modest evidence; simple models
can reach high evidences, but only for a limited set of data. When a datasetY is observed,
the evidence can be used to select between model complexities. Such selection cannot be
done using just the likelihood,P (Y |w,Mi). Right panel: neural networks with different
numbers of hidden unit form a family of models, posing the model selection problem.

2 Linear in the parameters models – Example: the Fourier model

For simplicity, consider function approximation using the class of models that are linear in
the parameters; this class includes many well known models such as polynomials, splines,
kernel methods, etc:

y(x) =
∑

wiφi(x)⇔ y = w>Φ,

wherey is the scalar output,w are the unknown weights (parameters) of the model,φi(x)
are fixed basis functions,Φin = φi(x(n)) andx(n) is the (scalar or vector) input for exam-
ple numbern. For example, a Fourier model for scalar inputs has the form:

y(x) = a0 +
D∑
d=1

ad sin(dx) + bd cos(dx),

wherew = {a0, a1, b1, . . . , aD, bD}. Assuming an independent Gaussian prior on the
weights:

p(w|S, c) ∝ exp
(
− S

2
[
c0a

2
0 +

D∑
d=1

cd(a2
d + b2d)

])
,

whereS is an overall scale andcd are precisions (inverse variances) for weights of order
(frequency)d. It is easy to show that Gaussian priors over weights imply Gaussian Process
priors over functions3. The covariance function for the corresponding Gaussian Process
prior is:

K(x, x′) =
[ D∑
d=0

cos
(
d(x− x′)

)
/cd

]
/S.

3Under the prior, the joint density of any (finite) set of outputsy is Gaussian
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Figure 2: Top:12 different model orders for the “unscaled” model:cd ∝ 1. The mean
predictions are shown with a full line, the dashed and dotted lines limit the50% and95%
central mass of the predictive distribution (which is student-t). Bottom: posterior probabil-
ity of the models, normalised over the12 models. The probabilities of the models exhibit
an Occam’s Hill, discouraging models that are either “too small” or “too big”.

2.1 Inference in the Fourier model

Given dataD = {x(n), y(n)|n = 1, . . . , N} with independent Gaussian noise with preci-
sionτ , the likelihood is:

p(y|x,w, τ) ∝
N∏
n=1

exp
(
− τ

2
[y(n) −w>Φn]2

)
.

For analytical convenience, let the scale of the prior be proportional to the noise precision,
S = Cτ and put vague4 Gamma priors onτ andC:

p(τ) ∝ τα1−1 exp(−β1τ), p(C) ∝ Cα2−1 exp(−β2C),

then we can integrate over weights and noise to get the evidence as a function of prior
hyperparameters,C (the overall scale) andc (the relative scales):

E(C, c) =
∫∫

p(y|x,w, τ)p(w|C, τ, c)p(τ)p(C)dτdw =
βα1

1 βα2
2 Γ(α1 +N/2)

(2π)N/2Γ(α1)Γ(α2)

× |A|1/2
[
β1 +

1
2
y>(I − ΦA−1Φ>)y

]−α1−N/2
CD+α2−1/2 exp(−β2C)c1/20

D∏
d=1

cd,

4We choose vague priors by settingα1 = α2 = β1 = β2 = 0.2 throughout.
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Figure 3: Functions drawn at random from the Fourier model with orderD = 6 (dark)
andD = 500 (light) for four different scalings; limiting behaviour from left to right:
discontinuous, Brownian, borderline smooth, smooth.

whereA = Φ>Φ+C diag(c̃), and the tilde indicates duplication of all components except
for the first. We can optimize5 the overall scaleC of the weights (using eg. Newton’s
method). How do we choose the relative scales,c? The answer to this question turns out
to be intimately related to the two different views of Bayesian inference.

2.2 Example

To illustrate the behaviour of this model we use data generated from a step function that
changes from−1 to 1 corrupted by independent additive Gaussian noise with variance
0.25. Note that the true function cannot be implemented exactly with a model of finite
order, as would typically be the case in realistic modelling situations (the true function is
not “realizable” or the model is said to be “incomplete”). The input points are arranged in
two lumps of16 and8 points, the step occurring in the middle of the larger, see figure 2.

If we choose the scaling precisions to be independent of the frequency of the contributions,
cd ∝ 1 (while normalizing the sum of the inverse precisions) we achieve predictions as
depicted in figure 2. We clearly see an Occam’s Razor behaviour. A model order of around
D = 6 is preferred. One might say that the limited data does not support models more
complex than this. One way of understanding this is to note that as the model order grows,
the prior parameter volume grows, but the relative posterior volume decreases, because
parameters must be accurately specified in the complex model to ensure good agreement
with the data. The ratio of prior to posterior volumes is the Occam Factor, which may be
interpreted as a penalty to pay for fitting parameters.

In the present model, it is easy to draw functions at random from the prior by simply draw-
ing values for the coefficients from their prior distributions. The left panel of figure 3 shows
samples from the prior for the previous example forD = 6 andD = 500. With increasing
order the functions get more and more dominated by high frequency components. In most
modelling applications however, we have some prior expectations about smoothness. By
scaling the precision factorscd we can achieve that the prior over functions converges to
functions with particular characteristics asD grows towards infinity. Here we will focus
on scalings of the formcd = dγ for different values ofγ, the scaling exponent. As an
example, if we choose the scalingcd = d3 we do not get an Occam’s Razor in terms of the
order of the model, figure 4. Note that the predictions and their errorbars become almost
independent of the model order as long as the order is large enough. Note also that the
errorbars for these large models seem more reasonable than forD = 6 in figure 2 (where a
spurious “dip” between the two lumps of data is predicted with high confidence). With this
choice of scaling, it seems that the “large models” view is appropriate.

5Of course, we ought to integrate overC, but unfortunately that is difficult.
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Figure 4: The same as figure 2, except that the scalingcd = d3 was used here, leading to a
prior which converges to smooth functions asD →∞. There is no Occam’s Razor; instead
we see that as long as the model is complex enough, the evidence is flat. We also notice
that the predictive density of the model is unchanged as long asD is sufficiently large.

3 Discussion

In the previous examples we saw that, depending on the scaling properties of the prior over
parameters, both the Occam’s Razor view and the large models view can seem appropriate.
However, the example was unsatisfactory because it is not obvious how to choose the scal-
ing exponentγ. We can gain more insight into the meaning ofγ by analysing properties of
functions drawn from the prior in the limit of largeD. It is useful to consider the expected
squared difference of outputs corresponding to nearby inputs, separated by∆:

G(∆) = E[(f(x)− f(x+ ∆))2],

in the limit as∆ → 0. In the table in figure 5 we have computed these limits for various
values ofγ, together with the characteristics of these functions. For example, a property
of smooth functions is thatG(∆) ∝ ∆2. Using this kind of information may help to
choose good values forγ in practical applications. Indeed, we can attempt to infer the
“characteristics of the function”γ from the data. In figure 5 we show how the evidence
depends onγ and the overall scaleC for a model of large order (D = 200). It is seen
that the evidence has a maximum aroundγ = 3. In fact we are seeing Occam’s Razor
again! This time it is not in terms of the dimension if the model, but rather in terms of
the complexity of the functions under the priors implied by different values ofγ. Large
values ofγ correspond to priors with most probability mass on simple functions, whereas
small values ofγ correspond to priors that allow more complex functions. Note, that the
“optimal” settingγ = 3 was exactly the model used in figure 4.
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Figure 5: Left panel: the evidence as a function of the scaling exponent,γ and overall scale
C, has a maximum atγ = 3. The table shows the characteristics of functions for different
values ofγ. Examples of these functions are shown in figure 3.

4 Conclusion

We have reviewed the automatic Occam’s Razor for Bayesian models and seen how, while
not necessarily penalising thenumber of parameters, this process is active in terms of the
complexity of functions. Although we have only presented simplistic examples, the expla-
nations of the behaviours rely on very basic principles that are generally applicable. Which
of the two differing Bayesian views is most attractive depends on the circumstances: some-
times the large model limit may be computationally demanding; also, it may be difficult
to analyse the scaling properties of priors for some models. On the other hand, in typical
applications of non-parametric models, the “large model” view may be the most convenient
way of expressing priors since typically, we don’t seriously believe that the “true” gener-
ative process can be implemented exactly with a small model. Moreover, optimizing (or
integrating) over continuous hyperparameters may be easier than optimizing over the dis-
crete space of model sizes. In the end, whichever view we take, Occam’s Razor is always
at work discouraging overcomplex models.
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