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Abstract

All higher organisms are able to integrate information from multiple sensory modalities and
use this information to select and guide movements. In order to do this, the central nervous
system (CNS) must solve two problems: (1) Converting information from distinct sensory
representations into a common coordinate system, and (2) integrating this information in a
sensible way. This dissertation proposes a computational framework, based on statistics and
information theory, to study these two problems. The framework suggests explicit models
for both the coordinate transformation and integration problems, which are tested through
human psychophysics.

The experiments in Chapter 2 suggest that: (1) Spatial information from the visual and
auditory systems is integrated so as to minimize the variance in localization. (2) When the
relation between visual and auditory space is artificially remapped, the spatial pattern of
auditory adaptation can be predicted from its localization variance. These studies suggest
that multisensory integration and intersensory adaptation are closely related through the
principle of minimizing localization variance. This principle is used to model sensorimotor
integration of proprioceptive and motor signals during arm movements (Chapter 3). The
temporal propagation of errors in estimating the hand’s state is captured by the model,
providing support for the existence of an internal model in the CNS that simulates the
dynamic behavior of the arm.

The coordinate transformation problem is examined in the visuomotor system, which
mediates reaching to visually-perceived objects (Chapter 4). The pattern of changes in-
duced by a local remapping of this transformation suggests a representation based on units
with large functional receptive fields. Finally, the problem of converting information from
disparate sensory representations into a common coordinate system is addressed computa-
tionally (Chapter 5). An unsupervised learning algorithm is proposed based on the prin-
ciple of maximizing mutual information between two topographic maps. What results is
an algorithm which develops multiple, mutually-aligned topographic maps based purely on
correlations between the inputs to the different sensory modalities.
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Chapter 1

Introduction

All higher organisms are able to integrate information from multiple sensory modal-
ities and use this information to select and guide movements. At the onset, this
problem seems formidable. Information arriving into each sense codes for disparately
different aspects of the environment: Audition senses changes in pressure on the
eardrum, vision detects photons on the retina, the sense of smell recognizes individ-
ual molecules in the olfactory bulb. The central nervous system accomplishes the
astonishing feat of extracting the commonalities in this information, and integrating
these into unified percepts. This seemless integration of information not only under-
lies perception but also the production of movement. The simple act of reaching, for
example, may require convergence of information from the visual, proprioceptive, and
motor systems.

The principles underlying sensorimotor integration—the ability to integrate infor-
mation from multiple sensory and motor systems—are the topic of this thesis. Two
goals are set regarding this topic. The first goal is to build a computational the-
ory of sensorimotor integration in the tradition of Marr (1982). While each sensory
modality and motor subsystem is distinct in its functioning, there are commonalities
in the problem of integrating multiple sources of information that can be captured

within a computational framework. The second goal is to test, through psychophys-
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20 Chapter 1. Introduction

ical experiments, the simple models of sensorimotor integration that arise from this
computational framework. The predictions of these models often transcend partic-
ular systems; we therefore study integration in three distinct sensorimotor systems.
Chapter 2 investigates the integration of the visual and auditory systems when we
localize an object; Chapter 3 focuses on the sensorimotor system involved in tracking
the hand during movement; Chapter 4 focuses on the transformation from the visual
location of an object to the pointing response required to reach it.

The two goals of this thesis can be formulated as answers to two fundamental

questions:

What is the problem of sensorimotor integration? The central nervous sys-
tem (CNS) receives information from multiple sensory modalities and integrates these
sources into unified percepts and motor acts.! Can the problem of integrating multiple
information sources be formulated abstractly? I propose that the answer is Yes—the
problem can be posed, in a meaningful way, within the closely related computational
frameworks of statistics and information theory.

The problem of integrating multiple sources can be decomposed into two prob-
lems: How to convert information in multiple disparate representations into a com-
mon representation appropriate for integration, and how to combine information that
is already in a common representation in an optimal way. The second problem—
integration—is the focus of the Part I of this thesis. The first and perhaps more

difficult problem——coordinate transformation—is the focus of Part II.

How does the CINS solve the problem of sensorimotor integration? One
can derive several models of integration based on different computational criteria for
optimality. The models capture simple intuitive ways in which multiple information

sources could be combined in the CNS. For example, less reliable sources could be

'We will review the evidence that such integration does indeed occur in Chapter 2.
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ignored in favor of more reliable sources. Can these models appropriately charac-
terize sensorimotor integration in the CNS? To answer this question affirmatively,
converging lines of psychophysical evidence are required. The series of experiments
in Chapters 2 and 3, are designed to test these models in two distinct sensorimotor
systems.

There may be no single principle underlying the integration of information from
multiple sources in the brain. We start, however, with the hypothesis that there is
such a principle, and put this hypothesis to test experimentally. The disadvantage of
this theory-driven approach is that we may easily be wrong. The advantage is that,
in the process of testing our hypothesis, the questions being addressed are clarified
and extensions of the models are suggested.

In viewing the human sensorimotor system from a computational perspective,
it is natural to ask what the advantages of designing a multisensory system may
be.? The study of robotics suggests three principal advantages of combining multiple

information sources (Abidi and Gonzalez, 1992):

e Multiple sensors provide redundancy, which can reduce the overall uncertainty

of sensory estimates and increase the reliability in the case of sensor failure.

o Complementary information may be gained from the different senses. By in-
tegrating information across sensors, it may be possible to derive information

that is impossible to derive using each individual sensor (e.g. stereo vision).

o More timely information may be obtained through parallelism, as each sensor

may have a different latency.

Although all three factors may have played a role selecting for multisensory systems

2We use multisensory integration to refer to combining information from different sensory modal-
ities. We use sensorimotor integration to refer to using this information for the production of
movement. The boundary between multisensory and sensorimotor integration is blurred by the fact
that movement gives rise to both reafferent sensory signals and copies of the motor efference signal
(see Chapter 3). We occasionally use the two terms interchangeably to refer to the integration of
signals, regardless of their sensory or motor origin.
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in biological organisms, we focus on the first factor. In Chapters 2 and 3 we show how
it is possible to quantify exactly the reduction in uncertainty arising from integrating
multiple sensors.

The robotics literature also distinguishes between different levels of multisensory
integration (Abidi and Gonzalez, 1992). If the inputs from the different sensors are
synchronized, and in the same coordinate system, then they can be combined at the
signal level. For example, two noisy radar signals can be averaged to yield a clearer
signal. If the inputs are not necessarily in the same coordinate frame but provide
distinct features at a higher level of representation, then they can be combined at
the feature level. For example, using two hands a robot could feel different parts of
a object—allowing it to recognize the whole object. Finally, if the information from
each sensor is represented as a logical proposition or probability, then the senses can
be combined at the symbol level. For example, a distributed system consisting of
multiple robots could attempt to make a decision by pooling the opinions of each
robot into a single opinion. The integration processes we study in this thesis can be
considered to be at the two lower, signal and feature, levels of this hierarchy. The focus
is not on the cognitive components of combining information from different sources
but on low level perceptuomotor processes. Thus, although subjects were consciously
unaware of any discrepancies between inputs from different sensory modalities, their

perceptuomotor system reflected the effects of such discrepancies.

1.1 Outline of the Thesis

Part I of the thesis (Chapters 2 & 3) focuses on the problem of integrating information
from different sensory modalities. A computational framework for multisensory inte-
gration is derived from statistical estimation theory in Chapter 2. In this framework,
the problem of integrating multiple modalities is closely tied to the problem of adapt-

ing to discrepancies between modalities. A series of four experiments is described in
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which the integration and adaptation of visual and auditory maps is examined using
a paradigm in which subjects point to visual, auditory, or combined visuo-auditory
stimuli. The results of these experiments are compared to the predictions of the
different computational models of intersensory integration and adaptation.

The statistical estimation framework presented in Chapter 2 can be used to derive
a model for the integration of proprioceptive and motor efference signals during arm
movement. In this model, the CNS obtains an estimate of the position of the hand
by combining the outputs of an internal model, which simulates the dynamics of the
arm using the motor efference, and a sensory correction based on proprioception.
Chapter 3 tests the predictions of this model in a sensorimotor integration task in
which subjects estimate the location of the hand after varying distance movements
under external forces. This paradigm is used to test for the existence of an internal
model in the CNS.

In the second part of this thesis I focus on the problem of coordinate transfor-
mations. Chapter 4 examines how the visuomotor coordinate transformation, which
converts the visual locations of objects into coordinates appropriate for movement,
is represented. One way in which this question can be addressed is by examining
the patterns of generalization that emerge from a limited remapping. Two questions
concerning visuomotor generalization are examined: (1) What changes in pointing
behavior emerge over the workspace subsequent to a local remapping? (2) Can the
visuomotor system be taught to map one location in visual space to two different
finger positions depending on the starting point of movement—and if so, how does
this remapping generalize to other starting points?

Chapter 5 addresses the problem of learning coordinate transformations. Specif-
ically, how does the CNS extract the information that is common to several sensory
inputs, each coded in its own representational system, and convert this information
into a common representational system 7 To address this problem at the computa-

tional level, an unsupervised learning algorithm is proposed. This algorithm is derived
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from an information-theoretic principle which states that a common representation
can be obtained by maximizing the mutual information between the sensory modal-
ities (Becker and Hinton, 1992), while maintaining a topographic relation between
the modalities. What results is an algorithm which learns multiple, mutually-aligned
topographic maps based on correlations between the inputs to the different sensory

modalities.



Part 1

Integration
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Chapter 2

Integration and Adaptation of
Visual and Auditory Maps

2.1 Introduction

A problem that all higher organisms face is how to integrate information from mul-
tiple sensory modalities. Information of central behavioral relevance, such as the
location of a predator, the body’s orientation, or the linguistic identity of an utter-
ance, often arrives from different sensory modalities. When the senses give conflicting
information, whether as a result of inherent distortions, noise, or experimental manip-
ulation, the central nervous system (CNS) is faced with the problem of resolving this
disagreement. How the CNS integrates sensory information is the primary question
posed in this chapter. When the disagreement between two senses persists over time
it is usually a cue that one of the senses is miscalibrated; the CNS often resolves this
long-term discrepancy through a process of recalibration. This recalibration process,
also known as adaptation or remapping, is the second topic of this chapter.

The basic thesis is that (1) the processes of intersensory integration and inter-
sensory adaptation are inextricably linked, and that (2) there is an underlying and

sensible principle that can characterize both processes. The principle states that

27



28 Chapter 2. Integration and Adaptation of Visual and Auditory Maps

information is integrated in proportion to some measure of the reliability of each
source. A more reliable source, such as vision for locating an object straight-ahead
or audition for perceiving the utterance of a speaker, is weighted more heavily than
other sources. When there is a long-term discrepancy, the reliability of each source
is used to determine how much it should adapt. The less reliable source is adapted
proportionately more than the more reliable source, eventually reaching agreement
at some middle ground.

The principle of weighting more reliable sources can be derived formally from
the statistical theory of estimation. In estimation theory, the goal is to estimate a
set of unknown parameters from noisy measurements of some observable variables
and a statistical model relating the parameters to the observables. For example, the
parameter may be the chemical composition of a star and the observables spectral
measurements, or the parameter may be the location of an underwater fault and the
observables sonar readings. The principle unifying these diverse estimation problems
is that, given a model relating the parameters and the variables and some estimate
of the noise in each process, there is an optimal way to fuse multiple sources of
information. The optimal fusion combines all the sources, each weighted by its relia-
bility, defined as the inverse of the variance of the noise in that source. The practical
applications of estimation theory are as widespread as is suggested by its generality.

In this chapter we examine integration and adaptation of visual and auditory
information in humans from the computational framework of estimation theory. Both
vision and audition provide information on the locations of objects in the environment.
It is known that each modality maintains separate maps of space (Konishi et al.,
1988).1 However, it is also clear that in certain areas of the CNS, information is
integrated from both modalities into a common map (Wickelgren, 1971). These

multisensory areas play a central role in basic motor responses, such as saccadic eye

LA spatial map is defined as a topographic arrangement of cells whose receptive fields are related
in an orderly manner to locations in space.
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movements or orienting head movements (Sparks and Nelson, 1987). The problem
of multisensory integration addressed in this chapter is therefore closely tied to the
problem of selecting a single motor response to multiple sensory stimuli.

The outline of the chapter is as follows. In the next section I provide selective
reviews of the psychophysics and neuroscience literatures on multisensory integration
and visual and auditory adaptation. In section 2.3 I present a computational model,
based on optimal estimation theory, for the integration and adaptation processes.
This model is tested empirically in the subsequent sections. Section 2.4 provides an
overview of the experiments. Section 2.5 describes the baseline experiment examining
localization of visual, auditory, and visuo-auditory stimuli in the azimuth. Section 2.6
examines adaptation of visual and auditory maps to an experimentally-induced dis-
placement in the normal visuo-auditory relationship. Section 2.7 examines adapta-
tion to added variability (zero-mean, constant variance noise) in the visuo-auditory
relationship. Section 2.8 describes how adaptation to an induced visuo-auditory dis-
placement at one point generalizes to other locations in the azimuth. Section 2.9
describes the control experiments. Finally, Section 2.10 summarizes the results of the

experiments in the context of the optimal estimation model.

2.2 Background

The integration of sensory modalities has been studied extensively within both psy-
chology and neuroscience. This section reviews the relevant background literature
from both psychophysical and neuroscientific approaches to the study of multisen-
sory integration. Since the psychophysical experiments in this chapter focus on the
integration of spatial information from auditory and visual modalities, a brief review

of the psychophysics of auditory and visual localization will also be provided.
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2.2.1 Psychophysics
Auditory Localization

The ability to correctly orient to auditory stimuli is present in humans within the first
10 minutes after birth (Wertheimer, 1961). There are two types of cues, monaural and
binaural, upon which this ability depends. Monaural cues arise from the sound filter-
ing properties of the pinna (the outer ear) and from head movements. For normally
hearing listeners, monaural cues act primarily to resolve front-back ambiguities (for
reviews of auditory localization in humans see Scharf & Houtsma, 1986 and Blauert,
1983). By far the most important cues for auditory localization, especially in the hor-
izontal plane, are binaural. These can be divided into two classes: those arising from
interaural time differences (ITD), and from interaural intensity differences (IID).

Interaural time differences arise both from the fine structure of an acoustic signal,
in the form of phase differences, and from the coarse structure, in the form of differ-
ences in arrival time or acoustic signal envelope (defined as the amplitude modulation
of the waveform). Rough calculations based on the average path between the ears
(about 23 cm) and the velocity of sound (344 m/s) reveal that for signals above 750
Hz arising from one side, phase difference cues are ambiguous between lead and lag
(Scharf and Houtsma, 1986). This ambiguity sets in at higher frequencies closer to
midline. Phase difference cues are therefore not reliable at high frequencies. On the
other hand, the cues based on arrival time do not present such ambiguities.

Interaural intensity differences arise from the filtering properties of the head, which
can cause level differences between the ears of up to 40 dB (i.e. a hundred-fold intensity
difference; Blauert, 1983). Since the head acts essentially as a low-pass filter, 11D
cues are most effective at higher frequencies. Interestingly, IID provides the best cues
around 0° (straight-ahead) and 180° (Fedderson et al., 1957). This is because, even
though there is no IID at 0°, the rate of change in IID per degree is highest around
0°.

To a first approximation, the psychophysics of auditory localization are well char-
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acterized by the “duality theory,” which states that frequencies below 2000 Hz are
localized based on ITD cues and frequencies above 4000 Hz are localized based on
IID (Rayleigh, 1907). The first clear quantitative support for this theory was given
by Stevens and Newman (1936) who examined localization errors as a function of
frequency, and found a peak in errors between 2000 Hz and 4000 Hz, with relatively
good performance below and above this range. This suggests that neither binaural
cue works well in this transition region. Stevens and Newman also showed that local-
ization was best for broad-band signals, such as clicks (with an average error of 8°)
and hisses (5.6°).

Mills (1958) used a different measure, the minimum audible angle (MAA), to
study the precision of localization. The MAA is defined as the smallest angle of
displacement of a sound source needed to tell whether the sound has moved left or
right. Varying the stimulus frequency from 250 Hz to 10 kHz and the location from
0° to 90° in the azimuth in 15° intervals, Mills found that the precision of localization
was poorest between 1500 Hz to 2200 Hz and above 5000 Hz. Localization was best
at 0°for all frequencies with an MAA uniformly below 4°, and became monotonically
worse away from straight-ahead.

Mills’ findings have been confirmed since, and it is now well established that
the sizes of errors and the response variability are smallest directly in front and
increase towards the periphery. For example, Middlebrooks and Green (1991) report
broad-band stimulus localization errors of 2° to 3.5° directly in front in the azimuth,
increasing to as much as 20° in some rear locations. Once a sound is audible its level

only marginally improves localization (Scharf and Houtsma, 1986).

Visual Localization

Several factors contribute to the ability to visually localize a stimulus. Clearly, the
principal cue for visual localization is the retinal coordinate of the stimulus. The

spatial capabilities of the visual system vary over the retina and across lighting con-
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ditions. The fundamental measure of the spatial capabilities is grating acuity, mea-
sured by testing whether subjects can tell whether a small grated patch has vertically
or horizontally oriented bars. Young adults exhibit an average grating acuity of 42
cycles/degree (Wilson et al., 1990). Acuity is highest at the fovea, at about 60 cy-
cles/degree (cpd) and falls off to about 5 cpd at 30°eccentricity from the fovea. Visual
acuity also varies with lighting levels, with a distinction between the photopic system
dominated by input from the cones concentrated in the central region of the retina,
and the scotopic system, dominated by input from the rods in the periphery (Sekuler
and Blake, 1990). The photopic system operates in higher light conditions and has
high resolution and low sensitivity (the ability to detect small amounts of light); in
contrast, the scotopic system operates in dim light conditions and has low resolution
and high sensitivity.

Unfortunately, though acuity may define the limits of the system it is hard to relate
it to a more naturally defined perceptual or perceptuomotor notion of localization.
A more direct measure of visuomotor localization is the accuracy of saccadic eye
movements to targets at various eccentricities. Voluntary human saccades can range
in size from 3 min arc to 90° (Robinson, 1987). Primary saccades normally fall short
of their target by about 10%; this appears to be a deliberate strategy of the saccadic
system whose purpose is not known (Becker & Fuchs, 1969; Henson, 1978, as reviewed
in Robinson, 1987). The primary saccade is usually followed by a corrective saccade
that puts the eye on target.

Visual localization can also be measured through pointing movements. To point
to a target, its retinal coordinates must be integrated with information on the eye
position in the head, and head position relative to the body, converting the location
of the target into body-centered coordinates appropriate for movement (Matin, 1986;
Andersen, 1987). These additional coordinate transformations undoubtedly add some

biases and variability to the measure of visual localization.
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Multisensory Integration

The extensive psychophysical literature on intersensory interactions (reviewed, for
example, in Welch & Warren, 1986) reveals that the perception of a sensory input is
often modulated by the inputs to a number of other modalities. These interactions
can often be mediated through secondary causes. For example, vestibular inputs can
affect the perception of the location of a sound (Clark and Graybiel, 1949; Graybiel
and Niven, 1951; Lackner, 1974b; Lackner, 1974a) and the orientation of a visually
displayed line (Day and Wade, 1966) by altering the perceived orientation of the
body with respect to gravity. We will primarily review the integration of visual and
auditory stimuli, focusing on two classic phenomena, the “McGurk effect” (McGurk
and MacDonald, 1976) and the “ventriloquism effect” (Howard and Templeton, 1966),
which shed light on the visuo-auditory integration in speech perception and spatial

localization, respectively.

The “McGurk effect.” The “McGurk effect” was the first clear demonstration
of the influence of vision on speech perception (McGurk and MacDonald, 1976).
Subjects listened to spoken syllables while viewing the image of a person speaking a
different syllable, and asked to report the identity of the syllable heard. The perceived
syllable was neither the one presented visually nor the auditory one, but intermediate
to the two. For example, when listening to a syllable which in isolation they would
perceive as “ba” while viewing a mouth producing the syllable “ga,” subjects would

’ This finding has been confirmed and extended in many

perceive the syllable “da.’
ways since. For example, it has been shown that the McGurk effect can be modulated
by the amount of noise in each channel (Sekiyama and Tohkura, 1991). Nuclear
magnetic resonance imaging studies have also begun to probe the neural substrate
for this effect, showing that the sight of the lips modifies activity in the auditory
cortex (Sams et al., 1991).

Braida (1991) reviews the principal computational models of integration that
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could account for visuo-auditory (e.g. McGurk) and related auditory-tactile effects in
speech. Two of the models reviewed are based on optimal integration from a statisti-
cal perspective, while the third is based on Fuzzy Logic. In the “pre-labelling” model,
the raw sensory data is combined across modalities before being categorized using a
multidimensional classification algorithm; while in “post-labelling” and the Fuzzy
Logic model, the inputs are first categorized by each modality and then integrated
using Bayes’ rule. Using syllable confusion matrices obtained from several studies,
Braida convincingly argues that while the post-labelling and Fuzzy Logic model can-
not easily account for the data, the pre-labelling model fits the data well. Braida’s
results for speech perception suggest that the approach of predicting multisensory
performance from unisensory data and a statistically-based optimal processing model

is fruitful.

The “ventriloquism effect.” The “ventriloquism effect,” a term coined by Howard
and Templeton (1966)?, is perhaps the most commonly studied spatial illusion aris-
ing from the integration of visual and auditory stimuli. As suggested by the name,
the effect arises when the perceived location of a sound shifts in the direction of a
concurrent visual stimulus. As with many illusions, this effect reflects some basic
properties of the perceptual system; in the case of ventriloquism this property is that
vision dominates in our perception of space.

To merge visual and auditory stimuli in space, two criteria seem to be essential:
the stimuli should be approximately synchronous and their locations not too dis-
tant (Bregman, 1990). Visual and auditory stimuli up to 30° apart can be merged
under conditions of good synchrony (Jack and Thurlow, 1973). When the location
of the sound is not fully captured by the visual stimulus, the sound is typically per-
ceived to be between the true and visual location. The perceived location of the visual

stimulus, however, is rarely altered by the sound.

2This effect has also been called “visual capture” (Hay et al., 1965).
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A quantitative comparison of visual-auditory, visual-proprioceptive, and auditory-
proprioceptive interactions yields an interesting pattern of intersensory biases (Welch
and Warren, 1986). The visual bias on perceived proprioceptive location reported by
Hay et al. (1965) and subsequent studies ranged from 60 to 75 % of the discrepancy,
while the effect of proprioception on vision ranged from 16 to 40 %. A 60 % bias
of vision on proprioception signifies that if vision and proprioception are relatively
displaced (e.g. using prisms), the proprioceptively perceived location of a limb will
be shifted by 60% of the displacement towards the visual location. In nearly all of
these studies the sum of these two effects was not statistically different from 100 %.
When vision and audition are discrepant the sound is heard near or at its seen loca-
tion (Welch and Warren, 1986; Jack and Thurlow, 1973; Stratton, 1897a; Pick et al.,
1969). This effect of vision on audition amounts to 40 to 80 % of the discrepancy. At-
tempts to find a biasing effect of audition on vision have had little or no success (Pick
et al., 1969; Warren and Pick, 1970). Proprioceptive bias on audition ranged from
50 to 80 %, whereas auditory bias on proprioception ranged from 1 to 18 % (Fisher,
1968; Pick et al., 1969; Warren and Pick, 1970).

The results for intersensory bias correlate strongly with the localization acuity
of the different senses. Fisher (1960) compared the acuity of vision, audition, and
touch /proprioception by having subjects reach, without feedback, to targets within
each of these modalities. While it should be noted that these acuity measurements
are inflated by variability in the reaching response, the order of decreasing acuity he
found, vision, proprioception, followed by audition, reflects the order of intersensory
biases.

On the whole, the relation between acuity and intersensory bias found in the
above studies is consistent with the optimal estimation model of integration proposed
in this chapter. The theoretically appealing relation between acuity and intersensory
bias has been noted by many researchers in the past (Choe et al., 1975; Fisher,
1968; Howard and Templeton, 1966; Kaufman, 1974), who proposed variants of the
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“modality precision hypothesis” (reviewed by Welch & Warren, 1986). Under this
hypothesis, intersensory discrepancy will always be resolved in favor of the more
precise of two modalities. The optimal estimation model is a formalization of the
modality precision hypothesis. The model makes mathematically explicit the relation
between the acuity, or more precisely, the reliability, of a source and it’s effect on the
sensory interpretation of another source. This relation is derived from an underlying
principle of optimal integration and allows quantitative predictions to be made, for

example, on the spatial distribution of adaptation to visuo-auditory displacements.

Visuo-Auditory Adaptation

When a spatial discrepancy is introduced between vision and audition, the auditory
modality adapts. Stratton (1897a, 1897b; reviewed by Blauert, 1983 and Welch,
1978), reports in passing that when subjects wore eyeglasses that turned the visual
field upside down, auditory events were also inverted as long as they remained in the
visual field. Although subjects wore the perturbing eyeglasses for an extended period
of time, this effect should not be considered evidence for adaptation but rather for
“ventriloquism” as no aftereffects were reported. Evidence for short-lived adaptation,
in the form of an aftereffect of visuo-auditory rearrangement, was found by Klemm
(1909, 1918) using a setup in which two microphones were placed in front of two
sound-generating hammer devices to the left and right of a subject. The signal from
the microphones was presented to the opposite ears via headphones and subjects
were asked to judge which hammer the sound was emanating from. With the eyes
open, the location of the sound was captured by the visual display of the hammer
and appeared on the same side as it. Upon closing the eyes, the sound continued to
appear to emanate from the side predicted by the visual display—an aftereffect—and
only gradually shifted to the opposite side. Studies of visuo-auditory rearrangement
continued with Wooster (1923) and Ewert (1930) who, using prismatic displacements

of vision, also showed the powerful effect of an object’s visible locus on its apparent
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auditory position.

Held (1955) conducted the first study that systematically showed adaptation to
auditory displacements. Using a pseudophone, a device consisting of two small hearing
aids connected via a rotatable rod to miniature earphones in the subject’s ears, Held
was able to arbitrarily rotate the input into the two ears relative to the head. He found
that a 22° displacement was not only completely visually captured, but after several
hours of exposure while moving actively, induced a 10° shift in the perceived auditory
midline (i.e. the direction of sounds which subjects judge to be straight ahead). From
this and subsequent studies, Held concluded that auditory adaptation results from
association between interaural time differences and movement of the body or head.

Many studies have since investigated the effects of visual and auditory rearrange-
ment on auditory localization (e.g. Canon, 1970; Lackner, 1973, 1974a; Radeau &
Bertelson, 1974; Shinn-Cunningham, 1994). Like Held’s studies, these have found that
adaptation seems to be facilitated by active movement, although it can also occur in
its absence (Canon, 1970; Radeau and Bertelson, 1974). Summarizing Welch (1978),
the basic effects of auditory-visual rearrangement can be attributed to three possible
sources: (1) recalibration of interaural difference cues, (2) shift in the felt position of

the head, and (3) specific changes in auditory-motor coordination.

2.2.2 Neuroscience

The integration of information from multiple sensory modalities and the plasticity
in the relationship between the senses pose interesting problems for neuroscience.
Multisensory integration phenomena, such as visual capture and the McGurk effect,
suggest that information from multiple modalities, which arrives to distinct areas
of the brain in very different representations, eventually converges at some common
locus in a common representation. Adaptation experiments imply that discrepancies
between the senses and between the predicted and sensed outcome of movements

can cause rapid plastic changes in the functional organization of the nervous system.
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I will first selectively review evidence for the convergence of visual, auditory and
proprioceptive information in the CNS. I then turn to one of best studied multisensory
and sensorimotor areas of the CNS: the superior colliculus. This area is especially
relevant to all the studies in this chapter as it is thought to be principal site of visual,

auditory and somatosensory convergence that mediates orienting movements.

Multisensory Neurons

Neurons which respond to inputs from more than one sense can be found in multiple
areas of the brain. Some areas, such as the reticular formation which plays a primary
role in arousal, receive multisensory inputs of a nonspecific nature. In other areas
the neural responses to inputs from different senses are related in a precise manner.
For example, in higher visual cortex (i.e. V4) some neurons are tuned to specific line
orientations whether they are presented as visible bars or as bars that are felt by the
hand but not seen (Maunsell et al., 1989). Similarly, visual cells in parastriate cortex
(visual association areas 18 and 19) of the cat respond to acoustical stimulation, with
auditory receptive fields organized in a systematic way relative to the visual receptive
fields (Morrell, 1972). This correspondence is not, however, one-to-one: while the
visual receptive fields were localized in both vertical and horizontal dimensions, the
acoustical receptive fields were localized in the horizontal dimension and elongated
in the vertical dimension. Cells sensitive for moving stimuli had the same direction
selectivity in both modalities.

We will not provide a review of the literature on multisensory neurons but refer
the reader to Stein & Meredith (1993). Summarizing their review, neurons receiving
multisensory inputs have been found throughout the cortex, basal ganglia, various

regions of the cerebellum, some nuclei of the thalamus, and the superior colliculus.
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The Superior Colliculus

The superior colliculus, and its non-mammalian homologue, the optic tectum, is a
midbrain structure involved in attentive and orientation behavior (Stein and Mered-
ith, 1993; Kandel et al., 1991). The superior colliculus (SC) is composed of seven
layers of cells, operationally divided into two parts: superficial (layers I-1II) and deep
(layers IV-VII). The superficial layers receive visual inputs both directly from the
retina and from visual cortex. The deep layers receive visual, somatosensory, auditory
and motor-related inputs (Wickelgren, 1971; Harris et al., 1980; Stein and Meredith,
1993). Over 50% of neurons in the deep layer are multi-sensory, with visuo-auditory
being the most common combination (30% of total; Stein & Meredith, 1993). It is im-
portant to note that multisensory convergence seems to take place at the deep layer
neuron itself, most of whose inputs are unimodal (Wickelgren and Sterling, 1969).
The outputs of the superior colliculus project to brain stem and spinal cord areas
directly involved in positioning the peripheral sense organs. Though commonly con-
sidered part of the eye movement control system, the SC in fact also plays a primary
role in orienting movements of the head, limbs and, in species that can move them,
ears and whiskers (Harris et al., 1980; Sparks and Nelson, 1987; Dul.ac and Knudsen,
1990; Guitton and Munoz, 1991; Stein and Meredith, 1993).

A fundamental problem faced by the superior colliculus is that while auditory
information is represented in head-centered coordinates, visual information is rep-
resented in retinal coordinates. In order to maintain visual and auditory maps in
register as the eyes move in orbit, one of three things must occur: either (1) the
visual receptive fields dynamically reorganize to match the auditory map, (2) the
auditory receptive fields dynamically reorganize to match the visual map or (3) one
or the other system is shut down to prevent conflict (Poppel, 1973). Harris, Blake-
more, and Donaghy (1980) found that in cats this problems is circumvented though
a behavioral strategy: every eye saccade is followed by a head movements so as to

maintain the eyes centered in orbit. Visual and auditory maps are therefore only
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momentarily out of register. However, primates, including humans, often maintain
their eyes fixated on peripheral targets, and therefore the registration problem cannot
solved through this same behavioral strategy. In monkeys, Jay & Sparks (1984) found
that auditory receptive fields shifted with changes in eye position, allowing the maps
to remain in register. This raises the interesting unanswered question of how this
on-line dynamic reorganization takes place.

Stein et al. (1989) studied visuo-auditory integration in the superior colliculus us-
ing a behavioral paradigm modeled after neurophysiological experiments for record-
ing from collicular neurons. Cats were required to fixate directly ahead and orient
to visual and auditory stimuli in one of three conditions. In the spatially-coincident
condition, simultaneous visual and auditory stimuli of varying intensities were pre-
sented at random locations, but with no discrepancy between the visual and auditory
location. They found that combining stimuli enhanced the probability of a correct
response significantly more than would be predicted by responses to unimodal stimuli,
especially at peripheral locations where both modalities were less accurate. In the
spatially-disparate condition, animals were trained to orient to visual stimuli while
ignoring auditory stimuli, and then tested with simultaneous visual and auditory
stimuli that were relatively displaced by 60° . This condition resulted in a significant
increase in errors in localizing the visual stimuli. On many trials the animals moved
directly to a position halfway between visual and auditory stimuli, possibly indicating
the locus of an integrated signal. The third, spatial resolution, condition was similar
to the spatially-disparate condition except that the visuo-auditory displacement was
varied randomly during testing. A systematic pattern of effects emerged. The audi-
tory stimulus facilitated visual localization only when it was displaced more laterally
(peripherally) than the visual stimulus, and inhibited visual localization when it was
more medial.

These behavioral results are, on the whole, consistent with the neurophysiological

data (Stein and Meredith, 1993). As predicted by the spatially registered receptive
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fields of multisensory neurons, spatially coincident stimuli produce enhancements and
spatially disparate stimuli produce either depression or no effect. The results of the
spatial resolution condition can be explained by considering two facts: (1) the visual
targets at which the effect was observed were located at +30° from center and (2)
auditory receptive fields in these lateral areas can be quite large, extended from 20° to
120° into the periphery. Therefore, any auditory stimulus lateral to the target would
enhance the visual activity of a large portion of the population of neurons encoding
the correct location, accounting for the enhancement observed.

Knudsen and colleagues have extensively studied adaptation to visuo-motor and
visuo-auditory displacements and their effects on the neural representations of space
in the optic tectum of the barn owl. Knudsen and Knudsen (1989a,1989b) showed
that prismatically-induced displacements of visual space imposed from birth, while
barely modifying visual localization, induced significant adaptation of auditory local-
ization. This suggests that, in contrast to primates, owls have a relatively hard-wired
representation of visual space in the optic tectum. Furthermore, visual inputs, even
when incorrect (in the sense that they lead to consistent motor errors), seem to re-
calibrate the representation of auditory space. In blind-reared owls, the maps of
auditory space in the optic tectum developed abnormally, with erratic progressions in
the azimuth of receptive fields, and erratic, stretched or upside-down representations
of elevation (Knudsen et al., 1991). This again suggests that the registration of visual
and auditory maps is largely determined by visual experience. Recently, it has been
found that adaptation of the auditory map in the optic tectum can be attributed to
changes in one of its inputs, the inferior colliculus (Brainard and Knudsen, 1993).
Further research needs to be done to determine the signal driving adaptation in the
inferior colliculus (c.f. the model proposed by Pouget, Deffayet & Sejnowski, 1995).
This and many other questions on the neural basis of visuo-auditory adaptation are

current topics of research.
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2.3 The Computational Model

The presence of information common to multiple sensory modalities poses two chal-
lenging computational problems for the CNS. First, the signals from different modal-
ities must be converted into a common representation appropriate for fusion. Second,
using some sensible combination rule, signals in this common representation must be
fused. Clearly, these two problems need not be solved sequentially, or by separate
neural processes.®> The first problem is the coordinate transformation problem and
is the topic of Part II of this thesis. In this section we focus on the second problem,
the integration problem, assuming that the coordinate transformation problem has

already been solved.

2.3.1 Integration

Consider n signals originating from separate modalities which have already been con-
verted into a common representation. The statistical estimation framework assumes
that each of these signals is a noisy measurement of some underlying quantity that is to
be estimated, such as the location of an object. Each measurement, z;,7 = {1...n},

results from a common underlying signal =* corrupted by additive noise ¢;:
;=2 +¢. (2.1)

The goal is to estimate =* optimally from the measurements. Optimality, defined
in the statistical sense of maximizing the likelihood of the estimate given the data,
depends on the assumptions about the noise ¢;. Two cases can be distinguished

depending on the nature of this noise.

3For example, Braida’s (1991) pre-labelling model for the integration of speech signals does not
solve these problems separately.
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Independent noise

If the noise in each signal is independent from all the other noise sources, the likelihood

of the measurements given an estimate =™ can be factored:
L(zy, ...z 27) = [[ pilas; 2, (2.2)
=1

where p;(x;; 2*) defines the statistical model for the noise process corrupting measure-
ment . To obtain the maximum likelihood estimate (MLE) of * it is often easier to

maximize the log of (2.2). Denoting the MLE of «* by &, we obtain

T = arg mﬁXZlogpi(xi;x). (2.3)

=1

This is the general form of the maximum likelihood integration rule under an inde-
pendent noise assumption.
We focus on the model in which each noise source has a zero-mean Gaussian

distribution of differing variance o?,* denoted by

1

pi(zi;x) = N(z,07) = N

exp{—(z; — x)*/207}. (2.4)
The log likelihood rule (2.3) becomes

( .

R (2.5)

where ¢ is a constant independent of x and can therefore be ignored. The maximum
of (2.5), which can be obtained by setting its derivative with respect to « equal to 0,
is

T = Z Q == Zwixi, (26)

4Qr in the multivariate case, covariance matrix X;. The univariate case will be presented through-
out, though the multivariate extension is straightforward.



44 Chapter 2. Integration and Adaptation of Visual and Auditory Maps

where w; = 0%/ 2= 0]72. This rule states that the optimal estimate linearly com-
bines the signals, weighted by their inverse variances. The variance of this estimate
is

ot = (o) (27)

which is smaller than the variance of each of the signals and of any other unbiased

estimator. We therefore refer to the estimator given by (2.6) as the minimum variance

estimator (MVE).

Non-independent noise

Factorization of the likelihood is not in general possible if the noise sources are not in-
dependent. However, a special case of the non-independent noise problem, correlated
Gaussian noise, is interesting and tractable. Define x to be the vector [z1,...,z,] of
measurements with covariance matrix V. The estimate is a linear combination of the

measurements,

EN
Il
€
"

Tx, (2.8)

where w is the vector of weightings. The minimum variance estimator can be obtained
by minimizing a cost function consisting of the variance of & and a Lagrange multiplier

for the constraint that the weights sum to 1:
C=wlVw+ Mwll—1), (2.9)

where 1 is an n-dimensional vector of ones and A is the Lagrange multiplier. The
minimum of C' is obtained when

v-11
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For example, for two Gaussian sources, x; and xy, with variances, o} and o2 and

covariance iz, the MVE is

. (05 —o1z)xy + (0F — 012)1’2' (2.11)

2 2
oy + 05 — 2012

Temporal integration

Until now we have examined integration across different modalities ignoring the tem-
poral nature of many sensorimotor integration problems. The optimal estimation
framework extends in a straightforward manner to integration over time.?

Consider a single sensor receiving a sequence of measurements x; and maintaining

an estimate #; at time ¢. The minimum variance update rule for #; can be derived

from (2.6) simply by considering the previous estimate as another measurement:

—2 -2 A
Op Tt + 05, Tt

(2.12)

Ty =
-2 -2
O, + %04

The variance of the estimate follows the recursion

-2
-2 -2 Uxt

= - .
Tt Ti—1 _—2 —92
Oy + O,

For example, for a sequence of equal variance inputs we obtain an integration rule of

the form:
1 t

Sttt

A~

or

t—1, (2.13)
with variance converging to zero at a rate of 1/t.
The Kalman Filter. A particularly useful and general form of estimator resulting

from the minimum variance fusion principle is the Kalman filter (Kalman and Bucy,

1961). This extends the framework we have described in two ways. First, the value

°In engineering, estimation from several static sources is sometimes referred to as sensor fusion,
while dynamic (i.e. temporal) estimation is referred to as filtering.
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we wish to estimate, known as the state, is not constant in time but depends on the

previous state through a linear dynamical equation:
ry = Az} + Buy + vy, (2.14)

where u; is some input or control signal that we can observe and v; is zero mean noise.
Second, the measurements observed, denoted by y, are related to the state through
another linear equation:

yr = Ca] 4 wy, (2.15)

where w; is again zero mean noise. The basic idea of the Kalman filter is that an
optimal estimate of the state, Z;1;, can be obtained by fusing the input wu;, the
observations y;, and the previous state estimate ; using a model of the dynamical
system. Based solely on the previous state, that is, before having observed y;, the
best estimate of &, 1s clearly given by Az;+ Bu,. Upon observing y, this estimate is
corrected via a term proportional to the error in the predicted observation, resulting

in the following update rule:
[%H_l = A[%t + But + [(t[yt — Ct’%t]

The matrix K is the Kalman gain, which weights the previous state estimate and the
new input in proportion to their inverse variances. More specifically, if the variance

of v; 1s () and the variance of w; is R, then the Kalman gain is
K, = [Ax,CT[Cce,CT + R

where Y, is the covariance of the state estimate. This covariance, in turn, satisfies

the following recursion (known as the Ricatti difference equation):

Yo = AN AT+ Q — K [OX,CT + RIKT.
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Note that substituting A = C = I, B =Q = 0, R = 0% and y = x1, we obtain
(2.13).

The optimality of Kalman filters can be stated in two ways. If the noise is Gaus-
sian, the filter provides the maximum likelihood (minimum variance) estimator in the
sense previously described. However, if the noise is not Gaussian, the Kalman filter
still provides the minimum variance linear estimator for the state (e.g. Goodwin &
Sin 1984).

From the point of view of neuroscience, an interesting aspect of the Kalman filter
is that it incorporates an internal model of the dynamics of the system being modeled.
Based on computational principles alone, it has been proposed that the CNS uses an
internal model in motor planning, control and learning (e.g. Jordan & Rumelhart,
1992). Using the Kalman filter to model the propagation of state estimation errors
during movement, it is possible to address the existence and use of an internal model

by the CNS. This is the topic of Chapter 3.

2.3.2 Adaptation

When several sensory sources that are being integrated consistently previde disagree-
ing information, it is possible that one of them is miscalibrated. The optimal strategy
for the nervous system in this case may be to adapt the interpretation of one of the
sources or to change the relative weightings of the sources. In this section we derive
a learning rule for adaptation from the optimal estimation framework. This learning
rule adapts each modality in proportion to the weighting of the other modalities.
That is, for two modalities, the less dominant one will adapt more than the more
dominant one. In the limit of complete adaptation, both modalities will converge to
the minimum variance estimate.

Consider two signals, z; and x, with variances o} and ¢3. The minimum variance
estimator is given by

T = wix1 + Waky
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where

and

o
wey =1—w = U%TIU%'
If the two signals consistently disagree, say by a constant offset or bias, how much
should each modality adapt to incorporate this bias? The simplest supervised learning
rule, known alternately as the delta rule, the Widrow-Hoff rule, or the the LMS
rule, and derivable from the maximum likelihood framework using a Gaussian noise
assumption (Widrow and Hoff, 1960; Rumelhart and McClelland, 1986; Hertz et al.,
1991), states that if a true or target value is known, then each input should be
adapted in the direction of this target. Denoting the target value by z*, and letting
n be a small constant of proportionality—the learning rate—then the delta rule can

be written

Axy =n(a”™ — x1),

where Az defines the change applied to . In our multisensory model there is no ex-
plicit teaching signal or target. © However, by replacing the target with the minimum

variance estimate of © we obtain the following interesting form of the delta rule

Azry = n(2 —aq)
= n(wizy + were — 1)
= n(wgry — (1 — wy)x)

= nuwy(ry — 1) (2.16)

SThe leads to the problem of veridicality (R. Held, personal communication). If there is no explicit
error signal from the environment how can it be assured that the sensory estimates bear any relation
to the quantities being estimated? We assume that although adaptation can occur based purely on
sensory discrepancies, the ultimate mechanism that grounds sensory representations to the external
world depends on discrepancies between the expected and perceived outcome of movements (Held,

1962).
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We will call the learning rule given by (2.16) the weighted delta rule (WDR). It
states that each modality should adapt in the direction of the other in proportion to
weighting given the other modality. For example, if the two modalities are vision and
audition, then it predicts that the auditory map should adapt more in areas of space
and under conditions where the visual input is more dominant.

Using ¢ to denote time, the update rule given by (2.16) is

t -1 t—1 t—1
Ty =2y + 77w2($2 - )

It is easy to show that this rule maintains the minimum variance estimate invariant

over time

At

T 20 V>0

and that both modalities will eventually converge on this optimal estimate

t t—o0 At 0 0
Ty — T = wiTy + warsy,
t t—o0 At 0 0
Ty — T = wWiT, + Wy,

An alternative form of the weighted delta rule can be derived simply by stating

that each modality adapts in proportion to how variable it is. This rule,

Az, = 770%(:1;2 = 2)

which we will call the variance-weighted delta rule (VWDR), can be derived from
the maximum likelihood framework if each modality assumes that the other is its
target.” The variance-weighted delta rule also maintains the minimum variance esti-
mate invariant over time, and converges with both modalities reaching the minimum

variance estimate. In the case of two modalities, the only difference between the

"Extensions of both the WDR and the VWDR can be derived for the n > 2 modality case under
very similar assumptions.
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WDR and the VWDR is that the normalization constant in the weights in the WDR
has been absorbed into the learning rate of the VWDR. However, as will be shown in
Experiment 2 of this chapter, this difference can cause markedly differing predictions

regarding the pattern of adaptation.

2.3.3 Related Models

Competitive integration

The principles presented so far could be termed cooperative, in the sense that an
estimate is obtained by combining the contributions of all the sensory inputs. In
contrast competitive, or winner-take-all, principles capture the notion that in the
presence of disagreement, one of the senses may dominate and the others be ignored.
Thus, for example, the competitive integration rule based on smallest variance can
be stated as

d=w iff ol<o} V. (2.17)

Clearly, # will have variance o7, which is generally higher than the variance of the
MVE.

As before, paralleling this integration rule is a competitive adaptation rule. Let-
ting ¢ index the dominant input (e.g. the input with the smallest variance) the learning

rule can be written

Azj = n(vi — ;) (2.18)

which is exactly the delta rule; the dominant modality acts as a target for the non-
dominant ones. In the case of vision and audition, for example, if we assume that
vision is dominant, the integration rule (2.17) predicts that in the presence of a
visuo-auditory discrepancy complete visual capture will occur (i.e. ventriloquism).
Furthermore, a persistent discrepancy will induce auditory adaptation, but no visual

adaptation.
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Stochastic integration

A different form of competitive integration occurs if the CNS selects between dis-
prepant signals probabilistically. For example, simultaneous visual and auditory
stimuli may cause a saccade to either of the two stimuli rather than to a location
in between. This form of integration, which we will call stochastic integration, can
also be based on a measure of variance or reliability. For example, if the probability

of choosing signal ¢ is inversely proportional to its variance

procor? (2.19)
we obtain
x1  with prob. p;
T = (2.20)
x, with prob. p,.
Note that the probabilities, when normalized, are exactly equal to the weights wy, ..., w,

in the MVE, making this a stochastic version of the minimum variance estimator.®

The mean of this estimator is the MVE. The variance of this estimator is

U = ZPZU + 3 Z pzp] ) ) (2'21)

1,5=1

where Z; denotes the mean of ;. The second term in (2.21) captures the added
variance due to mean discrepancies between the senses. Noting that this term is

non-negative and using (2.19) we obtain that the variance is

-2

o;
ol > ZZ: > 0]_2 ol =n ZO‘ t (2.22)

8In fact, the distribution of this estimator defines a mizture model (Titterington et al., 1985), a
model commonly used in competitive learning (e.g. Nowlan, 1991; Jacobs, et al. 1991).
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which is n times larger than the variance of the MVE. A further testable prediction
that this rule makes is that the distribution of the estimates (i.e. responses) when two
sensory modalities are stimulated will be bimodal, with the modes predictable from
the responses to unisensory stimuli.

The adaptation rule consistent with this integration rule uses the randomly se-
lected signal as the target for the other signals. This has the interesting effect that,
while at each time step it uses a delta rule of the form of (2.18), the stochastic tar-
get selection effectively renders it equivalent to (2.16) (the proof follows from taking
the expectation of the target). As such, using this rule all the modalities will also

converge on the MVE.

2.3.4 Summary

Three computational models of multisensory integration have been proposed. The
minimum variance model combines inputs in a statistically optimal way, weighting
each by a measure of its reliability. The extension of this model to the dynamic
domain is known as the Kalman filter. The competitive model selects the input
with the highest reliability while ignoring the other inputs. The stochastic model
selects probabilistically between the inputs. Associated with each of these models
is a learning rule which can predict the pattern of adaptation resulting from the

introduction of an intersensory discrepancy.

2.4 Overview of the Experiments

In the following series of experiments [ have sought to establish whether the compu-
tational models of integration and adaptation proposed in the previous section can
characterize human visuo-auditory localization. All of the proposed models are based
on the principle that multisensory behavior and the pattern and extent of adaptation

can be predicted from unisensory behavior. These predictions are quantitative and
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exact, which makes the models empirically falsifiable.

The common denominator of all the models is their dependence on a measure of
reliability, related inversely to the variance in localization. Experiment 1 measures
the biases (constant errors) and variances (variable errors) in localization of visual,
auditory, and combined visuo-auditory stimuli. Localization is assessed in the plane of
the azimuth using a pointing paradigm. Experiment 1 can be considered the baseline
from which predictions for all the subsequent experiments will be made. To account
for cross-subject variability, subjects in all subsequent experiments also participated
in this baseline experiment.

Experiment 2 examines adaptation to a visuo-auditory displacement (an added
bias). It is known that the variance in visual and auditory localization changes as a
function of location in the azimuth. Based on this variance, each of the computational
models predicts a different pattern of adaptation over the azimuth. The models
will therefore be tested by comparing these predictions with the actual pattern of
adaptation obtained.

Experiment 3 examines adaptation to a zero-mean, randomly varying visuo-auditory
displacement (an added variance). Again, as the models specify integration and adap-
tation rules based on the variance in each modality, it is of interest to examine the
effect of artificially changing the variance. If this added variance is interpreted by the
sensory system as a change in the reliability of one or the other modality, the relative
weightings of the modalities should change.

Experiment 4 examines the pattern of generalization resulting from exposure to a
visuo-auditory displacement at a single location in the azimuth. Simultaneous visuo-
auditory stimuli are limited to this location and generalization is measured through
pointing separately to visual and auditory stimuli across the azimuth. The motivation
for this experiment is two-fold. First, like the pattern of adaptation, the pattern of
generalization predicted by each model differs. Second, the pattern of generalization

can be used to infer properties, such as locality, of the representation of visuo-auditory
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space. Chapter 4 is dedicated entirely to the issue of inferring the representation of an-
other coordinate transformation—the visuo-motor transformation—from its pattern

of generalization.

2.5 Experiment 1: Localization of Visual, Audi-

tory, and Visuo-auditory Stimuli

In order to establish the baseline bias and variance of localization we used a senso-
rimotor paradigm in which subjects pointed to visual, auditory, and visuo-auditory

stimuli.

2.5.1 Method

Subjects

Ten right-handed subjects (6 male, 4 female; ages 18-27) participated in this exper-
iment. Subjects were naive to the purpose of the experiment, gave their informed
consent, and were paid $7.00 for participation. All subjects had self-reported normal

or corrected-to-normal vision and normal hearing.

Apparatus

The experimental setup was designed to achieve three goals: present visual stimuli,
present auditory stimuli, and record finger positions (Figure 2-1). Visual stimuli were
presented by projecting the Video Graphics Array (VGA) color display of a PC, using
a LCD projector (Sayett Media Show), onto a white screen above the experimental
table.

Auditory stimuli were presented using a small computer-controlled buzzer (Radio
Shack model 273-054; 300-500 Hz buzz, 75 dB sound pressure at 20cm) mounted at the
end of a 36 cm rod rotating about the position on the table directly below the subject’s
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chin. The rod was hidden from view by the sound-transparent screen. Two markers
were mounted on the end of the rod nearest to the subject so that the rod’s angle could
be monitored on-line using an Optotrak motion tracking system (described below).
The markers were visible to the Optotrak though a small window in the screen;
subject’s vision of this window was precluded by the chin-rest. A feedback controller,
implemented in software on the PC, positioned the rod by controlling a belt-geared
DC stepper motor (Superior Electric SLO-SYN model M061; 0.15 deg/step with
gearing). The transmission belt also served to reduce audible noise from the discrete
stepping.

Finger position was recorded at 200 Hz using an Optotrak 3020 motion tracking
system (Northern Digital, Ontario). This was achieved by mounting an infrared light
emitting diode (IRED) on the subject’s right index finger, the 3D position of which
was monitored by the Optotrak to within 0.1 mm. Similar markers were used for the

rod. Pointing responses were terminated by the subject by clicking on the button of

a PC trackball held in the left hand.

Calibration

Prior to each experiment two forms of calibration were performed. First, the relation-
ship between the two Optotrak markers mounted on the rod and the buzzer’s angular
position was calibrated. This procedure consisted of marking the approximate center
of rotation of the rod and the position of the buzzer at two angular settings of the
rod, to the far left and far right. An iterative optimization algorithm then computed,
from these marker positions, the best fit (in the least-squared error sense) for the
actual center of rotation, rod length, and relation between the two markers mounted
on the rod and the buzzer’s angular position. Cross-validation tests gave an average
calibration error under 0.2° .

The second form of calibration determined the mapping between Cartesian coor-

dinates relative to the table and pixel positions of the projected image. A large grid of



56 Chapter 2. Integration and Adaptation of Visual and Auditory Maps

projected image

speaker \ _______ /
\ ---------- .

Figure 2-1: Experimental setup. Subjects are seated at a table with an Optotrak
marker (IRED) mounted on their right index finger. On the table is a screen visual
images are projected. Directly below the screen is a small speaker whose position is
controlled by a stepper motor.
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sixteen points was projected onto the screen and the actual position of each point was
marked in turn using an Optotrak marker. A quadratic regression fit of = and y pixel
coordinates to x and y marker position was then performed; the parameters of this
fit were used in the experiments to project images accurately onto the plane of the
screen. The correlation of the fit was always greater than 0.99 and cross-validation

tests gave an average calibration error of less than 2.0 mm.

Paradigm

Subjects were seated at a table with their head resting on a chinrest and an Optotrak
marker mounted on their right index finger. The experiment consisted of 12 sessions
of 35 trials each, with breaks between each session. Each trial started with a 36 cm
radius blue arc projected onto the screen and a 2 cm white fixation cross straight
ahead (at 0° ) on the arc (Figure 2-2). The cross then disappeared and after a
100 ms delay either a visual (V), auditory (A), or visuo-auditory (VA) stimulus was
presented. Visual stimuli were 0.5 cm hollow white squares projected for 100 ms
onto the arc; auditory stimuli were 100 ms buzzes originating from below the screen
directly underneath the arc; and VA stimuli were simultaneous combinations of V
and A stimuli from the same location. Stimuli originated from 35 locations uniformly
spaced between —65° and 65° in the azimuth. Locations and stimulus modality were
completely randomized: each location was tested 12 times and each modality 140
times throughout the experiment.

The subject’s task was to point to the location of the stimulus with his or her
right index finger. As the subject moved the finger over the screen, a 0.8 cm square
cursor spot was projected in the direction that the finger pointed. The cursor spot
was always at the same angle as the finger marker with respect to the center of the
arc, but was constrained to move along the arc. The purpose of this cursor was
two-fold: (1) to prevent fatigue due to the large pointing responses that would be

necessary to reach the arc with the finger, and (2) to reduce variability in pointing
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Figure 2-2: Experimental paradigm.

by providing a cursor for the subject to know the exact location being pointed to.
Subjects rapidly became accustomed to pointing with this finger cursor. When the
cursor was perceived to point accurately to the stimulus location, the subject pressed
the button of a mouse held in the left hand.

Subjects were told that two things were essential: to keep their eyes fixed on the
cross whenever it was present, and to try to respond as accurately as possible. It was
emphasized that reaction-time did not matter. Subjects were also told that V, A, and
VA stimuli would occur randomly and that they should attend to both modalities.
Instructions for all conditions were the same: “Point to the stimulus location.” The
experiment lasted a total of about 50 minutes, and was preceded by a practice session

consisting of 18 trials during which the instructions were explained.
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Analysis

To assess accuracy of localization the difference between the actual stimulus location
and the subject’s pointing response, i.e. the localization error, was characterized
by its mean and variance. For each condition and target location, the mean and
standard error of the localization error was averaged across subjects and plotted.
This corresponds to bias in localization. Localization variance was computed by
subtracting from the error the average bias for that target and stimulus location.
These residuals were then squared, and their mean and standard error plotted. For
presentation clarity some of the raw data plots were also fitted with 8 degree-of-
freedom cubic smoothing splines using the Splus statistical package (Chambers and

Hastie, 1992).

2.5.2 Results

Both vision and audition displayed consistent patterns of localization bias (Figure 2-
3a & b). For both modalities, bias was not significantly different from zero straight-
ahead, and increased monotonically to the right of straight-ahead.® Bias on the left
was smaller for vision and displayed an erratic pattern for audition. A similar pattern
of auditory bias was found for a different set of 10 subjects in a pilot experiment (not
shown). The strong left-right asymmetries in bias displayed for all three stimulus
conditions can be mostly accounted for by effects of pointing with the right hand (cf.
Left-hand pointing control, section 2.9.2).

The pattern of bias for visuo-auditory stimuli was almost identical to the pattern
for visual stimuli (Figure 2-3¢). When the three conditions are compared, the visuo-
auditory bias is shown to lie uniformly between the visual and auditory bias for stimuli
on the right side. Again, the pattern on the left side is more erratic.

The variance of both visual and auditory localization was smallest straight-ahead

°In all plots —90° represents the far left, 0° straight-ahead, and -90° the far right.
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Figure 2-3: Average localization error (bias) plotted as a function of stimulus location
(0° is straight ahead). Mean bias (filled circles) is shown with 1 standard error (s.e.)
bars and smoothing spline fits (mean + 1 s.e. curves), for a) visual, b) auditory and c)
visuo-auditory stimuli. d) Comparison of bias in the three conditions: visual (solid),
auditory (dashed) and visuo-auditory (dotted).
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and increased markedly to the periphery (Figure 2-4a & b). Visuo-auditory localiza-
tion displayed a pattern of variance almost identical to visual localization (Figure 2-
4c¢). Although visuo-auditory variance was slightly lower that visual variance on the
right side, this difference was not statistically significant. Auditory variance in local-

ization was clearly much greater than visual or visuo-auditory variance (Figure 2-4d).

2.5.3 Discussion

The measurement of localization bias and variance in this experiment serves three
purposes. First, the results provide a picture of visual and auditory localization
which can be compared to the existing literature. Second, by comparing localization
of combined visuo-auditory stimuli to localization of separate visual and auditory
stimuli, the models of integration presented in this chapter can be tested. Third, the
results provide a per-subject baseline from which adaptation can be measured.

The picture of visual and auditory localization provided by these data makes it
clear that localization is best straight-ahead for both vision and audition—a finding
that is consistent with the existing literature (Mills, 1958; Middlebrooks and Green,
1991). As subjects were fixating on a point straight-ahead, this effect in the visual
modality can be attributed to stimulus location on the retina (e.g. the differences
between foveal and peripheral acuity could account for the effect). However, other
factors, such as the effect of attending to the fixation spot, or the added bias and
variance of the pointing response, could also be contributing to the pattern observed.
For the auditory modality, the effects of eye position and head orientation are con-
founded by having subjects fixate straight-ahead. It has been shown that eye position
has a significant effect on sound localization (Jones and Kabanoff, 1975; Goldstein
and Rosenthal-Veit, 1926 as described in Lackner, 1974). Thus, the pattern observed
is most likely a combination of the differential accuracy of localization in the azimuth

(e.g. Middlebrooks and Green, 1991) and the effect of fixation straight ahead.



204

15 A

Variance
=
o

204

15~

Variance
=
o

0-

62 Chapter 2. Integration and Adaptation of Visual and Auditory Maps

120 4

100

P
—_——————
[ee]
o
I I I
————
[P —

e
Variance
5 o
o o
e
—
—
e
-
e
T e
P —
—

H RE |

L
¢ ®oe0
T

- T T T T T T T T T 1 0’\ T T T T T T T T 1
-75 -60 -45 -30 -15 0 15 30 45 60 75 -75 -60 -45 -30 -15 0 15 30 45 60 75
Angle d Angle
120 -
100 A

_._
.
e
.
e
I —
Variance
(o)} [ee]
o o
Il Il
P
e
Y
N —

s0- H *

' ] f
i ol | i
} } y
4 ¢+o+¢¢.o‘ Oé‘ﬂﬁﬁmégﬂnn +++ -égf$$+$$*
T T T T T T T T T T 1 07 a
-75 -60 -45 -30 -15 0 15 30 45 60 75 -75 -60 -45 -30 -15 0 15 30 45 60 75
Angle Angle

Figure 2-4: Average variance of localization plotted as a function of stimulus location
(mean £ 1 s.e.) for a) visual, b) auditory, and c) visuo-auditory stimuli. d) Compar-
ison the of variance in the three conditions: visual (white squares), auditory (filled
circles), and visuo-auditory (gray triangles).
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Model predictions

The relative variances of visual and auditory localization suggest that, under any
sensible principle of integration, vision will dominate over audition. As discussed in
the introduction however, each model makes differing predictions on the amount and
pattern of visual dominance. We therefore examined whether the data obtained in
this baseline experiment were consistent with the predictions of the three models of
integration: minimum variance integration, competitive integration, and stochastic

integration.

Minimum variance integration. Under this model, the weighting of each modal-
ity used for integration is dependent on localization variance. As localization variance
is a function of stimulus location, we used the empirically-observed variances of vi-
sual and auditory localization to estimate the optimal weighting function for vision
(Figure 2-5). The weights for vision and audition were estimated using (from equa-
tion 2.6):

== (2.23)

Wyis =

Although the variance of auditory localization is smallest around 0° , Figure 2-5
shows that it is relatively larger than the visual variance. Therefore, under minimum
variance integration, vision should be most dominant straight ahead. The ratio of
variances also suggests that vision is highly dominant overall; the mean proportion
for vision is 0.913 + 0.005. Therefore, the model predicts that (1) visuo-auditory
responses will closely resemble visual responses, perhaps with small differences in the
periphery, and (2) adaptation will take place mostly in the auditory domain.
Although the second prediction is not addressed by this experiment, the data on
the localization of visuo-auditory stimuli address the first prediction. We found that
both visuo-auditory bias and variance closely resembled those of visual alone. The
small deviations from the visual pattern, especially for locations on the right side, were

in the direction predicted by minimum variance integration. That is, the bias was
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Figure 2-5: Optimal mixing proportion for vision predicted by minimum variance
integration. Note that vision dominates the most straight-ahead.
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shifted towards the auditory bias and the variance was slightly smaller than the visual
variance. The magnitude of these shifts was roughly consistent with the predictions
of minimum variance integration; given a 0.9 weighting of vision, minimum variance
predicts shifts in bias ranging from 0 to 0.3° and decreases in variances of at most
2 deg?. All differences vanished around 0°. The pattern on the left side was more
erratic. Overall, the finding that visuo-auditory patterns of bias and variance were

strikingly similar to visual patterns is consistent with minimum variance integration.

Competitive integration. Given the relative variabilities of visual and auditory
localization, the competitive integration model would clearly favor vision over au-
dition. Pointing to visuo-auditory stimuli is therefore predicted to be identical to
pointing to visual stimuli. The patterns of visuo-auditory bias and variance found

are therefore also consistent with competitive integration.

Stochastic integration. The stochastic model predicts that although visuo-auditory
bias will be identical to visual bias, the variance will be substantially larger. Specifi-
cally, from equation (2.22) we see that the predicted visuo-auditory variance is about
twice the visual variance—a prediction that was not supported by the data.
Although the stochastic model was inconsistent with the pattern of visuo-auditory
localization, the almost complete dominance of vision precluded direct testing between
the minimum variance and competitive models. Direct testing of these models and
their associated adaptation rules is possible if a discrepancy is introduced between
vision and audition. In the following experiment we therefore studied adaptation to

a discrepancy between vision and audition.
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2.6 Experiment 2: Adaptation to a Visuo-Auditory
Remapping

Subjects were exposed to either a leftward or rightward shift in the relation between
simultaneous visual and auditory stimuli. Adaptation was assessed by measuring any

resulting changes in pointing to visual and auditory stimuli.

2.6.1 Method

Subjects

Ten right-handed subjects (5 male, 5 female; ages 18-27) participated in this exper-
iment. Subjects were naive to the purpose of the experiment, gave their informed
consent, and were paid $7.00 for participation. All subjects had self-reported normal

or corrected-to-normal vision and normal hearing.

Paradigm

Except for the presence of a perturbation, the paradigm was essentially identical to the
one used in Experiment 1. The perturbation was absent for the first 3 sessions (trials
1-105; pre-exposure), was introduced gradually, increasing linearly, during the 4%
session (trials 106-140), and was present in-full for the last 8 sessions (trials 141-420).
As before, only a third of the trials were visuo-auditory; the purely visual and auditory
trials throughout the experiment could therefore be used to assess adaptation.

The full perturbation was a 15° displacement between the visual and auditory
location of the stimuli. For half the subjects (Group 1) the auditory stimulus was
displaced to the left of the visual stimulus; for the other half (Group 2), to the right.
To accommodate these perturbations without extending beyond the limits of the

setup, the range for all the visual stimuli was decreased to —60° to 60° .
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Analysis

Adaptation in both visual and auditory localization was analyzed as a function of time
and location in the azimuth. To assess the time course of adaptation, the mean bias +
1 s.e. for each session was computed by averaging over all target locations and subjects
in each group. To assess extent of adaptation as a function of spatial location, the
mean bias + 1 s.e. for each target was computed by averaging over trials 176-420 and
subjects in each group. We will refer to this as the post-exposure bias. The choice of
trial 176 (the beginning of session 6) as a cut-off was made ad hoc, based on the notion
that it would take about 1 session after the onset of full perturbation (session 5) for
perceptible adaptation to occur; this choice was maintained in all analyses of spatial
adaptation. The same analysis was performed on trials 176-420 of Experiment 1 to
establish a baseline measure of bias. The spatial pattern of adaptation was computed

by subtracting this baseline bias from the post-exposure bias.

2.6.2 Results

Time course of adaptation

The mean bias of localization for visual, auditory, and visuo-auditory stimuli is shown
as a function of trial number in Figure 2-6. While visual localization did not change
significantly over the time course of the experiment (Figure 2-6a), auditory localiza-
tion shifted significantly in the direction opposite the perturbation for both groups
(Figure 2-6b). For Group 1 the mean shift (calculated by subtracting the mean pre-
exposure bias from the mean post-exposure bias) was 6.8 £+ 0.6° , while for Group 2
the mean shift was 4.9 + 0.6°. The mean shift combined over both groups was 5.9
+ 0.4° , accounting for 39% of the perturbation.

The bias for the visuo-auditory condition, calculated relative to the location of
the auditory stimulus, clearly shows the effects of visual capture (Figure 2-6¢). When

confronted with a 15° discrepancy between the location of the visual and auditory
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Figure 2-6: Bias as a function of trial number for a) visual, b) auditory and ¢) visuo-
auditory localization. The mean + 1 s.e. bias for Group 1 (solid circles) and Group
2 (hollow circles) is plotted relative to the baseline bias calculated from trials 1-105
(dashed line). For c¢) the bias is calculated relative to the location of the auditory
stimulus and the shifts therefore correspond to the effect of visual capture and not
adaptation (see text).

stimuli, subjects point to the visual stimulus. For Group 1 the mean shift was 14.2 +
0.4° , while for Group 2 the mean shift was 15.2 £+ 0.4°. Combined over both groups
the mean shift was 14.7 + 0.3° , not significantly different from the 15° predicted by

complete visual capture.

Spatial pattern of adaptation

Adaptation as a function of target location is shown in Figures 2-7 and 2-8 for the
auditory and visual modalities, respectively. Auditory localization shifted in the
adaptive direction at almost all target locations, although the pattern was variable.
Visual localization shifted slightly in the direction of greater absolute bias for both
groups. As the perturbation was in opposite directions for the two groups, this shift

seems unrelated to the perturbation.

2.6.3 Discussion

Introduction of a displacement between the locations of simultaneous visual and au-

ditory stimuli induced a significant shift in auditory localization. That is, when
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Figure 2-7: Auditory adaptation as a function of target location. a) Group 1 (shifts
in the positive direction are adaptive). b) Group 2 (shifts in the negative direction

are adaptive).
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Figure 2-8: Visual adaptation as a function of target location. a) Group 1 (visual
shifts in the negative direction are adaptive). b) Group 2 (shifts in the positive
direction are adaptive).
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auditory stimuli were presented alone, pointing had shifted towards the location the
visual stimulus would have been. These results are consistent with the many previ-
ously found accounts of auditory adaptation to visuo-auditory displacements both in
humans (Held, 1955; Canon, 1970; Lackner, 1973; Radeau and Bertelson, 1974), and
in barn owls (Knudsen and Knudsen, 1989a; Knudsen and Knudsen, 1989b).

In the visuo-auditory condition, subjects pointed 14.7° in the direction of the
visual stimulus relative to the auditory stimulus. This was not significantly different
from the 15° shift (complete visual capture) predicted by the competitive model of
integration. The minimum variance model assuming visual weighting of 0.91 predicts
a shift of 13.7° shift, which, although comparable to the shift observed, is significantly
different.

This difference may lead one to discard the minimum variance model in favor of the
competitive model. However, further evidence from this and subsequent experiments
suggests that, contrary to the competitive model, visual and auditory stimuli are
indeed combined, although perhaps with a weighting for vision that is greater than
0.91. Such an underestimate in the weighting for vision may be due to the fact that
variability in pointing was not factored out. That is, variability due to the motor
response may inflate both visual and auditory localization variances, decreasing the
ratio of auditory to visual variance, and therefore the estimated weighting for vision.

Subjects were completely unaware of the perturbation. After the experiments,
subjects were explained the nature of the perturbation and asked whether they had
noticed it; none reported having noticed it. Furthermore, as the shifts were measured
in the absence of the visual stimulus, they can be considered aftereffects in analogy
to the prism adaptation literature (Welch, 1978). Taken together, the presence of
significant aftereffects and subjects’ unawareness of the perturbation can be taken as
evidence that the shifts found were true adaptation and not the result of conscious
strategies or “cognitive learning” (Redding and Wallace, 1993; Bedford, 1993).

The computational models of adaptation proposed in the section 2.3 make very
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explicit predictions on the form of adaptation resulting from a visuo-auditory dis-
placement. We now examine these computational models in light of the observed

data.

Delta Rule. The simplest model predicts that adaptation in each modality will be

proportional to the displacement introduced:

Axaud — ,uaud(xvis_xaud)

vais — ,uvis(xaud_xvis)-

We have introduced two different learning rates, pa,q and s, as it is clear that vision
and audition do not adapt equally to a displacement. Specifically, regarding our data
on auditory adaptation, this model predicts that adaptation will be equal across all
locations of the azimuth. The competitive adaptation rule (2.18) is a variant of this
model where the visual modality does not adapt at all (pvs = 0). It therefore also

predicts that auditory adaptation will be equal across locations in the azimuth.

Weighted Delta Rule. This model, derivable from the principle of minimum vari-
ance integration (equation 2.16), predicts adaptation in each modality proportional

to the weighting of the other modality:

Axaud — ,uwvis(xvis_xaud)

vais — ,uwaud(xaud_xvis)-

In this case, we have collapsed both learning rates into one, p, as the fact that vision
adapts less than audition falls out of the weighting of the two modalities. Specifically,
referring to the empirically-derived optimal weighting function (Figure 2-5), the model
predicts that (1) audition will adapt most straight-ahead and least in the periphery,

(2) conversely, vision will adapt most in the periphery and least straight-ahead, and



2.6. Experiment 2: Adaptation to a Visuo-Auditory Remapping 73

Model Auditory Adaptation Visual Adaptation

Delta Rule equal everywhere equal everywhere
Weighted Delta Rule most around 0° least around 0°
Variance-Weighted Delta Rule least around 0° least around 0°

Table 2.1: Summary of model predictions.

(3) visual adaptation will be about 10 times smaller than auditory adaptation.

Variance-Weighted Delta Rule. This model, also derivable from the principle
of minimum variance integration (equation (2.6)), predicts adaptation proportional

to the variance of each modality:

2
Axaud — ,uo-aud(xvis_xaud)

2
vais - ,uo-vis(waud_wvis)-

Referring to the variances of visual and auditory localization (Figure 2-4), the model
predicts that (1) audition will adapt least straight-ahead and most in the periphery,
(2) similarly, vision will adapt least straight-ahead and most in the periphery, and
(3) visual adaptation will be about 10 times smaller than auditory adaptation.

The predictions for all three models are summarized in Table 2.1.

The experimental results are inconsistent with the Delta Rule and the Weighted
Delta Rule, and favor the Variance-Weighted Delta Rule. The auditory adaptation
plotted as a function of space shows a marked dip at 0° (Figure 2-9). Changes in
visual localization, though overall not significant in the adaptive direction, are also
most pronounced in the periphery and vanish at 0° (Figure 2-8). The approximate
10:1 ratio of auditory to visual adaptation predicted by the VWDR suggests that
vision would adapt by about 4% of the perturbation, or 0.6°. It is therefore likely
that, under this model, visual adaptation would have been too small to observe in
the data.

Experiment 2 suggests that the pattern of visual and auditory adaptation may be
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predicted from a simple model, based on optimal estimation principles, which states
that each modality adapts in proportion to its variance in localization. A natural
question which follows is whether integration and adaptation can be affected by an

explicit experimental manipulation of localization variance.

2.7 Experiment 3: Adaptation to Visuo-Auditory

Variance

The computational models proposed in section 2.3 all rely on a statistical measure of
reliability based on the variance of localization. This measure is used to determine the
relative weightings of vision and audition in both integration and adaptation. These
models therefore suggest that if the reliability of the modalities were experimentally
manipulated, the weights and effective learning rates would adapt. In this experiment
we explored one aspect of this hypothesis by introducing variance into the visuo-
auditory relationship and assessing any changes in localization.

Experiments on adaptation to disarrangement (i.e. varying perturbations) have a
long history in the visuomotor system, although studies in the auditory modality are
few. Adaptation to disarrangement was first studied by Cohen & Held (1960) who
showed that exposure to a prism, cyclically varying in displacement from +22° to
—22°at a rate of 1 cycle every 2 min, failed to elicit visuomotor adaptation. However,
if the subject produced active limb movements during prism exposure, the variability
in pointing increased. Similar results were found for random (non-cyclical ) visuomotor
perturbations (Efstathiou, 1963; Abplanalp and Held, 1965).

Freedman and colleagues conducted experiments on auditory disarrangement in
which sounds with random interaural time differences were paired with head move-
ments (e.g. Freedman & Pfaff, 1962; Freedman & Zacks, 1964; reviewed in Welch, 1978).
This led to an increase in the variability in localizing unseen sounds after exposure

during active movements, but no change after exposure in a passive condition. It is
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hard to evaluate these results, as there is no reason the sensory system could interpret
these signals as variable signals from one locus, rather than signals from many fixed
loci or one moving locus—it is therefore not clear that the sensory system had any
cue for rearrangement (Welch, 1978).

In the following experiment subjects were exposed to a randomly-varying dis-
placement between the visual and auditory locations of visuo-auditory stimuli. The
perturbation consisted of zero mean, constant variance noise added to the location of

one stimulus (e.g. the auditory) in relation to the other stimulus (e.g. the visual).'

2.7.1 Method

Subjects

Eight right-handed subjects (5 male, 3 female; ages 18-27) participated in this ex-
periment. Subjects were naive to the purpose of the experiment, gave their informed
consent, and were paid $7.00 for participation. All subjects had self-reported normal

or corrected-to-normal vision and normal hearing.

Paradigm

Except for the nature of the perturbation, the paradigm was identical to the one used
in Experiment 2. For all subjects the perturbation was zero-mean, 10° standard devi-
ation (s.d.) Gaussian noise added to the relation between vision and audition. That
is, on each trial a random number was independently generated from the Gaussian
distribution, and used as a displacement. The range of the visual stimuli was kept
constant while the range of auditory stimuli accommodated the perturbation. Pertur-
bations were cut off at 2 s.d. (20° ) to avoid very large displacements that would fall

outside the experimental range or make the subject conscious of the discrepancies.

1°Nothing in the experiment distinguished whether the noise was added to vision or audition—
noise was added to the relation between the two.
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The actual variance of the truncated Gaussian noise was therefore reduced to 77.5
deg?.

As in Experiment 2, the perturbation was absent for the first 3 sessions (trials 1—
105; pre-exposure), was increased linearly during the 4" session (trials 106-140), and
was present in-full for the last 8 sessions (trials 141-420). Only a third of the trials

were visuo-auditory; the purely visual and auditory trials throughout the experiment

could therefore be used to assess adaptation.

2.7.2 Results

Adding 10° s.d. noise to the relationship between visual and auditory stimuli did
not significantly change the overall variance of visual or auditory localization (Fig-
ure 2-10a & b). Specifically, comparing sessions 6-12 to sessions 1-3, visual variance
increased by 0.66 £ 0.70 (ns), and auditory variance increased by 0.56 £+ 5.6 (ns). On
the other hand, the variance of localizing visuo-auditory stimuli, which was computed
relative to the location of the visual stimulus, increased significantly by 2.23 + 0.68
(p < 0.01). This corresponds to an increase of 60 % over baseline (Figure 2-10c¢).

To measure the reliability of baseline variances computed from sessions 1-3, they
were compared to the average variances in Experiment 1 for the same group of sub-
jects. For visual, auditory, and visuo-auditory stimuli, the baseline variances were
not significantly different from the variances in Experiment 1—the differences were
0.21 £ 0.59, 4.7 + 5.4, and 0.74 4 0.63, respectively for the three types of stimuli.

The spatial pattern of localization variance for the three conditions, though hard to
interpret due to the inherent measurement noise, showed an interesting pattern on the
left side. While the variance of visual and visuo-auditory localization increased, the
variance of auditory localization decreased (Figure 2-11a, b & c; observational results,
no significance test). Furthermore, the optimal mixing function computed from these

variances (c.f. equation (2.23)) decreased significantly relative to the baseline (p <
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Visual Variance
Auditory Variance

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
Session Session Session

Figure 2-10: Variance as a function of session for a) visual, b) auditory and ¢) visuo-
auditory stimuli. Means (solid circles) and standard errors were computed by av-
eraging the variance over each session; the baseline variances (dashed lines) were
computed by averaging over sessions 1-3.

0.01),'* indicating an overall change in the relative proportions of visual and auditory

variance (Figure 2-11d).

2.7.3 Discussion

Increasing the variance in the relationship between vision and audition did not in-
crease the overall localization variability in either modality.!? The overall variability
in pointing to visuo-auditory stimuli did, however, increase. Although this increase
was substantial (2.23 £+ 0.68; 60% of baseline), it was minuscule compared to the
perturbation (2.9% of the 77.5 deg? added variance). Since the perturbation was in
effect during visuo-auditory localization, an increase in variance indicates that despite
strong visual capture the auditory stimulus had an effect on localization.

The spatial pattern of changes in variance seems to indicate that although the

variance of visual and visuo-auditory localization increased slightly in some regions,

LAt each location, the differences and standard errors were used to compute a Z score. The mean
Z score was 0.46 £ 0.16, significantly different from zero.

2Contrary to the findings of Freedman and colleagues (Freedman and Pfaff, 1962; Freedman
and Zacks, 1964), we did not observe an increase in the variability of pointing to auditory stimuli.
However, as we have already mentioned, the methodology and assumptions of Freedman’s studies
make direct comparison difficult.
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Figure 2-11: Variance of localization plotted as a function of stimulus location (mean
+ 1 s.e.) for a) visual, b) auditory, and ¢) visuo-auditory stimuli. The baseline
condition (solid circles) computed from Experiment 1 is shown along with the post-

exposure condition (white squares). d) Optimal mixing proportion computed from

baseline (solid circles, upward error bars) and post-exposure (white squares, down-

ward error bars) variances.
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the variance of auditory localization decreased in those same regions. This effect is
translated into a significantly lower estimated optimal weighting for vision. Such a
change in weighting would have two consequences: (1) a decrease in the magnitude of
visual capture, and (2) an increase in visual adaptation. The results in this experiment
do not address these predictions. However, both these predictions can be tested
in experiments where adaptation to added variance is followed by exposure to a

consistent visuo-auditory bias.

Model predictions

The minimum variance model predicts that the variance in pointing to visuo-auditory
stimuli will be

2 2 2 2
WyisOvis + Waud%aud:

In the analysis, we computed visuo-auditory variance relative to the location of the
visual stimulus; for this measure, the experimentally added variability is included in
the variance of the auditory stimulus. The increase in visuo-auditory variance pre-
dicted by the minimum variance model is therefore given by w2 4(AcZ,). Assuming
a range of visual weighting from 0.8 to 0.95, this gives a predicted increase in variance
ranging from 0.2 to 3.1 deg?, comparable to the 2.23 deg? observed. In contrast, the
competitive model predicts no change in variance, and the stochastic model predicts,
for the same range of visual weightings, a 3.9 to 15.5 deg? increase.

So far, we have discussed predictions regarding integration—i.e. the immediate
changes in pointing resulting from visuo-auditory variability. To understand any more
permanent adaptive effects of increasing intersensory variability within the framework
of optimal estimation, we recall that the weighting given each modality is inversely
proportional to its estimated localization variance. Increasing variability should in-
crease these estimated variances and may therefore alter the weighting of the modal-

ities. Which modality the increased variability is attributed to determines which di-
rection the weighting will change. For example, if the added variability is attributed
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mostly to audition, visual dominance will increase. However, just as it is impossible
to know which sense is “correct,” it is also impossible to know which to attribute the
variability to. Nevertheless, the optimal estimation framework suggests a means of
estimating the amount of increased variance attributable to each sense.

The combined variability between the senses, o2 is assumed to originate from

vis-aud’

the variability in each sense, i.e. under the independent noise assumption:

U\zzis—aud = 0-\2/is + O-Zud‘

We wish to obtain estimates of o2_ and o2 4, denoted 62 and 62, from this combined
intersensory variance. Noting that the MVE weights, wyis and w,yuq are defined as the
proportions of the intersensory variance attributed to audition and vision respectively,

it is clear that the only self-consistent estimates of the variances are:

G2 = Wanqo?

vis vis-aud
A2 _ )
Taud = WyisOyis-aud:

Any other choice for the proportion attributed to each variance would result in a

. . 2 _ 2 2 . . . .
contradiction when o, = o +0- 4, 1.e. when there is no experimentally induced

2

exp Such

variability. If the intersensory variability is increased experimentally by o

that 0% sua = Ovis + Toud + Toyps then each estimated variance will be increased,

~2 2

AO-Vis - waudo—exp
) B 2

AGL.q = Wyis O opr

The added variance will be mostly attributed to the already less reliable sense, and

least to the most reliable sense. The weighting of the modalities will, however remain
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unchanged,

~9 A2 (A2 ~2 o2
new __ Uaud —I_ Ao-aud o wVIS(Uaud —I_ Uvis) —I_ leSUeXp

vis T 2 ) 2 - ~2 ~2 2
T aud + Tyis + Uexp T aud + Tyis + Uexp

This model therefore predicts that despite an increase in the estimated variances of
the two modalities the weighting will not change. Again, the results in this experiment
do not address this prediction. This prediction can be tested in an experiment where
subjects are presented with a visuo-auditory displacement after adaptation to added
variance.

Summarizing, the changes in actual visual and auditory localization variance sug-
gest that the optimal weighting between the senses should decrease. A model based
on minimum variance integration, however, suggests that while the estimates of vari-
ance in each modality should increase, the weighting should remain invariant. Testing
between these two alternatives requires further experiments. Finally, a large (60%)
increase in visuo-auditory variance was observed experimentally. This increase is con-
sistent with the minimum variance model of integration, but falls outside the ranges

predicted by the competitive and stochastic models.

2.8 Experiment 4: Generalization of the Visuo-

Auditory Map

In this experiment we examine adaptation at loci other than the locus of exposure, a
form of adaptation known as generalization. The paradigm limits concurrent visuo-
auditory exposure to a single point. By displacing the relation between vision and
audition at that point and testing visual and auditory localization at other points,
the pattern of generalization can be assessed.

The generalization paradigm addresses two sets of issues. First, like Experiment 2

the results can be used to distinguish between different computational models of
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integration and adaptation. The different models predict varying extent of adaptation
depending on the locus of exposure and testing, the weightings of the modalities, and
other factors. Second, the generalization paradigm can be used to infer properties
of the representations underlying visual and auditory maps of space. This topic is
discussed at length in Chapter 4, which is dedicated exclusively to generalization

patterns in the visuomotor coordinate transformation.

2.8.1 Method

Subjects

Eight right-handed subjects (5 male, 3 female; ages 18-27) participated in this ex-
periment. Subjects were naive to the purpose of the experiment, gave their informed
consent, and were paid $7.00 for participation. All subjects had self-reported normal

or corrected-to-normal vision and normal hearing.

Paradigm

Except for the nature of the perturbation, the paradigm was identical to the one used
in Experiment 2. As before, one third of the trials were visuo-auditory. During these
trials the visual stimulus was always located at 24.7° (the 9'" target from the right).
The concurrent auditory stimulus started at this location for the first 3 sessions,
linearly shifted 15° to the left to 9.7° during the 4'" session, and remained at 9.7° for
the rest of the experiment. Thus concurrent visual flashes and auditory buzzes were

limited to a single visual location 24.7° .

2.8.2 Results

Significant changes in auditory localization occurred after the one-point visuo-auditory
remapping (Figure 2-12a). Generalization was most pronounced in the right periph-

ery (15°to 45° ) reaching up to 9.5° (63% of the displacement) at 38° in the azimuth,
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Figure 2-12: Pattern of generalization. a) Auditory bias for baseline (black circles;
calculated from trials 176-420 of Experiment 1), and post-exposure auditory bias
(white squares; calculated from trials 176-420 of Experiment 4). b) Change in audi-
tory bias computed from a) and fitted with an 8 degree of freedom smoothing spline.
The positive direction indicates adaptive changes. The black arrows indicate the locus
of the exposure. The grey triangle in b) marks 0° .

declined to zero near the locus of remapping (9.7° ) and straight ahead (0° ), and
continued declining below zero for about 30° beyond this point (Figure 2-12b). The
pattern in the left periphery (—60° to —30° ) was more erratic.

The time course of spatial generalization was analyzed by comparing changes in
auditory localization relative to baseline during three different phases of exposure:
sessions 4-6, 7-9, and 10-12 (Figure 2-13). Generalization gradually increased and
spread from right (45°) to left (-30° ), though it was never significantly different from

zero at the remapped point or at 0°.
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Figure 2-13: Time course of generalization, computed by subtracting the baseline bias
from the the bias for a) sessions 4-6 (trials 106-210), b) sessions 7-9 (trials 211-315),
and c) sessions 10-12 (trials 316-420), with 8 degree of freedom smoothing spline fits.
d) Superimposed smoothed fits from a) (grey squares), b) (white circles) and ¢) (black
diamonds). The positive direction indicates adaptive changes, and the black arrow

indicates the locus of exposure.
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2.8.3 Discussion

Exposure to a local 15° displacement caused no shift in auditory localization at the
remapped point. Significant and increasing shifts did, however, arise in the periphery,
on the side of the remapping. Furthermore, although no shift occurred straight-ahead,
localization shifted in the direction opposite to adaptation on the side opposite the
remapped point.

Taken together, these results suggest the following account: (1) Adaptation is least
around 0°and larger towards the periphery. (2) The constraint to adapt least around
0° precluded adaptation at the nearby remapped point (9.7° ), however, (3) the effects
of the displacement did generalize to the more adaptive right periphery. Finally,
(4) the combined effect of the shift on the right and the lack of shift straight-ahead
resulted in an expansion of the auditory map on the right side.!® This expansion
generalized to the left side, resulting in the negative shifts observed (Figure 2-12b).

We address each of these points in turn. Points (1) & (3) are consistent with
the finding in Experiment 2 that adaptation to a constant displacement was smallest
around 0°and larger in the periphery. The results from this generalization experiment,
therefore, also support the variance-weighted delta rule (VWDR) model of adaptation,
which, in contrast to the DR and the WDR models, predicts much smaller adaptation
straight-ahead. Point (2) reflects an assumption of smoothness in the visuo-auditory
relationship. We assume that unless exposed to a severe perturbation,'* the mapping
between points in visual and auditory space is represented smoothly. Therefore, if
the map is constrained to shift very little at 0°, it is unlikely to shift much at 9.7°.

To understand how a shift at one location could result in an expansion of the
auditory map (point 4), it is important to note that a perturbation at one point is

consistent with many possible visuo-auditory remappings. To accommodate a one-

13We call this an expansion because localization right of 0° shifted in the rightward (positive)
direction.

14 An example of such a perturbation is the complete elimination of visual input from birth in barn
owls (Knudsen et al., 1991). This perturbation caused tectal auditory maps to develop erratically.
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point perturbation, the CNS could remap the visuo-auditory relationship through:

1. a local shift of the mapping at the perturbed point, preserving the natural

mapping elsewhere,

2. a semi-local shift at the perturbed point and points nearby in space,

3. a semi-local shift at the perturbed point and points nearby in some acoustic

representation other than space (e.g. same I'TD),

4. a global displacement of the visuo-auditory relation along the whole azimuth,

5. a global expansion/contraction of the visuo-auditory map, etec.

Generalization studies are based on the hypothesis that the pattern of adaptation that
emerges reflects intrinsic constraints of the representation (Bedford, 1989; Shadmehr
& Mussa-Ivaldi, 1994; Chapter 4). The pattern that we found in this study, visuo-
auditory shifts growing from center to periphery, suggests that the more accurate
central region is constrained to be less adaptable. The expansion found may also be
a consequence of the underlying representation of auditory space. An expansion or
contraction around straight-ahead could be represented as a scaling of interaural time
or intensity difference cues. This simple mechanism could partially account for the

adaptation found.'

I5A more speculative interpretation of the expansion of auditory localization responses comes
from direct analogy to studies of remapping in the somatosensory system. Recanzone, et al (1992)
showed that, upon repeated and attended-to tactile stimulation of the hand, both the receptive field
size and the cortical representation of the stimulated region in area 3b increased significantly in
owl monkeys. In our experiment, the exposure phase repeatedly stimulated one location of auditory
space. It is therefore possible that the representation of this location increased in size, resulting in an
expansion relative to the corresponding area of visual space. This would suggest that the expansion
was unrelated to the displacement—an easily testable hypothesis.
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Subject  Slope Intercept R? Fiss Prob(F) RMS Error

AC 0.021 96.0 0.0006  0.021 0.887 49.8°
DW 0.097 81.8 0.0091  0.303  0.586 53.7°
WY  -0.165 116.1  0.0405  1.392  0.247 56.2°
W7 -0.649 144.3 0.3801 20.235  0.0001 63.0°

Table 2.2: Summary of alternative cues control experiment.

2.9 Controls

2.9.1 Alternative Cues to Auditory Stimulus Location

One of the concerns in the experimental design was that the subjects may have made
use of cues other than the actual auditory stimulus for localization. For example, if
the subject were able to see through the white screen or discern the location of the
rod which the speaker was mounted on using the noise from the stepper motor, the
auditory localization task would be corrupted by these extraneous cues. To test for
this possibility we conducted a control experiment in which subjects were instructed
to use any cues available to them to guess, as best as possible, the location of the end
of the rod—mneither an auditory nor visual stimulus was presented.

Four subjects (2 male, 2 female; ages 21-29) participated in this control exper-
iment. All subjects had already participated in Experiment 1, were explained the
apparatus and the purpose of the control experiment. The experimental procedures
were the same as in Experiment 1, except: (1) the experiment consisted of only
35 trials (one per stimulus location), (2) neither a visual nor auditory stimulus was
presented.

Table 2.2 summarizes the results of the experiment. All subjects reported that the
task was very difficult and that they were guessing the target location. The average
errors ranged from 50°to 68°. For three out of four subjects there was no correlation
between actual rod location and the location pointed to; for one subject there was a
negative correlation.

These results suggest that motor noises, sight of the rod through the screen, or
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other extraneous cues could not contribute significantly to localization accuracy in

Experiments 1 to 4.

2.9.2 Pointing with the Left Hand

Localization of visual and auditory stimuli was measured in all the experiments us-
ing a pointing paradigm. The bias and variance obtained through this procedure
is surely a contribution both of errors in localization and variability in the point-
ing response—i.e. sensory and motor errors. There are several ways in which the
variability in pointing can be factored out, obtaining a more accurate measure of
localization. First, an alternative measure of localization can be used, for example
through as eye movements, and the results compared to pointing responses. Based
on some statistical assumptions, such as additivity of sensory and motor noise, the
purely sensory component of the bias and variance of localization can be estimated.
Alternately, a purely sensory paradigm for localization could be used. For example,
in a two alternative forced choice (2AFC) paradigm subjects would be presented with
target and probe stimuli and asked to judge whether the target is left or right of the
probe. This paradigm, however, would require far too many presentations of stimuli
to estimate localization over the azimuth.

In this control we simply sought to estimate the effect on localization due to
pointing with the right hand. Several of the effects observed in Experiments 1 to 4
were asymmetrical about 0°. How much of this asymmetry was due to the pointing
response?

Five right-handed subjects (2 male, 3 female; ages 19-27) participated in this
control experiment. All subjects had already participated in Experiment 1, and were
familiar with the experiment. This experiment was identical to Experiment 1 except
that subjects pointed to the stimuli using a marker worn on the left index finger.

Figure 2-14 compares localization bias when pointing with the left and right hands

for the same set of subjects. For visual, auditory, and visuo-auditory stimuli, bias is
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shifted uniformly in the rightward (positive) direction for left-handed pointing. This
indicates a relative overshoot from the starting point of movement. (Note that left-
handed pointing movements started from the left side, and right-handed movements
started from the right side). The asymmetries in bias were approximately reversed
with handedness, suggesting that handedness could account for the asymmetric biases
found in Experiments 1 to 4. The effect of handedness was large (up to 15°) in the
periphery and generally vanished straight-ahead. The pattern of effects was also
different for pointing to visual and auditory stimuli (i.e. there was an interaction of
modality and handedness).

Figure 2-15 compares the variance of localization when pointing with the left and
right hands for the same set of subjects. The pattern of variance—smallest straight-
ahead and increasing to the periphery—is present for all three stimulus modalities
for both left and right handed pointing. The variance of right handed pointing seems
generally smaller than the variance of left handed pointing, especially in the periphery.

Summarizing, handedness of pointing has an effect on both the bias and variance
measures of localization. Although the effects on bias are significant, the effects
on variance are relatively small and preserve the pattern of smallest straight-ahead,
largest in the periphery. This suggests that the predictions of the models in this
chapter, which are all based on measures of relative localization variance, remain

effectively unaffected by which hand the subject pointed with.

2.10 Discussion

In this chapter we first posed the problems of intersensory integration and intersensory
adaptation within a computational framework based on statistical estimation. Within
this framework the two problems are closely tied—the pattern of adaptation can be
predicted from the principle used to integrate two discrepant sensory signals. Three

explicit computational models of the integration and adaptation of visual and auditory
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Figure 2-14: Bias of localization plotted as a function of stimulus location (mean
+ 1 s.e.) for a) visual, b) auditory, and ¢) visuo-auditory stimuli. The left-handed
pointing control (solid circles) is shown along with the right-handed pointing baseline
from Experiment 1 (hollow squares).
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Figure 2-15: Variance of localization plotted as a function of stimulus location (mean
+ 1 s.e.) for a) visual, b) auditory, and ¢) visuo-auditory stimuli. The left-handed
pointing control (solid circles) is shown along with the right-handed pointing baseline
(hollow squares).
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spatial maps were then proposed and tested through a series of experiments.

2.10.1 Empirical findings

The most striking feature of localization errors for visuo-auditory stimuli is that
they are virtually identical to localization errors for visual stimuli (Experiment 1).
Furthermore, subjects were generally unaware when large (15° ) discrepancies were
imposed between vision and audition, a finding which is consistent with the often

? The variance of visuo-

reported phenomenon of visual capture or “ventriloquism.
auditory localization was slightly smaller than the variance of visual localization, a
finding which is inconsistent with the stochastic model of integration. The extent of
visual capture, however, did not allow exclusion of wither the minimum variance and
competitive models.

When a displacement was imposed between the two senses, the visual modality did
not perceptibly adapt (Experiment 2). However auditory localization adapted signifi-
cantly, shifting by about 40% of the perturbation. Adaptation was least straight-
ahead and larger in the periphery. This finding is consistent with the variance-
weighted delta rule (VWDR) for adaptation, and inconsistent with the other two
proposed models. The VWDR can be derived from the minimum variance integra-
tion model.

Adding substantial variability to the relation between vision and audition had
little overall effect on visual and auditory localization, but significantly increased the
variance of visuo-auditory localization (Experiment 3). The increase in visuo-auditory
variance was consistent with the minimum variance model of integration, but outside
the range predicted by the stochastic and competitive integration models.

The pattern of generalization to a local remapping was unexpected in that a
15° displacement induced virtually no adaptation at the locus of exposure (Experi-
ment 4). However, points up to 40° away showed significant adaptation consistent

with an expansion of auditory localization about straight-ahead. This finding is again
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consistent with the VWDR model, as an expansion is a pattern which can both ac-
count for some of the perturbation and maintain straight-ahead localization relatively
unadapted as VWDR predicts. Furthermore, this pattern suggests that contractions
and expansions of auditory space may be simply represented. One of the mechanisms
that could subserve this form of auditory adaptation is a simple scaling of the ITD

or 11D cues.

2.10.2 Implications

These findings suggest that signals from multiple sensory modalities are integrated in
such a way that the combined signal has minimal variance. A closely related learning
rule—the variance-weighted delta rule—acts to resolve long-term intersensory dis-
crepancies. The variance-weighted delta rule states that the rate of adaptation is
proportional to the variability (or inversely proportional to reliability) of each sense.
This has several implications: (1) In the limit of complete adaptation to a discrep-
ancy, both senses will converge at a point which is the optimal (minimum variance)
fusion of the two.'® (2) Unlike the weighted delta rule, the VWDR is a local criterion.
In other words, the learning rate for each modality does not depend on the variance
of the other modality. (3) Some signal must code the reliability of a modality and
thus gate learning. The neural code for the reliability of a signal could be explicit.
For example, the firing rate of a neuron in a spatial map could be proportional to
that neuron’s “confidence” that there is a stimulus in that location. On the other
hand, the reliability could be coded implicitly. For example, the size of receptive
fields is a parameter that could be related both to the variance in localization and to
the rate of plasticity (e.g. larger receptive fields are more common in the periphery
and suggest a greater pattern of connectivity). These issues cannot be answered at

the psychophysical level and must consequently rely on neurophysiological studies.

160f course this limit of complete adaptation is rarely observed in experiments.
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2.10.3 Directions for future work

To study integration it is advantageous to have a system in which no single input
dominates. Although the visuo-auditory localization system is dominated by vision,
it is possible to extend the paradigms used here to create a more balanced compromise
between the senses. One way in which this can be done is by manipulating the prop-
erties of the stimuli, such as luminance or sound frequency spectrum, or their relative
timing. Under appropriate conditions, a more balanced mixing function should arise,
setting the stage for tests of both clear visuo-auditory integration (i.e. localizing a
visuo-auditory stimulus well between the visual and auditory stimulus) and visual
adaptation.

It would be interesting to repeat the experiments in this chapter with the added
manipulation of having subjects look at a fixation point to one side, keeping their
head straight ahead. This may resolve whether the reduction of auditory localiza-
tion variance straight ahead is due to auditory cues or to the modulatory effects of
eye position and attention. The adaptation experiments may also benefit from this
manipulation. For example, by manipulating both the natural displacement of eye-
centered and head-centered coordinates that occurs with off-center fixation and the
experimentally imposed perturbation, the effective visuo-auditory displacement can
be carefully controlled. Different forms of adaptation may occur if the experimental
displacement cancels or magnifies the eye-position dependent displacement.

Another promising paradigm for studying localization would replace the pointing
response with eye movements. This paradigm has two advantages: First, data from
many more localization trials can be collected since eye movements are fast and
virtually effortless compared to arm movements. Second, eye movements are more
clearly mediated by the superior colliculus than arm movements. The analogous
experiments with eye movements could therefore be directly related to the body of

literature on the superior colliculus.
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2.10.4 Conclusion

When the normal relation between visual and auditory space is altered through an
experimentally-induced remapping, the pattern of auditory adaptation that emerges
can be predicted though a simple learning rule. This rule states that each sensory
modality and each location in space adapts in inverse proportion to its localization
acuity. This learning rule is closely tied to the principle of minimum variance inte-
gration, which states that the inputs from multiple modalities are integrated so as
to maximally reduce uncertainty in the sensory estimate. The pattern of pointing
to concurrent visual and auditory stimuli also supports the minimum variance inte-
gration principle, providing converging evidence. The problems of adaptation to an
intersensory discrepancy, and integration of multisensory inputs are therefore closely

tied.



Chapter 3

An Internal Model for

Sensorimotor Integration

3.1 Introduction

The ability to reach for a cup or balance on one foot requires the integration of in-
formation from several sensory and motor sources. One of the key roles that this

L For ex-

sensory information plays is to provide an estimate of the system’s state.
ample, reaching for a cup requires knowledge of the initial position and orientation
of the hand, and balancing requires knowledge of the precise orientation of the body.
Lack of knowledge of the initial state of the limb, for example as a result of sensory
neuropathy, can result in large movement errors (Ghez et al., 1990, 1995; Gordon et
al., 1995).

In this chapter, we study the process of sensorimotor integration involved in es-

timating the state of a limb during movement. During reaching, the position of the

hand can be derived from visual inputs, proprioceptive inputs, and the motor com-

!The state is defined as the set of variables which, when known, make predicting the future
behavior of a system independent of knowledge of the past behavior. For a mechanical system, for
example, the state is generally defined as the positions and velocities of all its components. Given
the current state, the future states are independent of the past states.
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mands issued by the CNS. We examine the propagation of errors in estimating the
hand’s state as a function of movement duration and externally imposed forces. This
error propagation is compared with the predictions of a model based on minimum
variance integration (Chapter 2).

The model, an optimal linear observer known as the Kalman filter, estimates the
state of the system by monitoring its inputs (the motor commands) and its observable
outputs (the visual and proprioceptive signals arising from the movement). The
current estimate of the state is derived by simulating the forward dynamics of the
system using the previous estimate of the state and the perceived motor command
(c.f. equation 2.14). The component of the observer which simulates the dynamics of
the controlled process is known as an internal model.

Based on computational principles alone, it has been previously proposed that
the central nervous system uses an internal model to simulate the dynamic behavior
of the motor system in planning, control and learning (Sutton and Barto, 1981; Ito,
1984; Kawato et al., 1987; Jordan and Rumelhart, 1992; Miall et al., 1993). The
experimental results and simulations in this chapter provide direct evidence for the

existence and use of such an internal model.

3.2 Experiment: Propagation of Errors in Senso-

rimotor Integration

The notion of an internal model, a system which mimics the behavior of a natural
process, has emerged as an important theoretical concept in motor control (Jordan,
1995). There are two varieties of internal models—“forward models,” which mimic
the causal flow of a process by predicting its next state given the current state and the
motor command, and “inverse models,” which are anticausal, estimating the motor
command that causes a particular state transition. Forward models—the focus of

this article—have been been shown to be of potential use for solving four fundamen-
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tal problems in computational motor control. First, the delays in most sensorimotor
loops are large making feedback control infeasible for rapid movements. By using a
forward model for internal feedback the outcome of an action can be estimated and
used before sensory feedback is available (Ito, 1984; Miall et al., 1993). Second, a
forward model is a key ingredient in a system that uses motor outflow (“efference
copy”) to anticipate and cancel the reafferent sensory effects of self-movement (Gal-
listel, 1980; Robinson et al., 1986). Third, a forward model can be used to transform
errors between the desired and actual sensory outcome of a movement into the cor-
responding errors in the motor command, thereby providing appropriate signals for
motor learning (Jordan and Rumelhart, 1992). Similarly by predicting the sensory
outcome of the action, without actually performing it, a forward model can be used in
mental practice to learn to select between possible actions (Sutton and Barto, 1981).
Finally, a forward model can be used for state estimation in which the model’s pre-
diction of the next state is combined with a reafferent sensory correction (Goodwin
and Sin, 1984). Although shown to be of theoretical importance, the existence and
use of an internal forward model in the CNS is still a major topic of debate.

When we move our arm in the absence of visual feedback, there are three basic
methods whereby the motor control system can obtain an estimate of the current
state (e.g. position and velocity) of the hand. The system can make use of sensory
inflow (reafference), it can make use of integrated motor outflow (dead reckoning), or
it can combine these two sources of information via the use of a forward model. To
test between these possibilities, we carried out an experiment in which subjects made
arm movements in the dark. Three experimental conditions were studied, involving
the use of null, assistive and resistive force fields. The subjects’ internal estimate of
hand location was assessed by asking them to localize visually the position of their
hand at the end of the movement (see Appendix A of this chapter). The bias of
this location estimate, plotted as a function of movement duration shows a consistent

overestimation of the distance moved (Figure 3-1). This bias shows two distinct
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phases as a function of movement duration, an initial increase reaching a peak of
0.9 cm after one second followed by a sharp transition to a region of gradual decline.
The variance of the estimate also shows an initial increase during the first second

2. External forces had distinct

of movement after which it plateaus at about 2 ¢m
effects on the bias and variance propagation. Whereas the bias was increased by the
assistive force and decreased by the resistive force, the variance was unaffected.
These experimental results can be fully accounted for only if we assume that the
motor control system integrates the efferent outflow and the reafferent sensory inflow.
To establish this conclusion we have developed an explicit model of the sensorimotor
integration process which contains as special cases all three of the methods referred
to above (see Appendix B of this chapter). The model—a Kalman filter (Kalman and
Bucy, 1961)—is a linear dynamical system that produces an estimate of the location
of the hand by monitoring both the motor outflow and the feedback as sensed, in
the absence of vision, solely by proprioception. Based on these sources of informa-
tion the model estimates the arm’s state, integrating sensory and motor signals to
reduce the overall uncertainty in its estimate. The model is a combination of two
processes which together contribute to the state estimate. The first process uses the
current state estimate and motor command to predict the next state by simulating
the movement dynamics with a forward model. The second process uses the differ-
ence between actual and predicted reafferent sensory feedback to correct the state
estimate resulting from the forward model. The relative contributions of the internal
simulation and sensory correction processes to the final estimate are modulated so as
to provide optimal state estimates. By making particular choices for the parameters
of the Kalman filter, we are able to simulate dead reckoning, sensory inflow-based
estimation, and forward model-based sensorimotor integration. Moreover, to accom-
modate the observation that subjects generally tend to overestimate the distance that

their arm has moved, we set the gain that couples force to state estimates to a value
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Figure 3-1: (a) Raw data showing localization bias as a function of movement dura-
tion. A positive bias represents an overestimation of the distance moved. (b) Mean
+ 1 s.e. fits of bias as a function of final position showing position-dependent kine-
matic inaccuracies (see Appendix A of this chapter). The propagation of the (¢) bias
and (e) variance of the state estimate is shown, with standard error lines, against
movement duration. The differential effects on (d) bias and (f) variance of the ex-
ternal force, assistive (dotted lines) and resistive (solid lines), are also shown relative
to zero (dashed line). The difference in variance propagation between the resistive
and assistive fields was not significant over the movement; the difference in bias was
significant at the p = 0.05 level.
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that is larger than its veridical value.? All other components of the internal model
were set to their veridical values.

Simulations of the Kalman filter demonstrate the two distinct phases of bias prop-
agation observed (Figure 3-2). By overestimating the force acting on the arm the
forward model overestimates the distance traveled, an integrative process eventually
balanced by the sensory correction. The model also captures the differential effects
on bias of the externally imposed forces. By overestimating an increased force un-
der the assistive condition, the bias in the forward model accrues more rapidly and
is balanced by the sensory feedback at a higher level. The converse applies to the
resistive force. In accord with the experimental results the model predicts no change
in variance under the two force conditions.

We have shown that the Kalman filter is able to reproduce the propagation of the
bias and variance of estimated position of the hand as a function of both movement
duration and external forces. The Kalman filter also simulates the interesting and
novel empirical result that while the variance asymptotes, the bias peaks after about
one second and then gradually declines. This behavior is a consequence of a trade
off between the inaccuracies accumulating in the internal simulation of the arm’s
dynamics and the feedback of actual sensory information. Simple models which do
not trade off the contributions of a forward model with sensory feedback, such as
those based purely on sensory inflow or on motor outflow, are unable to reproduce the
observed pattern of bias and variance propagation. The ability of the Kalman filter
to parsimoniously model our data suggests that the processes embodied in the filter,
namely internal simulation through a forward model together with sensory correction,
are likely to be embodied in the sensorimotor integration process. We feel that the
results of this state estimation study provide strong evidence that a forward model is

used by the CNS in maintaining its estimate of the hand location. Furthermore, the

?This is consistent with the independent data that subjects tend to under-reach in pointing tasks
suggesting an overestimation of distance traveled (Soechting and Flanders, 1989).
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Figure 3-2: Simulated bias and variance propagation from a Kalman filter model of
the sensorimotor integration process. (a-d) are in the same representation and scale
as (c-f) in the previous figure.
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state estimation paradigm provides a framework to study the sensorimotor integration
process in both normal and patient populations. For example, the specific predictions
of the sensorimotor integration model can be tested in both patients with sensory
neuropathies, who lack proprioceptive reafference, and in patients with damage to

the cerebellum, a proposed site for the forward model (Miall et al., 1993).

3.3 Appendix A: Paradigm

The experimental setup consisted of a planar virtual visual feedback system (de-
scribed in Wolpert, Ghahramani, and Jordan, 1995) in conjunction with a planar two
degree-of-freedom torque-motor-driven manipulandum (described in Faye, 1986; see
Figure 3-3). The subject gripped a manipulandum on which his thumb was mounted.
The manipulandum was used to accurately measure the position of the subject’s
thumb and also, using the torque motors, to apply forces to the hand. The hand was
constrained to move along a straight line passing transversely in front of the subject.
The virtual visual feedback system was used to project computer-controlled images
into the plane of the movement. Eight subjects, who gave their informed consent,
participated and performed 300 trials each. Each trial started with the subject visu-
ally placing his thumb at a target square projected randomly on the movement line.
The arm was then illuminated for two seconds, thereby allowing the subject to per-
ceive visually his initial arm configuration. The light was then extinguished leaving
just the initial target. The subject was then required to move his hand either to the
left or right, as indicated by an arrow in the initial starting square. This movement
was made in the absence of visual feedback of arm configuration. The subject was
instructed to move until he heard a tone at which point he stopped. The timing of the
tone was controlled to produce a uniform distribution of path lengths from 0-30 cm.
During this movement the subject either moved in a randomly selected null or con-

stant assistive or resistive 3N force field generated by the torque motors. Although it
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Figure 3-3: Experimental apparatus

is not possible to directly probe a subject’s internal representation of the state of his
arm, we can examine a function of this state—the estimated visual location of the
thumb. The relationship between the state of the arm and the visual coordinates of
the hand is known as the kinematic transformation (Craig, 1986). Therefore, once
at rest the subject indicated the visual estimate of his unseen thumb position using
a trackball, held in his other hand, to move a cursor projected in the plane of the
thumb along the movement line. The discrepancy between the actual and visual es-
timate of thumb location was recorded as a measure of the state estimation error.
The bias and variance propagation of the state estimate was analyzed as a function
of movement duration and external forces. A generalized additive model (Hastie and
Tibshirani, 1990) with smoothing splines (five effective degrees of freedom) was fit
to the bias and variance as a function of final position, movement duration and the
interaction of the two forces with movement duration, simultaneously for main effects
and for each subject. This procedure factors out the additive effects specific to each
subject and, through the final position factor, the position-dependent inaccuracies in

the kinematic transformation.
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3.4 Appendix B: Simulation

The system dynamics of the hand was approximated by a damped (coefficient /) point
mass, m, moving in one dimension acted on by a force u = ujy; + Uexs, combining
both internal motor commands and external forces. Representing the state of the
hand at time ¢ as x(¢) (a 2 x 1 vector of position and velocity), the system dynamic

equations can be written in the general form of x(¢) = Ax(t) + Bu(t) + w(t) where
0 1

A= , B = and the vector w(t) represents the process of white
0 —f8/m 1/m

noise with an associated covariance matrix given by @ = E[w(t)w(#)T]. The system
has an observable output, the sensory information, representing the proprioceptive
signals (e.g. from muscle spindles and joint receptors), y(¢) which is linked to the
actual hidden state x(¢) by y(¢) = Cx(t) + v(t) where the vector v() represents the
output white noise which has the associated covariance matrix R = E[v(t)v(¢)T]. We
assume that this system is fully observable and choose C' to be the identity matrix.
At time £ = 0 the subject is given full view of his arm and, therefore, starts with an
estimate x(0) = x(0) with zero bias and variance—we assume that vision calibrates
the system. At this time the light is extinguished and the subject must rely on the
inputs and outputs to estimate the system’s state. The Kalman filter, using a model

of the system 121, B and C’, provides an optimal linear estimator of the state given by

k(1) = AX(1) + Bult) + K()ly(1) = k(1)

Forward model Sensory correction

where K(t) is the recursively updated gain matrix. This state estimate combines an
estimate from the internal model of the system dynamics together with a sensory
correction modulated by the Kalman gain matrix K (¢). We use this state update
equation to model the bias and variance propagation and the effects of the external
force. The parameters in the simulation, § = 3.9 N-s/m, m = 4 kg and u were

chosen based on the mass of the arm and the observed relationship between time



3.4. Appendix B: Simulation 107

and distance traveled. Specifically, the total force u was chosen to be linearly related
to the average velocity under each of the three force conditions: 1.3, 1.5 and 1.9 N
corresponding to the average movement velocities of 10.8, 12.8 and 16.6 ¢cm s™! for
the resistive, null and assistive conditions respectively. To end the movement the sign

of the motor command wu;,, was reversed until the arm was stationary. To simulate

the overestimation of distance traveled B was set to while both A and C'

1.4/m

accurately reflected the true system. Noise covariance matrices of Q = 9.5 x 107°1
and R = 3.3 x 107*] were used representing a standard deviation of 1.0 cm for the

position output noise and 1.8 cm s™! for the position component of the state noise.
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Chapter 4

Representation of the Visuomotor

Coordinate Transformation

4.1 Introduction

The human central nervous system (CNS) receives sensory inputs from a multitude of
modalities, each tuned to extract different forms of information from the environment.
These sensory signals are initially represented in disparate coordinate systems—for ex-
ample visual information is represented retinotopically whereas auditory information
is represented tonotopically. The ability to transform information between coordinate
systems is necessary for both perception and action. In perception, coordinate trans-
formations are required to convert sensory data into a common representational for-
mat so that they can be fused into a single percept. For example, visual and auditory
stimuli arising from a common source can be combined into a single representation of
the location of the source. In action, coordinate transformations are used to convert
sensory information into coordinates appropriate for movement. For example, when
we reach to a visually perceived object in space, the location of the object in visual
coordinates must be converted into a representation appropriate for movement, such

as the configuration of the arm required to reach the object. The coordinate transfor-
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mation between the visual location, initially represented as a retinotopic pattern of
neural activity, to the arm configuration required to place the hand at that location
is known as the visuomotor map, and is the focus of the first part of this chapter.
The coordinate transformation that maps the location of visual and auditory stimuli
into a common reference frame is known as the visuo-auditory map, and is the focus

of the second part of this chapter.

4.2 The Visuomotor Coordinate Transformation

Although the relationship between the visual and motor coordinate systems changes
over time, due to factors such as growth, the visuomotor map can adapt to these
changes. By examining the change in visuomotor coordination under prismatically in-
duced displacement and rotation, Helmholtz (1867/1925) and Stratton (1897a, 1897b)
pioneered the systematic study of this coordinate transformation. Their studies
demonstrated both the fine balance between the visual and motor coordinate sys-
tems, which is disrupted by such perturbations, and the ability of subjects to adapt
to the displacements induced by the prisms. Subsequently, many studies have further
demonstrated the remarkable ability of subjects to adapt, at least partially, to a wide
variety of alterations in the relationship between visual and motor system (for reviews
see Welch, 1978 and Howard, 1982)—the single prerequisite for adaptation seems to
be that the remapping be stable (Welch, 1986).

Two classes of hypotheses have been proposed to explain the mechanism for
adaptation—sensory hypotheses (e.g. Harris, 1965) and sensorimotor hypotheses
such as the reafference hypothesis of Held and colleagues (Held, 1962; Held and
Hein, 1958). The sensory hypotheses propose that visuomotor adaptation is driven
by changes in the normal relationship between vision and proprioception and that cal-
ibration is, therefore, between these two sensory information sources. At each point

in time the subject both sees and feels the position of his or her hand and learns
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to correlate the two signals. The sensorimotor reafference hypothesis proposes that
adaptation is driven by discrepancies between vision and the efference copy of the
motor command. The visual location of the hand (reafference signal) is correlated
with the motor command (efference copy) and a map is therefore formed between
the sensory input and the motor output. In both sensory and sensorimotor theories
adaptation takes place by simultaneously monitoring the visual position of the hand
and a signal effectively coding—either through proprioception or motor efference—
the arm configuration. Therefore, both these theories rely on a process of mapping or
correlation between visual and arm configuration signals for calibration. While the
conditions (e.g. Held and Hein, 1958), components (e.g. Harris, 1965; Redding and
Wallace, 1988) and time course of adaptation (e.g. Dewar, 1970) have been exten-
sively characterized, less is known about the topological properties of the visuomotor
map. In this paper we examine the topological structure of the visuomotor map by
introducing localized perturbations into the map and studying the resulting patterns

of spatial and contextual generalization.

4.2.1 Spatial Generalization

One way in which the representation of the visuomotor map can be studied is through
an examination of spatial generalization. That is, how does pointing change through-
out the reaching workspace after exposure to a highly localized set of remapped
points? Consider a subject moving his arm while wearing prisms, but having the vi-
sual feedback of his arm limited in such a way that he receives concurrent visual and
motor information only at a single point. Such a local remapping, which perturbs the
visuomotor map at only a single location, is consistent with a wide variety of possible
global remappings. The particular remapping that is chosen by the visuomotor con-
trol system, as demonstrated by the change in pointing behavior at different positions
in the workspace, reflects intrinsic properties of the map (Bedford, 1989).

A coordinate transformation such as the visuomotor map can be regarded as a
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function relating one set of variables (inputs) to another (outputs). For the visuo-
motor map the inputs are the visual coordinates of a desired target and the outputs
could be the corresponding motor coordinates representing the arm’s configuration
(e.g. joint angles). The problem of learning a sensorimotor remapping can then be
regarded as a function approximation problem (Koh and Meyer, 1991). In function
approximation, there is an explicit correspondence between the representation used
and the patterns of generalization that will emerge. These function approximators
can span patterns of generalization from local (look-up tables), through intermediate
(CMACs, Albus, 1975; and radial basis functions, Broomhead and Lowe, 1988) to
global (parametric models). We will return to a fuller discussion of these computa-
tional models in light of our data.

Several research groups have recently addressed the issue of generalization in vi-
suomotor learning (Bedford, 1989; Imamizu et al., 1994). Bedford (1989) used a
procedure in which subjects pointed to lit targets in the dark while looking through
a prism. By controlling the illumination of a light emitting diode (LED), mounted
on the subject’s fingertip, Bedford was able to limit the subject’s exposure to a sin-
gle pairing of visually and proprioceptively felt finger position. Through the use of
the prism, a discrepancy between vision and proprioception was induced such that
the subject would feel the finger position at one location but see it at another. By
comparing pointing behavior to a series of targets in an arc before and after train-
ing, Bedford assessed the change in the visuomotor map—that is, the extent to which
learning a remapping at one point generalized to other points in space. Bedford found
that training at one location generalized to the entire arc such that pointing shifted
everywhere by the same amount. In further experiments subjects were trained on a
remapping at two and three points and the change in pointing was again assessed
throughout the arc. The results indicated that training at two points generalized lin-
early, that is, the change in pointing was a linear function of target position, and that

training at three points, even when the remapping at the three points was not fully
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consistent with a linear remapping, again generalized linearly. Bedford concluded
that learning between perceptual dimensions was constrained to generalize linearly
(Bedford, 1989). In the current study, we report results for a two-dimensional point-
ing task. Moreover, we make use of an experimental apparatus in which targets and
reaching movements are in the same physical locations in space (in Bedford’s exper-
iments, the targets were outside the reaching workspace and the subject was asked
to place their finger so that it lay in a plane containing the target and the subject’s
eye).

Bedford’s study examined the visuomotor transformation along a single dimension.
As the subjects were tested in one dimension, along an arc centered around the
subjects’ eyes, these results cannot provide a full picture of how the visuomotor
transformation is represented. Thus, for example, Bedford’s results do not distinguish

between transformations of the kinematic map such as translation and rotation.

4.2.2 Contextual Generalization

Another way in which the representation of the visuomotor map can be investigated
is by examining its behavior when confronted with multiple remappings of the same
point in visual space. Several studies have shown that when different perturbations
are separated spatially, subjects are eventually able to adapt to each perturbation
in the appropriate part of space. For example, Kohler (1950) fitted a subject with
half-prism spectacles, in which the upper half of the visual field was displaced by 10°
and the lower half of the visual field was undisplaced. After a month’s exposure the
subject adapted to both upper and lower field displacements. Similarly, Shelhamer
et al. (1991) have recently examined adaptation to multiple eye-position-dependent
gains in the vestibulo-ocular reflex (VOR). Magnifying and minifying lenses were used
to produce different amounts of retinal slip experienced per degree of head rotation
depending on whether the eyes were looking up or down. The VOR is normally finely

tuned to produce an eye movement opposite in direction and equal in magnitude to
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an experienced head rotation so that the visual image appears stable on the retina.
Exposure to these lenses produces eye-position-dependent changes in the gain of the
VOR, suggesting that eye position can modulate the VOR gain.

Other studies have examined how the visuomotor map responds to multiple map-
pings of the same visual location separated by time. For example, McGonigle and
Flook (1978) studied prismatic adaptation over ten sessions with three day inter-
vals between the sessions. Each session comprised of three sequential conditions—
prismatically-induced leftward and rightward displacements and no prism deviation.
An overall improvement to both prisms over the sessions, with greater improvement
in earlier sessions, was found. Similarly, Welch et al. (1993) exposed subjects to
alternating 15 diopter left and 15 diopter right prisms over 12 sessions, resulting both
in an improved relearning of each displacement and an improved general ability to
learn new displacements, such as one imposed by a 30 diopter prism. These studies
demonstrate that repeated exposure to multiple remappings of a single point in space
improve subjects’ ability to readapt to each displacement.

Conditioned or contextual adaptation combines attributes of both of the above
forms of adaptation. In this paradigm, distinct remappings of the same location
in space can be elicited by experimentally manipulating a context variable. Pre-
vious contextual adaptation studies have shown that subjects elicit aftereffects de-
pendent on the feel of the prism goggles (Kravitz, 1972; Welch, 1971), an auditory
tone (Kravitz and Yaffe, 1972), and the felt direction of gaze (Hay and Pick, 1966).
An issue which has not been explored is how adaptation generalizes as the context
is continuously varied. We explore this issue using a novel and natural context for
the visuomotor map, the movement starting location and address whether multi-
ple starting point dependent visuomotor maps can be concurrently represented and
appropriately indexed. If such maps can be learned, then their representation can
be probed by examining the modulating influence of the context on the visuomotor

map. In other words, how does the visuomotor map generalize to novel contexts for
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the movement?

4.2.3 Experimental Aims and Overview

In the present study we have first sought to test how the visuomotor coordinate
transformation changes in a two-dimensional workspace after remapping at only one
and two input-output pairs (Experiments 1 and 2, respectively). In a second series of
studies we examine generalization across context-dependent modules by remapping
a single visual position to two different finger locations dependent on the location of
the start of the movement (Experiments 3 and 4).

Many previous studies have investigated the effects of altered visual feedback
using either optical devices such as prisms or visual feedback on a computer monitor
separate from actual hand position (e.g. Cunningham, 1989). We could not easily use
an optical system, such as a prism, to perturb the visual feedback of the actual arm as
it was necessary for our experiments to have rapid position-dependent control of the
nature and direction of the perturbation. On the other hand, the use of a computer
monitor requires the subjects to make additional coordinate transformations to link
their hand position to the cursor spot. We have, therefore, designed a two-dimensional
virtual visual feedback apparatus in which the need for any coordinate transformation
between cursor and hand position is obviated; the virtual image of the cursor is at the
same position, in three-dimensional space, as the finger. Using this setup, described
in more detail below, complex state-dependent perturbations can also be introduced.
As Held et al. (1966) have shown, also using a virtual image setup, the use of a
luminous spot to represent finger position is sufficient to elicit prismatic adaptation

provided that the cursor spot and hand movements are tightly correlated.
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4.3 Experiment 1: Visuomotor Generalization to

a One-Point Displacement

In order to study the topology of the visuomotor map we have extended Bedford’s
method to a two-dimensional workspace. The aim of our first experiment was to
assess the adaptation in the visuomotor map, as measured by the change in pointing
behavior, after a period of exposure to a single remapped input-output pair. This was
achieved by restricting the visual feedback of the subject’s finger, as represented by
a cursor spot, to within a few millimeters of the remapped point. When the subject
was outside this area the cursor spot was extinguished. Before and after this exposure
phase the subject’s pattern of pointing was assessed to locations on a grid of nine
targets. These movements were performed in the dark. In distinction to Bedford’s
study, where subjects were asked to “point so that it feels like your right eye, the tip
of your finger, and the light in space are lined up” (Bedford, 1993), we instructed
subjects to place their finger as accurately as possible at the exact location where
they saw each target, thus matching both direction and distance.

The change in pointing behavior in the absence of visual feedback is a measure
of the prismatic aftereffect. Thus, one might expect to see some adaptation at the
training point. However, as the subject was given no information about the mapping
at any location other than the training point, any change in pointing behavior at the
other targets is an indirect effect of the training. As the task places no constraints at
the non-training targets, the pattern of generalization obtained is a result of intrinsic
constraints on the representation of the visuomotor mapping (Bedford, 1989, 1993).

Several possible patterns of generalization arise from different hypotheses (Fig-
ure 4-1). If the limited exposure at the central training point is insufficient to pro-
duce any adaptive effect then no change in pointing behavior would be expected.
However, if the mapping is represented locally, training at one point might result in

aftereffects at the training point alone. Alternatively, if the mapping is represented
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Figure 4-1: Schematic of some possible patterns of generalization to remapping of a
single visual-proprioceptive pair at the central target. The central visual location is
remapped to a finger position to the right of the central target. The arrows represent
the change in pointing behavior after exposure to this remapping. Thus a right arrow
(i.e. rightward change in pointing) at the central target represents adaptation to the
perturbation at the training point whereas any change at the other eight targets is
evidence of spatial generalization.

globally then some form of adaptation would be expected at the outer eight targets.
For example, if the central remapping was interpreted as a change in felt direction
of gaze, a common finding in the prism adaptation literature (e.g. Welch, 1986 for a
review), the pattern of generalization might be a rotational change. Alternatively, as
suggested by Bedford’s studies, the visuomotor map may be constrained to generalize
linearly. For example, a linear translation in Cartesian coordinates might be seen,
which would result in a pattern of aftereffects very different from that arising from

laterally displacing prisms, whose primary effect is to induce a fixed angular rotation
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of the visual field. Another possibility is that generalization may be Cartesian but
the effect may decay with distance from the training point. Lastly, some other non-
linear pattern of generalization may result consistent with alternate possibilities such

as joint- or muscle-based adaptation.

4.3.1 Method
Subjects

24 right-handed undergraduate students participated as subjects. Subjects were naive
to the purpose of the experiment and were paid $7.00 for participation. All subjects

had self-reported normal or corrected-to-normal vision.

Apparatus

In order to measure pointing behavior and to constrain subjects to experience lim-
ited input-output remappings we designed a two-dimensional virtual visual feedback
setup. This consisted of a digitizing tablet to record the finger position on-line and
a projection/mirror system to generate a cursor spot image representing the finger
position. This setup allowed us to project the virtual image of the finger as well as
targets in the plane of the table. The exact relation between the cursor spot and fin-
ger position could be controlled on-line so as to generate alterations in the visuomotor
map. Furthermore, the cursor spot could be illuminated and extinguished so as to
allow concurrent visual-proprioceptive feedback in restricted areas of the workspace.
This setup is described in more detail below.

Subjects sat at a large horizontal digitizing tablet (Super L II series, GTCO, MD)
with their head supported by a chin and forehead rest (Figure 4-2). This placed
the subjects’ eyes in a plane approximately 25 cm above the digitizing tablet. The
subject’s right index finger was mounted on the cross hairs of a digitizing mouse

which could be moved along the surface of the digitizing tablet; the subject’s arm
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Figure 4-2: Apparatus used in all the experiments to introduce limited visuo-motor
remappings. The position of the finger was captured on-line by a computer which
calculated the perturbed finger position. The feedback of finger position was pro-
jected onto a screen as a cursor spot. Looking down at the mirror, the subjects saw
the virtual image of the cursor spot, in the plane of the finger—the actual finger
location was hidden from view. By controlling the illumination of the cursor spot the
remapping could be limited to particular areas of the workspace.

was hidden from direct view by a screen. The digitizing tablet’s coordinates were
sampled as (x,y) coordinate pairs at 185 Hz by a PC; the accuracy of the board was
0.25 mm.

The targets and the feedback of finger position were presented as virtual images
in the plane of the digitizing tablet (and therefore in the plane of the finger tip). This
was achieved by projecting a Video Graphics Array (VGA) screen (640 x 480 pixels)
with an LCD projector (Sayett Media Show) onto a horizontal rear projection screen

suspended 26 cm above the tablet (Figure 4-2). One pixel measured 1.2 x 1.2 mm
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on the screen. A horizontal front-reflecting semi-silvered mirror was placed face up
13 cm above the tablet. The subjects viewed the reflected image of the rear projection
screen by looking down at the mirror. By matching the screen-mirror distance to the
mirror-tablet distance all projected images appeared to be in the plane of the finger
when viewed in the mirror. Targets were presented as 9 x 9 pixel (10.8 mm) hollow
squares and the finger position was indicated by a 5x5 pixel (6 mm) filled white square
(cursor spot). The position of the finger was used on-line to update the position of
this cursor spot at 50 Hz.

Prior to each experiment the position of the digitizing mouse cross-hairs relative
to projected pixel position was calibrated over a grid of 16 points on the tablet. By
illuminating the semi-silvered mirror from below, the virtual image and the cross-
hairs of the digitizing mouse could be lined up by eye. A quadratic regression of
x and y pixel position on = and y hand position was performed and this was used
on-line to position the targets and cursor spot. The correlation of the fit was always

greater than 0.99. Cross-validation sets gave a average calibration error of 1.5 mm.

Procedure

Subjects were randomly assigned to one of three groups: control, z-shift and y-shift.
Each experimental session consisted of four parts.

In the first part (familiarization phase) the subject was familiarized with the
setup by pointing eight times to each of nine randomly presented targets on a 3 x 3
grid. Pointing movements were made under full visual feedback of finger position, as
represented by the cursor spot. The target appeared and remained illuminated until
the subject moved the cursor to the target position. The target then disappeared and
the next target appeared when the subject had moved at least 15 ecm away from the
previous target.

In the second part (pre-exposure phase), the subject’s pointing accuracy was as-

sessed in the absence of visual feedback of finger position. The subject was instructed
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to point as accurately as possible to visually presented targets. The subjects indi-
cated when they thought their finger was on target by pressing a mouse key with
their left hand. Subjects were encouraged to be as accurate as possible and to press
the mouse key only when they thought their finger position matched the target ex-
actly. The target then disappeared and the next target appeared when the subject
had moved 15 ¢m away from the previous target. This ensured that relative direction
of the targets could not directly cue the subject’s pointing movement. Targets were
presented eight times each in a pseudorandom order on the same 3 x 3 grid. The
subjects received no information as to their pointing performance. During this phase
the target and finger positions were recorded for each trial.

The third part (exposure phase) of the experiment was designed to provide exten-
sive exposure to an altered mapping between the visual and proprioceptive systems at
a single location at the center of the workspace. Subjects were instructed to point to
a central visually presented target—the training point. The cursor spot representing
their finger position was only illuminated when it was within 0.5 cm of the target
box. This allowed only very limited concurrent visual-motor feedback.

The relationship between the cursor spot and actual finger position was altered for
the different groups. For the control group the finger cursor accurately represented
the finger position. Therefore in order to see the cursor on target their finger had also
to be on target. For the other two groups a discrepancy was introduced between the
actual and perceived finger position (Figure 4-3a). For the x-shift group the subject
had to point 10 cm to the right of the central target in order to see the cursor spot on
target (Figure 4-3b). For the y-shift group the subjects had to point 10 cm towards
their body in order to see the cursor spot on target (Figure 4-3c). In these two groups
the subjects were, therefore, exposed to a single remapping of finger position to visual
position. Once the central target was reached the subject had to maintain the finger
cursor there for 2 seconds, until the target turned from white to blue and one of the

8 peripheral targets became illuminated in a pseudorandom order. The subject then
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had to move towards that target; after having moved 15 cm the central target would
turn white and the cycle would repeat. The subject pointed a total of 40 times to

the central target.!

a) b)
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Figure 4-3: a) The position of the grid of targets is shown relative to the subject
for Experiment 1. Also shown, for the x-shift condition, is the perceived and actual
finger position when pointing to the central training target. The visually perceived
finger position is indicated by a cursor spot which is displaced from the actual finger
position. b) A schematic showing the perturbation for the x-shift group and the
target numbering used to describe the results. To see the cursor spot on the central
target the subjects had to place their finger at the position indicated by the tip of
the arrow—a 10 cm one-point visuomotor remapping. ¢) A schematic similar to b)
showing the perturbation for the y-shift group.

Limiting the area of the cursor feedback to within 0.5 cm of the target ensured

!Due to an error in experimental coding, the control sessions were slightly shorter, requiring
only 30 repetitions of the central target pointing cycle in the exposure phase. However, in both this
experiment and in Experiment 2, where the control consisted to 60 repetitions of a similar cycle with
no perturbation, the control groups exhibited almost no change in pointing between pre- and post-
exposure phases. This indicates that the basic premise of the experimental control, that subjects’
pointing does not change systematically during an unperturbed exposure phase, is valid.
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that during the exposure phase the visual and proprioceptive information on finger
position co-occurred only within a small region of the workspace. However, this lim-
ited feedback also made the task of pointing to the central target difficult. Subjects
were warned that this phase of the the experiment would be difficult and that they
would have to try moving around to find the target. To aid the subject in finding the
target, after 10 seconds, one of the following messages would be displayed at the bot-
tom of the screen—*“try left”, “try up”, “try right” or “try down”. A random search
strategy such as Bedford’s, where subjects were told “try moving your hand back
and forth slowly” (Bedford, 1989) could not be employed since in a two-dimensional
workspace it is not guaranteed to locate the target. During this exposure phase the
time to place the finger on target was recorded as a measure of visuomotor learning
of the training target.

The final phase (post-exposure phase) was identical in form to the second (pre-
exposure) phase; subjects’ pointing was again measured, in the absence of cursor
feedback, on the 3 x 3 grid with eight repetitions at each point. The pseudorandom
order of the targets was changed from the second phase.

For the control and z-shift groups the grid points were evenly spaced on a square
from (-10,20) to (20,50) cm relative to the midpoint between the eyes (Figure 4-3a).
For the y-shift group the grid was reduced evenly in the y-direction by 10 cm to
(-10,25) to (20,45) cm. This was necessary because if the subject adapted fully to
the 10 c¢m perturbation, the closer target points would be reached with movements
outside the recording area of the tablet. In all cases the position of the central target

was maintained at (5, 35) cm.

Analysis

To study the effect of initial pointing inaccuracies the pre-exposure pointing errors
were analyzed in each group separately. The average finger position for each target

was calculated together with its covariance matrix. The average pointing locations
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were plotted, together with their corresponding targets, as 95% confidence ellipses
centered around the sample mean.

To assess the improvement in target acquisition during the exposure phase the
mean time to reach the target over batches of five trials was plotted. To assess gen-
eralization of the visuomotor map, the subjects’ change in pointing behavior between
the pre-exposure and post-exposure phases was analyzed. For each subject and target
the average change in pointing position between the pre-exposure and post-exposure
phases was calculated, along with the corresponding covariance matrices. The sub-
jects’ data was combined within each group and target, yielding the average change
for the group and the covariance matrix for each target. Each vector change and
covariance matrix is based on 128 data points (8 subjects x 8 repetitions x pre- and
post-exposure conditions). The mean change in pointing position for each target was
plotted at that target as an arrow along with the 95% confidence ellipse. These plots,
therefore, show the change in the pointing behavior subsequent to the exposure phase
while factoring out any consistent inaccuracies in pointing.

Per target analyses (ANOVAs) of x and y pointing errors were performed to assess
the significance of the change in pointing at each target, with phase as the within-
subject factor. The significance of the overall changes in pointing errors was assessed
through separate ANOVAs for each group, with phase (pre- and post-exposure) and
target (9 locations) as within-subject factors.

Two alternative representations were also used to display the data. First, an in-
terpolated vector field from the mean change vectors was obtained by Gaussian kernel
smoothing (kernel width s.d. 7.0 cm). The Gaussian kernel smoothed fields were also
used to estimate the proportion adaptation in the direction of the perturbation, which
were plotted as greyscale contour plots. These contour plots, therefore, display an

estimate of the proportion adaptation over the workspace.
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4.3.2 Results

Pre—exposure errors

Subjects showed a consistent pattern of pointing errors in the pre-exposure phase. The
pattern of inaccuracies in initial pointing was similar between groups and generally
showed a bias away and towards the left side of the subject (Figure 4-4). In particular,

pointing at the central training point was biased away and to the left for all three

groups.
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Figure 4-4: The targets (solid squares) and pre-exposure pointing locations are shown,
for the three groups of Experiment 1, as 95% confidence ellipses centered around the
mean.

Learning during the exposure phase

During the exposure phase, due to the limited feedback, the target was difficult to
find. Figure 4-5 shows how the time to acquire the target changed as a function of
practice. For both the x and y shift groups the target took initially longer to acquire
than in the control. Over the course of the exposure phase, the time to acquire the

targets dropped to levels not significantly different from the controls.
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Figure 4-5: Target acquisition time as a function of trial during the exposure phase
for the x-shift and y-shift groups. Also shown on each plot, for comparison, is the
control group (hollow circles). For clarity the standard error bars are shown in one
direction only.

Generalization

The pattern of generalization for the controls is shown in Figure 4-6a. The figure
represents the change in pointing between pre- and post-exposure phases plotted as
vectors centered at the 9 targets. For example, a 1 em leftward-pointing arrow would
signify that subjects’ pointing to that target changed by 1 ¢m to the left between
the pre- and post-exposure sessions. The ellipses centered at the arrow tip are 95%
confidence ellipses for the change in the sample mean. The per target ANOVAs reveal
that none of these changes are significant at the o = 0.05 level. The interpolated
vector field of changes for the control (Figure 4-6b) highlights the fact that, although
there were no significant changes, there was a small trend towards the left for all 9
points.

The ANOVA (summarized in Table 4.1) shows no significant main affect of phase
for the = or y directions. The main effect of phase indicates the global component of
change between the pre- and post-exposure phases. Therefore, the control subjects,
as expected, did not change their pointing behavior in either the x or the y direction.

We now consider the effect of introducing a remapping at one input-output pair.
The general effect of introducing such a perturbation was to induce significant changes

in the pointing behavior not only at the remapped point but at neighboring points as
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Figure 4-6: a) Average change in pointing for the control group. The arrows show the
change centered on the visually presented target along with 95% confidence ellipses.
b) Gaussian kernel smoothed vector field of changes.

well. The pattern of generalization for the z-shift group is shown in Figure 4-Ta; the
change in pointing between the pre- and post-exposure phases was significant at 6 out
of the 9 targets (targets 1-6, numbered according to Figure 4-3b) in the x direction
and at 1 out of 9 targets (target 9) in the y direction. The shift was greatest at the
training point (4.9 cm) and decreased in magnitude away from this point. The overall
ANOVA (summarized in Table 4.1) shows a significant main effect of phase for the
direction indicating a global change between the pre- and post-exposure phases.

The interpolated vector field of changes for the x-shift group (Figure 4-7b) shows
a pattern of decaying rightward changes with a downward y trend further from the
subject. The proportion adaptation in the direction of the perturbation computed
from the vector fields is depicted in Figure 4-Tc as a greyscale contour plot. This
shows the pattern of greatest change occurs at the training point and decays with
distance away from it.

The pattern of generalization for the y-shift group is shown in Figure 4-8a. The
change in pointing between the pre- and post-exposure phases was significant at 1
out of 9 targets (target 8) in the x direction and at 3 out of 9 targets (targets 1, 2
and 5) in the y direction. The change in the y direction at target 8 was marginally
significant (p = 0.06). As in the x-shift group, the shift was again greatest at the
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Experiment 1: Analysis of Variance

Group  Dir Phase Target Phase x Target
F1,7 P F8,56 P F8,56 P

Control
x 2.16 ns 3.7 < 0.01 <1 ns
Y <1 ns 257 < 0.05 1.61 ns

X-Shift
x 15.83 < 0.01 5.96 < 0.001 2.06 ns
Y 1.96 ns 9.51 < 0.001 1.36 ns

Y-Shift
x <1 ns 1.35 ns 2.11 < 0.05
Y 3.75 ns <1 ns 1.87 ns

Table 4.1: Summary of the two-factor within-subject ANOVAs for the three exper-
imental groups and two directions (Dir) in Experiment 1. Non-significant effects at
the o = 0.05 level are denoted by ns.

training point (2.2 cm). Changes were most pronounced at the two rows closest to
the subject; there were no significant changes in the row of targets furthest from the
subject. The overall ANOVA indicates that the y direction of change in the y shift
group was marginally significant (£}, = 3.75, p = 0.09).

The interpolated vector field of changes for the y-shift group is shown in Figure 4-
8b. This highlights the pattern of downward (i.e. towards the body) changes decaying
away from the training point. The proportion adaptation contour plot (Figure 4-8¢)
again highlights a pattern of adaptation that is greatest near the training point and

decays away from it.

4.3.3 Discussion

The learning curves indicate that control subjects were initially better than either
perturbation group at locating the training point during the exposure phase. This is
to be expected, since their visuomotor map was unperturbed. The z-shift group took

slightly longer to locate the target and the y-shift group took considerably longer.
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Figure 4-7: a) Average change in pointing for the z-shift group. b) Gaussian kernel
smoothed vector field of changes. c¢) Proportion adaptation relative to the size of
the perturbation. The lightest shade corresponds to 40% adaptation and the darkest
shade corresponds to 11% adaptation.

Taking time to locate the target as a measure of task difficulty this suggests that the
y perturbation, through identical in magnitude, was more difficult to adapt to than
the x perturbation. This is also supported by the observation that the proportion
adaptation for the y-shift group was smaller than for the z-shift group. After about
30 pointing trials for both the z-shift and y-shift groups the time to attain the target
decreased to control levels.

Although there was a large consistent pattern of pre-exposure errors, repeated
unperturbed training at the central target in the control did not decrease these errors.
This indicates that the pattern of pre-exposure pointing errors does not seem to be
corrected for with training at the central target.

The effect of remapping a single point in the visuomotor map was to induce
significant global changes in the pointing behavior. It is important to note that as
subjects were both uninformed and unaware of the perturbation the adaptation can
be regarded as perceptual rather than cognitive (Bedford, 1993). For the z-shift
group the large shift in the compensatory direction at the training point indicates a
substantial local aftereffect (47%) due to the exposure. Five out of eight peripheral
locations also showed a significant shift in the compensatory direction—a finding that

is is inconsistent with a purely local model of the adaptation process. When viewed
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Figure 4-8: a) Average change in pointing for the y-shift group. b) Gaussian kernel
smoothed vector field of changes. ¢) Proportion adaptation relative to the size of the
perturbation. The lightest shade corresponds corresponds to 16% adaptation and the
darkest shade corresponds to 6% adaptation.

in the contour plot in Figure 4-7c the global effect can be seen as a decaying surface
with its peak centered at the training point.

Similarly, a remapping in the y-shift direction appears to induce the largest shift
in the compensatory direction at the training point, showing a local aftereffect of
21%. The pattern of peripheral shifts is somewhat different than in the x-shift group:
three of the five peripheral targets nearest to the body showed a significant or near-
significant y shift, while none of the three furthest targets showed a shift approaching
significance. This suggests that the effect is not local but that the global effect
decreases further away from the body (Figure 4-8c).

Taken together, the y-shift and z-shift data are not consistent with a model that
represents the learning as a change in felt direction of gaze (Harris, 1965). Due to
the arrangement of the chinrest and table, the subjects’ eyes are sagittally away from
(35 cm) and above (25 cm) the position of the training point. If the adaptation were
represented as a constant angular offset in the felt direction of gaze one would have
expected larger shifts in pointing at the more distant targets for both the y-shift and
x-shift groups—in fact these shifts were generally smaller.

In summary, the one-point generalization study shows that the generalization

appears to be global but that the effect falls off with distance from the exposure site.
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The results suggest that training at one point has a non-linear generalization effect;
that is, the changes are not uniform across the workspace. Based on this finding one
would expect that training at two points might result in a pattern of generalization
not consistent with Bedford’s linear constraint hypothesis (Bedford, 1989, 1993). To
explore this question further and to further elucidate the constraints on the map we

conducted a two point generalization study.

4.4 Experiment 2: Visuomotor Generalization to

a Two-Point Displacement

In Experiment 2 subjects were exposed to perturbations of the normal relation be-
tween vision and proprioception at two points. The experimental question was again,
how does pointing behavior change after exposure to local perturbations in the visuo-
motor map? We chose the perturbations at the two points to be of opposite sign in
the y (sagittal) direction to test the hypothesis that the map was constrained to gen-
eralize linearly. Such a perturbation, displayed in Figure 4-9, introduces a conflict if
the map were to be interpreted in a globally linear way. That is, the Cartesian linear
hypothesis (Figure 4-1) would predict for each perturbation a globally linear gener-
alization of opposite sign, thereby cancelling to produce no generalization. On the
other hand, the Cartesian decaying hypothesis suggested by Experiment 1 predicts
that the two perturbations will each generalize to the region of space around them.
However, there are many other possible patterns of generalization consistent with the
perturbation; for example, a counterclockwise rotation about the central target or a
skew transform. Both of these patterns of generalization are linear transformations

of Cartesian space (see discussion of possible transformations in Bedford, 1993).
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4.4.1 Method

Subjects

16 naive right-handed undergraduate students participated in this study. Subjects
were paid $7.00 for participation. All subjects had self-reported normal or corrected-

to-normal vision.

Procedure

Subjects were randomly assigned to one of two groups: control and y-shift. The
paradigm was identical to the one-point generalization experiment except that in
the pre- and post-exposure phases 11 points were tested and in the exposure phase
training alternated between two targets. These differences are detailed below.

In the pre- and post-exposure phases, subject’s pointing accuracy was assessed
in the absence of visual feedback of finger position at 11 targets (Figure 4-9). As in
Experiment 1 pointing consisted of 8 pseudorandom repetitions at each target. Nine
of the targets were identical in location to those used in Experiment 1. The other
two targets were located to the left and the right of the central target and were used
as training points during the exposure phase.

The workspace used in Experiment 2 was identical to that used for the control and
x-shift groups in Experiment 1. Based on Experiment 1, we realized that subjects did
not generally adapt fully to the 10 cm perturbation, and therefore it was unnecessary
to reduce the workspace as was done for the y-shift group in Experiment 1.

During the exposure phase of this experiment, two training locations were used:
one on the left (-2.5, 35.0) and one on the right (12.5, 35.0) of the grid center (targets
10 and 11 in Figure 4-9). The paradigm was similar to the one point study except
that subjects alternated between pointing to the left and right target for a total of 60
repetitions, 30 repetitions at each target. For the control group the cursor accurately

represented finger position. For the y-shift group the subject had to point 10 cm
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Figure 4-9: A schematic of the perturbation and the layout of the 11 targets is shown
for Experiment 2. The training points and the corresponding finger positions are
shown for the y-shift group. A number of global transformations are consistent with
this perturbation, including a rotation and a skew.

towards the body at the left target and 10 cm away form the body at the right target

so as to appear on target (arrows in Figure 4-9).

Analysis

The analysis was identical to that performed in Experiment 1, except for the increased
number of targets. To obtain the interpolated vector fields and contour plots the
Gaussian kernel width of the smoothing algorithm was reduced to 3.5 cm, since there
was, in this experiment, a higher density of data points collected over the same

workspace. The time to reach the target was batched over 10 trials.

4.4.2 Results

Pre—exposure errors

Subjects showed a consistent pattern of pointing errors in pre-exposure phase (Fig-
ure 4-10). The pattern of inaccuracies in initial pointing were similar to those found
in Experiment 1 (Figure 4-4). In particular, the pattern of pre-exposure pointing
errors for the y-shift group displayed the same tendencies of overall overshoot, larger

for the three targets on the right, with a leftward bias for the targets on the left. For
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the control group, overshoot was only present in the distant targets, with significant

undershoot in the three near targets.

Control Y shift
55+ 55
0 0 o ©
504 @ " " 504 o
45 - 45 -
—~ 40 —~ 40
S )
L 35 o O Q ) O O350 O © -Q
> >
30 - 30 A
251 254
O
201 L] [ [ 204 O L] © N
o o @)
15 154
-15 -10 -5 0 5 10 15 20 25 -15 -10 -5 0 5 10 15 20 25
X (cm) X (cm)

Figure 4-10: The targets (solid squares) and pre-exposure pointing locations are
shown, for the two groups of Experiment 2, as 95% confidence ellipses on the mean.

Learning during exposure phase

Figure 4-11 shows how the time to acquire the target changed as a function of practice.
Initially, the target took significantly more time to acquire for the y-shift group than
for the control. Over the course of the exposure phase the time to acquire the targets

dropped to levels not significantly different from the controls.
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Figure 4-11: Target acquisition time as a function of trial during the exposure phase:
y-shift group (solid circles) and controls (hollow circles) with one standard error bars.
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Experiment 2: Analysis of Variance

Group  Dir Phase Target Phase x Target
F1,7 P F10,70 P F10,70 P

Control
x <1 mns 6.73 < 0.0001 2.22 < 0.05
Y <1l mns 9.73 < 0.0001 1.54 ns

Y Shift
x <1 ns 12.66 < 0.0001 1.82 ns
y <1 mns 16.54 < 0.0001 12.73 < 0.0001

Table 4.2: Summary of the two-factor within-subject ANOVAs for the three exper-
imental groups and two directions (Dir) in Experiment 2. Non-significant effects at
the o = 0.05 level are denoted by ns.

Generalization

The pattern of generalization and interpolated vector field for the control group are

shown in Figure 4-12; the per target ANOVAs indicated that none of the changes in

pointing were significantly different from zero. The ANOVA, summarized in Table 4.2,

shows no significant main effect of phase for the x or y directions, indicating that the

control subjects did not change their global pointing behavior in either the = or the

y direction.
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Figure 4-12: a) Average change in pointing for the Experiment 2 control group. b)

Gaussian kernel smoothed vector field of changes.

Figure 4-13a shows the pattern of generalization for the y-shift group. The change
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in pointing between the pre- and post-exposure phases was significant at 2 out of 11
targets (targets 3 and 6) in the = direction and at 4 out of 11 targets (targets 8-11)
in the y direction. Additional marginally significant (p < 0.10) changes occurred at
1 target (targets 4) in the x direction and at 4 out of 11 targets (targets 1, 2, 4 and
6) in the y direction. The change was greatest at the right training point (6.2 cm),
followed by the target immediately to its right (4.9 ¢cm), and then at the left training
point (4.7 cm).

The pattern of generalization in the interpolated vector field of changes for the
y-shift group (Figure 4-13b) shows a change in pointing away from the body in the
upper right half of the workspace and towards the body in the lower left half. The
ANOVA (Table 4.2) showed no significant main effects of phase but a highly significant
interaction of phase and target in the y direction, reflecting the non-linear effect.

The proportion adaptation in the direction of the perturbation (y direction) com-
puted from the vector field is depicted in Figure 4-13c as a greyscale contour plot.

The lighter areas represent change away from the body and the darker areas change

towards the body.
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Figure 4-13: a) Average change in pointing for the y-shift group. b) Gaussian
smoothed vector field of changes ¢) Proportion adaptation relative to the size of
the perturbation. The lightest shade corresponds to 58% adaptation in the positive

y direction and the darkest shade corresponds to 42% adaptation in the negative y
direction.
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4.4.3 Discussion

Again, although there were large consistent pre-exposure pointing errors the con-
trol only displayed small changes between the pre- and post-exposure phases. This
reinforces the notion that the visuomotor map is relatively stable throughout the
experiment when not exposed to a perturbation.

The learning curves for the exposure phase suggest that the two-point perturbation
was initially more difficult to compensate for than either one-point perturbation from
Experiment 1. However, as the session proceeded the time to locate the two targets
decreased to control levels.

The effect of perturbing the visuomotor mapping at two points in the workspace
was to induce a pattern of generalization around each of the points which, as in the
first experiment, decayed away from the training points. As the perturbations were
opposite in direction, there was a region between the two training points where the
visuomotor map did not change. The results of this experiment suggest that the
effect of simultaneously remapping several points can be explained qualitatively as
an effect of superimposing the contributions of several single point remappings. The
perturbation at two points is not interpreted by the visuomotor map as a single global
remapping. In particular, the two-point perturbation could have been interpreted by
the visuomotor system as a single global remapping consisting of a counterclockwise
rotation about the central target. This would have produced a pattern of generaliza-
tion with large opposite-sign x-shifts at the middle-top and middle-bottom targets.
However, neither these nor the other peripheral targets demonstrate the pattern of
changes predicted by a rotatory shift.

The results of the two-point perturbation study are at odds with the conclusions
that Bedford draws from her two-point perturbation results. Experiments 2 and 3
of Bedford (1989) examined generalization to two-point perturbations using lateral
displacements at two training targets along an arc centered about the subjects’ eyes.

Bedford examined the change in pointing behavior before and after this perturbation
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at three positions between the two training points and at six positions outside the
range of the training points. Subjects displayed neither significantly larger nor sig-
nificantly smaller shifts in the extrapolative region than at the training points. Our
results from the two-point perturbation experiment also do not display larger shifts at
peripheral targets than at the training points, at odds with a strict interpretation of
Bedford’s linear constraint hypothesis, although consistent with her data. Moreover,
the results from Experiment 1 indicate that adaptation was consistently smaller away
from the training point, rather than staying constant or growing linearly. Therefore,
neither the results from the one-point nor the two-point perturbation studies are
consistent with the linear constraint hypothesis.

Differences in methodology may explain the difference between Bedford’s results
and our results. In particular, our apparatus allowed a natural mapping between
target locations and the subjects’ movements: subjects were asked to position their
finger at the same perceived location in space as the target. In Bedford’s experiment,
subjects were asked to place their finger in a vertical plane that also contained the
target and their right eye. This is a more difficult task than ours, and the differences
in difficulty may have influenced the patterns of generalization. Another possibility is
that the differences are due to the two-dimensional nature of our task; in particular,
our two-point perturbation involved a perturbation in depth (i.e., in radial distance
from the subject), whereas Bedford’s perturbations were all at constant depth.

In Experiment 1 and 2 we have examined patterns of spatial generalization in an
attempt to elucidate the constraints underlying the representation of the visuomotor
map. In the next series of experiments, we extend this paradigm to the study of
contextual generalization. Two questions will be addressed: Can the same point in
visual space be mapped onto two different hand locations depending on a context? If
two separate context-dependent mappings can be induced, how does the visuomotor

map generalize to other contexts?
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4.5 Experiment 3: Contextual Generalization of

the Visuomotor Map A

In this experiment we investigated the changes induced in the visuomotor map by
a context-dependent remapping of a single visual location to two different finger
positions. Subjects were exposed to different visuomotor rearrangements at a single
visual target location during movements made from two possible starting locations.
Two perturbations, equal in magnitude but opposite in sign, were used—where the
sign of the perturbation was determined by this starting point of the movement. The
start point of the movement, therefore, represented the context of the remapping.
Such a remapping sets up both ambiguous and conflicting visuomotor pairs at this
single visual location which can be resolved only through the use of the context.

The first goal of this study was to assess whether context-dependent maps can in
fact be learned. Given that equal and opposite remappings of the same point are pre-
sented, one possible prediction is that there would be no change from either starting
location; any potential adaptation due to one remapping would be counteracted by the
other. Alternatively, if adaptation takes place it may be either context-independent
or context-dependent. Context-independent adaptation would be found if the changes
induced in the visuomotor mapping are the same from both starting locations, and
conversely, context-dependent adaptation would be found if the changes are different
from the two starting locations.

The second aim of this study was to explore how any changes induced in the
visuomotor map generalize as the context is varied between the two starting locations.
The use of starting position as the context for the movement allowed both a natural
context for pointing movements and one in which the context could be continuously
varied by selecting new start locations at points along the line joining the two initial
starting points. If context-dependent adaptation is seen for the two start points used

in training, then the form of generalization of this adaptation to new contexts can
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be assessed. As in the spatial generalization experiments, the extent of contextual
generalization could range from none, through linear, to nonlinear. In particular, we
were interested in assessing whether there would be an abrupt or smooth transition
from one map to the other as the context is varied between the two learned contexts.

The paradigm in this experiment was similar in design to Experiments 1 and
2. Subjects now repeatedly pointed to a single visual target from several different
starting points. This pointing behavior was assessed both before and after exposure
to the remapping. During the exposure phase a perturbation was chosen so that
a single visual location was remapped in one direction when approached from one
starting point and another direction when approached from the other starting point.
The perturbation was chosen to be equal and opposite in sign from the two starting
points. The change in pointing behavior from different starting points was used to

assess the context-dependent changes in the visuomotor map.

4.5.1 Method
Subjects

32 right-handed undergraduate students participated in this study. Subjects were
naive to the purpose of the experiment and were paid $7.00 for participation. All

subjects had self-reported normal or corrected-to-normal vision.

Apparatus

The apparatus was identical to that used in Experiments 1 and 2.

Procedure

Subjects were randomly assigned to one of four groups: control, open z-shitt, crossed
x-shift, and y-shift. Each experimental session consisted of four parts.

In the first part (familiarization phase) the subject was familiarized with the setup
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by pointing 3 times to each of 9 randomly presented targets on a 3 x 3 grid. The
grid of targets was identical to that used in Experiment 1. Pointing movements were
made under full visual feedback of finger position, as represented by the cursor spot.
The target appeared and remained illuminated until the subject moved the cursor to
the target position. The target then disappeared and the next target appeared when
the subject had moved at least 15 cm away from the previous target.

In the second part (pre-exposure phase), the subject’s pointing was assessed in
the absence of visual feedback of finger position. The subject was instructed to point
as accurately as possible to a single visual target located at (5, 40) cm relative to
the midpoint of the subjects’ eyes. The subject started each pointing movement
from one of 7 possible starting locations arranged in a line at 7.5 cm intervals from
(-17.5, 20) to (27.5, 20) cm (see Figure 4-14 for a layout of the starting points and
the target). Starting points were selected in a pseudorandom order, 10 times each.
At the beginning of each pointing trial, one of the seven starting points would be
displayed as a hollow white square. The subject moved to this starting point, receiving
finger feedback in the form of a cursor spot only when within 5 e¢m of this point.
Having reached the starting point, its color turned from white to blue and the color
of the target also changed from blue to white. The cursor spot was extinguished and
subjects had to point to the target, indicating when they thought their finger was
on target by pressing a mouse key with their left hand. Subjects were encouraged
to be as accurate as possible and to press the mouse key only when they thought
their finger position matched the target exactly. The subject received no information
as to pointing performance. During this phase, the target and finger positions were
recorded for each trial.

The third part (exposure phase) of the experiment was designed to provide ex-
tensive exposure to an altered mapping between visual locations and corresponding
motor coordinates. Throughout this phase three hollow white 0.5 cm squares were

continuously displayed, corresponding to the left starting point, right starting point,
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and the target (Figure 4-14a). Note that the left starting point, right starting point,
and target in the exposure phase correspond to starting points 2, 6, and the tar-
get, respectively, in the pre-exposure phase. Also displayed continuously was the
cursor feedback of the subjects’ finger position. One of the three boxes was always
highlighted by changing its color from white to blue. The subject was instructed to
always move to the box that had been highlighted. When the finger cursor reached
the highlighted box the box would turn white and another box would be highlighted.
The boxes were highlighted in a repeating sequence left-right-target-right-left-target—
tracing out a triangle in which the subject would alternately point to the target from
the left and right starting points. This sequence was repeated 40 times, such that the
target was approached 40 times from each starting point.

The relationship between the cursor spot and actual finger position was altered for
the different groups. For the control group, the finger cursor accurately represented
the finger position. The subjects in the control group both traced out a triangle with
their finger and also saw, veridically, a triangle being traced out visually (Figure 4-
14a). For the three other groups a different displacement was introduced depending
on the starting point and increasing linearly from starting point to target. Thus,
for the crossed z-shift group the cursor spot was displaced by 5 c¢m to the left for
movements from the left starting point and 5 cm to the right for movements from the
right starting point. That is, while the subject visually perceived the finger tracing
out a closed triangle the finger was actually tracing out a path that crossed at one
point ending up on opposite sides of the target from the starting point (Figure 4-14b).
For the open z-shift group the cursor spot was displaced at the target by 5 cm to the
right for movements from the left starting point and 5 cm to the left for movements
from the right starting point. These subjects again visually perceived their finger
cursor moving along a closed triangle although, in this case, their actual finger moved
along a opened triangle (Figure 4-14¢). For the y-shift group the cursor spot was

displaced by 5 cm away for movements from the left starting point and 5 cm towards
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a) Control b) X crossed

Figure 4-14: Schematic of the exposure phase of Experiment 3. The seven starting
points used in the pre- and post-exposure phases are shown. During this exposure
phase subjects made repeated movements to the target from starting points 2 and 6.
The perturbation introduced depended on whether the movement started form start
point 2 or 6. The dotted line shows the path taken by the cursor and the solid line
the path taken by the finger. Note that for the three perturbation groups, although
the subjects saw a triangle being traced out, the finger took a different path.

the subject for movements from the right starting point (Figure 4-14d).

For all conditions there was no perturbation in movements made between the
start points. For the two x-shift groups the displacement was a linear function of the
distance traveled by the finger from the start point to the target along the y direction.
Conversely, for the y-shift group the displacement was a linear function of the distance
traveled along the x direction. This ensured that the displacement always started at
zero and increased linearly to 5 cm at the target. The movements from the target back
to the starting point had exactly the same displacement function ensuring a consistent

perturbation in both directions of travel. The displacement varied smoothly from one
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extreme to the other while continuously displaying the finger cursor.

The final phase (post-exposure phase) was identical in form to the second phase
(pre-exposure phase); subjects’ pointing was again measured, in the absence of cursor
feedback, 10 times from each of the 7 starting locations. The pseudorandom order of

the targets was changed from the second phase.

Analysis

To assess generalization to the context of the movement, the subjects’ change in
pointing behavior between the pre-exposure and post-exposure phases was analyzed
for each starting location. For each subject and start location the average change in
pointing position between the pre-exposure and post-exposure phases was calculated,
along with the corresponding covariance matrices. The subjects’ data were combined
within each group for each starting target obtaining the group sample average change
along with the covariance matrix for each start point. Each vector change and co-
variance matrix is based on 160 data points (8 subjects x 10 repetitions x pre- and
post-exposure conditions). The mean change in pointing position from each starting
point was plotted at that start location as an arrow along with the 95% confidence
ellipse centered on the sample mean change. For each group the change in pointing
in the direction of the perturbation was plotted as a function of the starting position.

The change in pointing as a function of starting location was analyzed through
separate ANOVAs for each group, with phase (categorical pre- and post-exposure)

and starting point (continuous x location) as within-subject factors.

4.5.2 Results

Although the perturbations were quite strange in nature—a single visual target being
mapped onto two different finger positions and two different visual positions being
mapped into the same finger position in the crossed z-shift group—subjects found

the task simple and natural. Subjects were unaware that their finger feedback had
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been perturbed as revealed by informal questioning.

Figure 4-15 shows the pattern of changes in pointing to the target as a function
of the starting position for the four groups. The change in pointing for the control
group is shown in Figure 4-15a. The ANOVA shows no significant changes between
the pre- and post- exposure phases (Table 4.3). Specifically, the lack of interaction of
phase and target in both the x and y direction indicates that there was no significant
linear trend in the change in pointing as a function of starting position. This is also
confirmed in the control portions of the adaptation plots (Figures 4-16a & b, hollow

circles).

5cm
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Figure 4-15: Experiment 3: Change in pointing as a function of starting position.
Changes in pointing plotted as arrows with 95% confidence ellipses, arranged by
starting position. All changes are calculated with respect to the target position, but
are plotted as a function of starting position to clarify the starting-point dependent
nature of the remapping.

Figure 4-15b shows the change in pointing for the crossed x-shift group. There is
a small amount of overshoot in the y direction (mean 0.9 cm), a change to the left
from the starting points on the right and a small change to the right for the leftmost
target. The ANOVA shows a significant main effect of phase on & pointing position
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Experiment 3: Analysis of Variance

Group Dir Phase SP Phase x SP
Fiz p Fiq p Fiq p
Control
x <1 ns 1.41 ns <1 ns
Y <1 ns 8.49 ns 2.42 ns
Crossed x-shift
x 9.23 < 0.05 3.01 ns 33.54 < 0.001
Y 1.62 ns 8.26 < 0.05 <1 ns
Open z-shift
x 2.17 ns 1.45 ns 2.45 ns
Y 9.00 < 0.05 3.11 ns <1 ns
y-shift
x <1 ns <1 ns 6.66 < 0.05
Y <1 ns 3.39 ns 23.3 < 0.01

Table 4.3: Summary of the two-factor within-subject ANOVAs for the four experi-
mental groups and two directions (Dir) in Experiment 3. SP denotes starting point.
Non-significant effects at the o = 0.05 level are denoted by ns.

and a highly significant interaction of phase and target. The form of this interaction
is revealed by the plot of x adaptation as a function of starting point (Figure 4-16a,
solid circles). The perturbation is in the positive & direction from the starting point
on the left and in the negative x direction from the starting point on the right. As
the starting point is varied from left to right the adaptation displays a monotonic
change in the x direction consistent with the direction of this perturbation.

For the open z-shift group there was a large change in pointing in the y direction
(Figure 4-15¢). After exposure to the perturbation subjects pointed further away
from the target by 2.8 cm on average. This pattern of overshoot was seen in 7 out
of 8 of the subjects. The ANOVA shows this significant effect of phase on y pointing
position but no significant effect on z. In particular, there was no interaction of phase
and starting point on z pointing position as would be predicted by adaptation to the
perturbation. Comparison of the pattern of changes in the x direction between this

group and the control (as plotted in Figure 4-16a) with a between-groups ANOVA
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revealed no significant differences between the two groups.

The pattern of changes for the y-shift group is shown in Figure 4-15d. While there
are no significant main effects of phase there is a interaction of phase and starting
point on both x and y pointing position (Table 4.3). In particular, Figure 4-16b shows
the y adaptation as a function of starting point as compared to the control. For this
group, the perturbation is in the negative y direction from the starting point on the
left and in the positive y direction from the starting point on the right. It can be
seen that the y component of pointing changed in the direction of the perturbation

as the starting point was varied from left to right.
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Figure 4-16: a) Adaptation in the a direction plotted as a function of starting point for
the control, crossed x-shift and open z-shift groups (mean and 1 s.e.). b) Adaptation
in the y direction for the control and y-shift groups.

In summary, the results for Experiment 3 indicate that after exposure to the
perturbation subjects in the crossed z-shift and y-shift groups changed their pointing
to the target in a starting point dependent manner. Although this experiment seems
to indicate that subjects could adapt to multiple context-dependent perturbations of
the same visual target, the results for the open z-shift condition in the direction of
the perturbation were not significantly different from the controls. We hypothesized
that the perturbation was not large enough to elicit significant changes in pointing

and therefore repeated the open z-shift condition with a larger perturbation.
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4.6 Experiment 4: Contextual Generalization of

the Visuomotor Map B

Adaptation to the open x-shift condition was tested with a 10 cm perturbation and a
new group of subjects. Because such a perturbation is large relative to the movement
length, we also increased the length of the legs of the triangle and ran a corresponding

set of control subjects.

4.6.1 Method

Subjects

16 right-handed undergraduate students participated in this study. Subjects were
naive to the purpose of the experiment and were paid $7.00 for participation. All

subjects had self-reported normal or corrected-to-normal vision.

Apparatus

The apparatus was identical to that used in Experiment 3.

Procedure

Subjects were randomly assigned to one of two groups: control and open z-shift. The
paradigm was identical to the previous experiment except for the following changes.
The perturbations for the open z-shift group were doubled in magnitude to 10 cm at
the target. This required that the starting points and targets be moved to accommo-
date the larger perturbation. The starting locations were arranged at 7.5 cm intervals
from (-17.5,10) to (27.5,10) relative to the subjects’ eyes. The target was located at
(5,35), the center of the grid of training points used in Experiments 1 and 2. The
number of pointing repetitions was also increased from 10 to 15. Because we initially

intended to measure joint angles, subjects’ shoulders were fixed to the back of the
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chair with a stretch of rubber tubing. This did not interfere with subjects’ ability to
reach all the targets.

Analysis

The analysis was identical to that used in Experiment 3.

4.6.2 Results

Figure 4-17a shows the pattern of changes in pointing to the target as a function
of the starting position for both groups. The ANOVA shows no significant changes
between the pre- and post- exposure phases for the control group(Table 4.4). As
in Experiment 3, the lack of interaction of phase and target in both the = and y
direction indicates that there was no significant linear trend in the change in pointing
as a function of starting position.

As in Experiment 3, for the open x-shift group there was a change in pointing in
the y direction (Figure 4-17a). After exposure to this perturbation subjects pointed
further away from the target by 1.9 cm on average. However, the ANOVA shows that
the only significant effect was an interaction of phase and starting point on x pointing
location. The form of this effect can be seen in Figure 4-17b. The perturbation is
in the negative = direction from the starting point on the left and in the positive x
direction from the starting point on the right. As the starting point is varied from
left to right the adaptation in the = direction displays an increase consistent with the

direction of this perturbation.

4.6.3 Discussion

For the crossed x-shift, y-shift, and open x-shift groups (in Experiment 4, with the
larger perturbation), the change induced in the visuomotor map was significantly
different when tested from the two starting points used in the exposure phase (2 and

6). This difference reflects a context-dependent visuomotor remapping. Although the
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Figure 4-17: Experiment 4: Change in pointing as a function of starting position.
a) Changes in pointing plotted as arrows with 95% confidence ellipses, arranged by
starting position. b) Change in = direction for control and open x-shift groups.

perturbation induced from these two starting points was opposite in sign for each
group, the adaptation in the visuomotor map was generally greatest at one of the
two starting points while not significantly different from the controls at the other.
However, when the visuomotor map was tested from the other 5 starting points the
pattern of generalization reflected a smooth transition between the patterns learned
at points 2 and 6. In contrast, the controls did not show any consistent pattern of
change with starting position. These results suggest that not only can a context-
dependent map be learned but that the map generalizes smoothly as the context is
changed.

A surprising result of these experiments was the large consistent pattern of over-
shoot in the open x-shift groups. How can the z perturbations in these groups give
rise to such a large change in pointing in the y direction? A large psychophysical
(for a review see Soechting and Flanders, 1989) and neurophysiological (for a review
see Georgopoulos, 1990) literature has shown a dissociation in the coding of move-
ment direction and movement distance. Based on this dissociation, we suggest that
the CNS may try to reconcile movement direction or distance when presented with

conflicting information about target location. Both the distance and directions of
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Experiment 4: Analysis of Variance

Group Shift Phase SP Phase x SP
iz p iz p Fix p
Control
<1 ns 1.95 mns 2.38 ns
Y <1l mns <1l mns 1.70 ns
Open z-shift
2.00 ns 2.32 ns 6.40 < 0.05
Y 4.63 ns <1 ns <1 ns

Table 4.4: Summary of the two-factor within-subject ANOVAs for the two experi-
mental groups and two directions (Dir) in Experiment 4. Non-significant effects at
the o = 0.05 level are denoted by ns.

the movement vectors from starting point 2 and starting point 6 to the target are
inconsistent with the target position (Figure 4-14, solid line in open x-shift). How-
ever, the visual feedback the subject receives indicates that these vectors terminate
at the same point. Therefore, to interpret the two movements as consistent with the
visual input the system must resolve a conflict between the distance and direction
cues given by the movements. If distance cues were to dominate, the two conflicting
perturbations would be resolved into a single remapping which would be reflected in
a small amount of undershoot (as the actual distance moved is less than the true
distance to the target). On the other hand, if directional cues were to dominate then
subjects would point to the extrapolated intersection of the two movement vectors;
this would produce overshoot. Therefore, the perturbation could be resolved into a
remapping with a large amount of overshoot, as was found. The results from the
open x-shift experiments suggest that directional cues dominate over distance cues in
this situation. However, a small amount of overshoot was seen in the crossed z-shift
group which would be consistent with distance predominant over direction. It is still
an open question whether these effects can be explained by differences in distance vs.

direction cues.
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4.7 General Discussion

In summary, we have shown spatial generalization in pointing behavior after remap-
ping of both one and two points in the visuomotor coordinate transformation. The
pattern of generalization decays away from the training points in extrinsic Cartesian
coordinates. Subjects were not only able to represent two context-dependent remap-
pings of a single point in extrinsic space but the contextual generalization showed a
smooth transition as the context was varied. The implications of both patterns of
generalization, as they relate to the internal representation of the visuomotor map,

can be interpreted in the computational framework of function approximation.

The Function Approximation Framework

The results of these experiments can be interpreted in a computational framework
by posing the problem of visuomotor learning as one of approximating the mapping
between visual and motor coordinates. This mapping can be regarded as a function
which transforms visual coordinates into motor coordinates. The mathematical the-
ory of function approximation is concerned with estimating a function from samples
of input-output pairs. Function approximators span a range of possible generaliza-
tion patterns as measured by the behavior of the system when tested on novel inputs.
Conversely, the generalization properties of a function approximator can be used to
infer the internal representation of the function (Sanger, 1994). Therefore, the is-
sues of representation and generalization are intertwined in function approximation
theory.

At one extreme, a function approximator can be represented as a look-up table in
which corresponding input-output pairs are stored (Atkeson, 1989; Rosenbaum et al.,
1993). Thus, the visuomotor coordinate transformation could be represented as a set
of pairs of visual and motor coordinates and training at one point would simply change
the pairing at one location in visual space, while leaving unaltered other previously

learned pairings. The substantial amount of generalization we found, however, does
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not support this extreme form of the look-up table model of the visuomotor map, as
training at one location alters pointing to other locations.

At the other extreme of the range from local to global generalization, a coordinate
transformation can be represented as a model parametrized by the physical attributes
of the transformation. Thus, the motor coordinates can be represented as a function
of the visual coordinates parametrized by the felt configuration of the eyes, head, and
arm. In these models adaptation generally occurs through tuning of the parameters
(e.g. Harris, 1965). Parametric models imply global generalization with the form of
the generalization depending on the parameter that is altered. Thus, changes in the
felt direction of gaze (e.g. Craske, 1967) or in felt head position (Lackner, 1973) should
generalize over the whole workspace, whereas proprioceptive changes at particular
loci of the arm should generalize to particular arm configurations and not others
(Prablanc et al., 1975). The results from our experiments, however, do not support the
notion that the visuomotor map adapts most naturally along the previously suggested
parametric lines. For example, the results obtained were qualitatively quite distinct
from those predicted by changes in the felt position of the eyes or head.

Intermediate in the range of generalization ability are function approximators such
as neural network models (for a reviews see Hertz et al., 1991). Neural network models
fall into the general class of function approximation models that are parametrized
by a large number of parameters (e.g. the weights in a neural network) that do
not necessarily correspond to the physical parameters of the system. These models
always predict some generalization but the extent and form of this generalization
vary with the particular parameters and architecture of the model. For example, in
Albus’ (1975) CMAC (Cerebellar Model Articulatory Controller) model of coordinate
transformations, input-output pairs are stored in a distributed fashion over a set of
weights. As neighboring inputs share weights, a single point remapping will produce
generalization to neighboring points in the input space with the extent determined by

the overlap in weights. We will now consider a framework—regularization theory—
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that allows general statements to be made concerning the patterns of generalization
shown by certain families of neural networks.

There is a intimate connection between the internal constraints in such network
models and their resulting patterns of generalization. In general, the problem of
approximating a functional mapping is severely ill-posed, since for any finite set of
input-output pairs there are an infinite set of functions consistent with it. One way
to resolve this problem is through the application of constraints, the topic of regu-
larization theory (Tikhonov and Arsenin, 1977). In regularization theory, a function
is approximated by minimizing a cost consisting of two terms, one characterizing the
fit of the function to the input-output data and the second, known as a regularizer,
denoting the preference or bias of the system with regards to a certain class of func-
tions. Thus, for example, Bedford’s linear constraint hypothesis can be interpreted
as a regularizer which heavily penalizes functions with non-zero second and higher
derivatives. The problem of approximating the function can now be interpreted as
that of minimizing the cost; this cost plays off the match to the input-output data en-
coded in the first term against the intrinsic constraints of the learning system encoded
in the second term.

Regularization theory can be interpreted in another way. Rather than explicitly
forming the cost function and minimizing it, one can derive the form of “basis func-
tions”, or basic computational units in the function approximator, which implicitly
embody the regularizer. A function formed from the data by a superposition of such
basis functions minimizes the regularizer component of the cost (Poggio and Girosi,
1989). One form of basis function commonly used in neural network function approx-
imators is the Gaussian radial basis function (Broomhead and Lowe, 1988; Moody
and Darken, 1989), which can be derived by assuming a regularizer which penalizes
non-smooth functions (Poggio and Girosi, 1989). Gaussian basis function networks
consist of computational units with Gaussian receptive fields—units are most active

when the input is closest to the center of their receptive field, and the activity falls
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off in a Gaussian manner with the distance of the input to the receptive field cen-
ter. Learning in such networks consists of adapting the locations and heights of the
Gaussian basis units.

One consequence of representing a mapping using Gaussian basis functions is the
pattern of generalization. Such basis functions will generally display a pattern of gen-
eralization which is largest at the trained point and decays in a Gaussian manner away
from this point. Training at any one point only affects representational units whose
Gaussian receptive fields significantly cover that point. The output of units whose
receptive field centers are closest to the training point will change the most while
others will change correspondingly less. We have seen in the case of the visuomotor
map that the pattern of generalization is largest at the training point and decays
smoothly away from it in a Gaussian manner. This suggests that, in the framework
of regularization theory, the visuomotor mapping may be represented with functional
basis units (e.g. radial basis functions) with large receptive fields. Furthermore, we
have seen that networks with such large receptive fields embody a smoothness princi-
ple, in that training at one point changes the map gradually around that point. We
therefore suggest that a spatial smoothness constraint best characterizes the patterns
of generalization in the visuomotor map.

The context-dependent remapping found in Experiments 3 and 4 can be inter-
preted within the framework of function approximation in two ways. First, one can
consider the context variable simply as another input variable in the input-output
mapping that is learned. In this interpretation, the finding that a starting-position-
dependent mapping of a single point in visual space could be learned suggests that
the visuomotor map can be naturally parametrized by the starting position variable.
The results of the generalization to other contexts further suggest that not only is
the visuomotor map spatially smooth as suggested by Experiments 1 and 2, but that
it 1s also parametrized to vary smoothly as the starting point is varied.

An alternate interpretation of the context-dependent mapping is that two separate
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visuomotor maps are learned and the context is used to switch between them. A
suggestive computational model for how such separate modules can be learned and
combined is the mixture-of-experts neural network architecture (Jacobs et al., 1991).
In this model, the system starts with several modules, or experts, and learns to
partition the function amongst the experts. Each expert receives a copy of the input
and maps it into an output. A separate network, the gating network, weights the
outputs of the experts, effectively determining which experts to rely on for each input.
In the case of the visuomotor map, each expert would represent one of the mappings
from visual to motor coordinates. The gating network would use the context of the
movement, i.e. the starting position, to determine how to weight each expert for each
context. Asthe context is varied, the gating network can alter the contribution of each
expert network. The pattern of change in the visuomotor map as the context is varied
represents the way in which the gating network generalizes in relation to the context.
Our finding of a smooth transition of the visuomotor map as the context is varied
suggests, in this framework, that the gating network is gradually varying the weighting
of the two experts based on the context. Again, this suggests a principle of contextual

smoothness, now operating in a gating process distinct from the visuomotor maps.

Other Generalization Studies

Other than Bedford’s (1989, 1993) influential work, several recent studies have ad-
dressed questions of visuomotor generalization that are relevant to our work. Imamizu
et al. (1994) examined pointing under a rotation of 75° centered about a point on
the table, using a setup, similar to Cunningham’s (1989), in which hand movements
produced cursor movements on a monitor screen. The subjects’ goal was to acquire,
as rapidly as possible, targets randomly presented in a circle about the initial cursor
location. The authors used the duration of the ballistic portion of the movement as
an indicator of learning. The results of their study indicate that learning the rotation

for movements in one direction generalized to movements in the other direction. How-
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ever, there are several problems with this study. First, the feedback subjects receive
is on a monitor screen displaced from the finger location, therefore the cursor spot is
not located at the same perceived location in space as the finger and analogies cannot
be drawn to prism adaptation experiments. Second, subjects were fully informed of
the nature and amount of the perturbation. Therefore, the experiment confounds
perceptual and cognitive components of the task and the study consequently bears
more on task learning than the representation of the visuomotor mapping.

Shadmehr and Mussa-Ivaldi (1994) studied adaptation and generalization to vis-
cous (velocity-dependent) force fields during target directed movements. They found
that exposure to such a force field in the left portion of the workspace generalized to
the right portion of the workspace in joint-based, rather than Cartesian, coordinates.
Our results seem to suggest that visuomotor (kinematic) learning generalizes in ex-
trinsic Cartesian coordinates. Furthermore, there is evidence from adaptation studies
on movement that Cartesian coordinates are central in planning the kinematics of
arm trajectories (Wolpert et al., 1995). These results may indicate an interesting di-
chotomy between the representation of kinematics, in extrinsic Cartesian coordinates,
and dynamics, in intrinsic joint-based coordinates.

A relevant perceptual study is that of Biilthoff and Edelman (1992), who have
studied generalization in the domain of object recognition. Subjects were trained
to recognize 2D views of amoeba-like objects and generalization to other poses (2D
projections) of the object was assessed. They found that recognition falls off smoothly,
in a Gaussian-like manner, with distance from the presented viewpoint. This finding
has been taken as support for a theory of object recognition based on the superposition
of basis functions, each of which represents a 2D object view (Poggio and Hurlbert,
1994).

It is interesting that our studies of visuomotor generalization show qualitatively
similar effects to Biilthoff and Edelman’s (1992) purely perceptual study. It may be

that the principles governing the learning and representation of mappings in the CNS
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transcend the particular systems involved (Poggio, 1990). For example, it is known
that maps of visual and auditory space are kept in alignment in the midbrain tectum
of owls (Knudsen, 1982), cats (Harris et al., 1980; Stein and Meredith, 1993), and
primates (Jay and Sparks, 1984) and that prismatically imposed displacements of
visual space alter the corresponding map of auditory space (Knudsen and Knudsen,
1989a). An interesting, as yet unanswered, empirical question is whether the prin-
ciples of generalization that arise in the visuomotor map are also reflected in these

visual and auditory maps.

The Neural Representation of the Visuomotor Map

The form and extent of generalization in the visuomotor map is intimately tied to the
plasticity of the neural representations mediating this coordinate transformation. As
yet the neural basis of this transformation is not fully understood, but it has become
clear that the posterior parietal cortex plays a prominent role in its representation.
In the posterior parietal cortex of primates, retinotopic maps have been found to be
modulated by eye position in the orbit, head position relative to the body (Ander-
sen, 1987), and most recently body orientation (Snyder et al., 1993). Computational
models of this area indicate that the cell responses found neurophysiologically could
be an intermediate representation in the transformation from retinotopic coordinates
to extrinsic coordinates (Zipser and Andersen, 1988; Pouget and Sejnowski, 1995).
Furthermore, evidence from patients with damage to this area indicates severe deficits
in pointing, reaching and related spatial tasks involving visuomotor coordinate trans-
formations (for a review see Andersen, 1987).

What do the results of our study imply for the neural representation of the vi-
suomotor transformation? We find that changes in the mapping at one location
generalize to other locations in visual space. Therefore, we expect that the neural
coding of the transformation is distributed in nature and comprised of units with

large functional receptive fields in visual space. Let us speculate that the visuomotor
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transformation is indeed computed largely by neurons in the posterior parietal cortex
(PPC). Our findings are consistent with the response properties of these neurons,
which have receptive fields spanning on the order of 60° of the visual field (Andersen,
1987). We further find that a single point in visual space can be remapped in two
different directions depending on the starting point of the movement. As we have
seen, the visual receptive fields of PPC neurons are modulated by body configura-
tion signals such as eye position, head position, and body orientation. Furthermore,
a large portion of PPC cells also display activity related to joint configuration and
active arm movement (Mountcastle et al., 1975). It is plausible then, if the visuomo-
tor map were represented in PPC, that the context of the movement, as indexed by
the initial configuration and direction of arm movement, could naturally modulate
it. Finally, we found that as the context was varied the visuomotor map generalized
smoothly to intermediate contexts. These observed patterns of contextual generaliza-
tion may therefore reflect the effect of the arm position signals on the computation

of the visuomotor mapping in the PPC.

4.8 Conclusion

We have found that the paradigms of examining spatial and contextual generalization
have proved valuable in the study of the representation of the visuomotor map. From
the computational perspective of function approximation theory, our experimental
findings suggest that two principles, spatial and contextual smoothness, underly the
representation of the visuomotor map and the constraints on its plasticity. From
the neural perspective, our findings suggest that the visuomotor map is subserved
by representational units with large functional receptive fields. Further study of the
visuomotor map from psychophysical, neural and computational perspectives should
shed light on the fascinating yet elusive phenomenon of visuomotor adaptation that

has been under scrutiny for over one hundred years.
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Chapter 5

Learning Coordinate
Transformations through Mutual

Information

5.1 Introduction

We have reviewed evidence, throughout this thesis, that there exist multiple, mutually-
aligned topographic maps in the CNS. From the perspective of multisensory inte-
gration, the existence of these maps seems computationally efficient. Once signals
from multiple senses have been converted into a common coordinate system, through
these aligned maps, the integration problem becomes straightforward. The coordi-
nate transformation problem, however, remains far from trivial. In this chapter we
therefore ask: How do mutually-aligned topographic maps arise in the CNS?

Two answers can be given: Aligned maps arise through innate wiring, or through
experience. Evidence can be found supporting both these possibilities. For example,
Aronson and Rosenbloom (1971) report that infants as young as 30 days become
visibly distressed if the location of their mother’s voice is displaced from the visually

perceived location of the mother. Although experience in the first month of life may

163



164 Chapter 5. Learning Coordinate Transformations through Mutual Information

be crucial, this has been used to argue that visuo-auditory alignment is to some
degree prewired. On the other hand, Knudsen et al. (1991) showed that complete
lack of visual experience in blind-reared owls resulted in the development of maps of
auditory space in the optic tectum which were stretched, upside-down, or otherwise
erratic. Furthermore, Roe et al. (1990) showed that experimentally rewiring retinal
inputs into the auditory pathway in ferrets induced the formation of a map of visual
space in primary auditory cortex.

In this chapter we explore, from a computational perspective, the possibility that
mutually-aligned topographic maps arise purely from experience. We develop an un-
supervised learning algorithm to achieve two goals: Filtering information that is com-
mon to multiple modalities, while rejecting what is not, and converting this common
information into the same coordinate system. For example, the location of activity
on the retina and an auditory interaural time difference both reflect spatial attributes
of a visuo-auditory stimulus. In this case, the goal would be to extract this common-
ality from other attributes, such as color, and pitch, and to generate a common map
registering both visual and auditory space. What results is an algorithm which learns
multiple, mutually-aligned topographic maps based purely on correlations between
the inputs to the different sensory modalities.

The chapter is organized as follows. In section 5.2 we provide some background
on unsupervised learning and information theory and review existing algorithms. In
section 5.3 we introduce an algorithm for maximizing mutual information in topolog-
ical maps and discuss its relation to previous work. In section 5.4 we demonstrate
this algorithm on a small problem: learning a mapping between polar and Cartesian

coordinates. We conclude the chapter with a discussion in section 5.5.
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5.2 Information-theoretic Unsupervised Learning

5.2.1 Unsupervised Learning

The goal of unsupervised learning is to extract statistical structure from sensory
data. From a statististical perspective, unsupervised learning is often viewed as a
data modeling problem. Thus, the field of unsupervised learning has drawn heavily
on statistical methods for density estimation. From the perspective of information
theory, unsupervised learning is often viewed as the problem in maximizing the infor-
mation content in a sensory representation. The information theoretic and statistical
frameworks are closely tied; many statistical methods can be viewed as maximiz-
ing the information content in a reduced representation of the input. Models based
on even the simplest information maximization rules, such as principal components
analysis, have provided valuable insights into the organization of receptive fields and
development of the senses (Linsker, 1988; Barlow, 1989).

The view of learning as a statistical inference problem has led to a common recipe
for deriving unsupervised learning algorithms. First the sensory inputs from the en-
vironment are assumed to be generated according to some statistical model. This
model—known as the generative model—does not need to specify details of the gen-
eration process, but it does need to constrain the space of models so as to make the
problem learnable. Thus, for example, a generative model in vision may specify that
contiguous patches of image have similar luminance, that corresponding patches of
the retina sense corresponding patches of space, or that the environment consists of a
few translationally invariant objects. A generative model in speech may specify that
signals are generated from a small set of underlying units (phonemes) constrained to
transition according to a Markov chain (e.g. Juang and Rabiner, 1991).

Starting from this generative model, the learning problem consists of estimating
the parameters of the model that best fit the data. This fit is generally measured

by the likelihood of the data given the parameters, which can be maximized as a
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function of the parameters. Bayesian approaches augment this inference process by
incorporating a prior distribution on the parameters, and requiring that the result of
the learning process be a posterior distribution on the parameters.

A second and third framework for unsupervised learning—derived from informa-
tion theory and statistical physics, respectively—can be shown to be formally equiv-
alent to the statistical inference framework. In the information-theoretic framework,
the goal of the learner is to communicate the data efficiently to a receiver, thereby
producing a compact representation for the data (Cover and Thomas, 1991; Zemel,
1993; Hinton and Zemel, 1994). A cost function quantifying the efficiency of this
communication process can be derived from the principle of Minimum Description
Length (MDL; Rissanen, 1989). Using Shannon’s coding theorem (Shannon, 1948),
the MDL cost function can be shown to be equal to the posterior probability of the
parameters given the data.

In the statistical physics framework, the environment and the learner are a com-
bined system that can occupy many different states (for a text on statistical physics,
see Parisi, 1988). The states correspond to patterns of sensory data in the environ-
ment and internal representations in the learner. An energy is associated with each
combination of states in the environment and learner. This energy embodies the gen-
erative model: States with low energy correspond to combinations of sensory data
and internal representation that have high probability, and vice-versa. The goal of
learning is to find parameters of the system that minimize the energy over the entire
data set. More precisely, the quantity that is minimized comprises both an energy
term, indicating the fit of the parameters to the data, and an entropy term, indi-
cating the prior probability of the parameters. Using the Boltzmann distribution, it
can be shown that minimizing this quantity corresponds to maximizing the posterior
probability of the parameters given the data.

Although the three frameworks are equivalent, the links to the mathematically rich

disciplines of statistics, information theory, and statistical physics offer three comple-
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mentary views and toolboxes for understanding learning. With this in mind, we will
focus on the problem of learning coordinate transformations from the framework of

information theory.

5.2.2 Information Theory

The idea of extracting common information from different sensory modalities can be
phrased succinctly in the language of information theory. Information is defined as
the capacity for a signal to reduce a system’s uncertainty (Cover and Thomas, 1991).
Let n be the number of possible codes for the signal, and p; be the probability of
code j. Intuitively, receiving a signal which is always predictable (e.g. p1 = 1, pjz1 =
0) provides no information, while receiving a signal which is maximally uncertain
(p; = 1/n) provides maximal information. Furthermore, the information content of

the signal increases as n increases. It can be shown that the Shannon entropy

H=—73% pjlogp (5.1)
j=1

satisfies these postulates and is unique within a constant factor (Shannon, 1948; Shan-
non and Weaver, 1949). For continuous signals, a limiting argument is used to convert
this sum into an integral, provided that the signal cannot be observed perfectly, as
this would result in infinite information. Let H(X) denote the information content of
random variable X, which can take on values z;. If p(x;,y;) is the joint probability
of X taking value x; and Y taking a value y;, then the joint information for the two

signals 1s

H(X,Y) == plaiy;)log p(zi, y;).

]

Similarly, the conditional information of the signals is defined to be

H(Y|X) = =) plxi,y;) log p(y;]z:).

]
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A transformation f of X can be considered a communication channel, receiving
a signal X and outputting the transformed signal f(.X). The rate of transmission of

information for such a channel is:

R = H(X)- H(X|f(X))
= H(f(X))— H(f(X)|X)
= H(X)+ H(f(X))— H(X, f(X))

A transformation such as f(X) = 0 has a 0 rate of information transmission, whereas
the identity transformation f(X) = X has maximal information transmission, R =
H(X). The rate of information transmission between two signals is also known as

mutual information.

5.2.3 Previous approaches

Since its inception, information theory has been an important tool for understanding
the neural organization of perception. Attneave (1954, 1959) was perhaps the first
to pursue the notion that visual perception could be studied from the perspective of
information transmission. Barlow (1961, 1989) proposed that a specific information-
theoretic criterion—minimizing redundancy—played a central role in the formation
of neural representations in the perceptual system.

Serious computational modeling of the role of information theory in the formation
of neural representations did not start until Linsker (1986a,b,c). His model consisted
of a multilayered network of units with spatially-localized receptive fields, in which
learning took place via a Hebbian rule (Hebb, 1949). (The Hebb rule states that
synaptic strengths in the brain change in proportion to the correlation of the firing
of pre- and post-synaptic neurons.) When a pattern with no spatial or temporal
correlations was input to the lowest level of this network, the higher levels would

form successively more complex representations. Among the properties of the higher
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levels of the model were both the on-center off-surround receptive fields and the
orientation bands characteristic of primary visual cortex. Linsker’s model contributed
two important insights: That the principle of maximal information transmission was
embodied in the simple Hebb rule, and that this principle alone operating on random
inputs could account for some of the main classes of receptive fields found in primary
visual cortex. Since Linsker, the idea that maximal information transmission may
play a central role in early visual development has found further empirical support.
Extensions of this idea, such as minimizing information loss (Plumbley and Fallside,
1988; Plumbley, 1991), have also been actively pursued.

Many researchers have pointed out that, under the simplified assumption that the
inputs and outputs are Gaussian distributed, the maximum information transmission
criterion embodied by the Hebb rule for linear networks performs principal compo-
nents analysis (PCA; Oja, 1982, 1989, Baldi & Hornik, 1989; Sanger, 1989; Cottrell,
Munro, Zipser, 1987; Plumbley, 1991). The information content of a Gaussian is
proportional to the determinant of its variance; therefore maximizing the information
transmission is equivalent to maximizing the variance of the output, which is exactly
the goal of a linear PCA network.

Barlow’s (1989) criterion of minimal redundancy, or maximal independence, has
proven difficult to implement in a neurally-plausible learning rule. However, the
closely related criterion of maximal de-correlation can be approximated by the com-
bination of a Hebbian feedforward rule and an anti-Hebbian lateral inhibition rule
(Barlow & Foldidk, 1989). Foldidk (1990) has found that this rule can form sparse
representations, and, like the Linsker model, can predict some interesting receptive
field properties of neurons in the early visual pathway.

All of the above algorithms are based on the idea that one of the goals of sensory
processing is the preservation of information from input to output. An interesting
extension of these ideas is that the goal of multi-sensory processing may be to maxi-

mize the mutual information between the representations in different sensory modal-
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ities (Becker, 1992; Becker and Hinton, 1992). Consider a system in which there are
two modalities with inputs X and Y, and two corresponding sensory transformations

f(X) and ¢(Y). The mutual information between the two transformed signals is

1(f(X),9(Y)) = H(J(X)) + H(g(Y)) = H(f(X),9(Y)). (5.2)

The first two terms are the entropy of the two separate modalities. Maximizing these
corresponds to maximizing the information transmission in each modality, thus re-
covering Linsker’s criterion. The third term is the negative joint entropy of the two
modalities. This term is minimized when the outputs of the two sensory transforma-
tions are maximally predictable. The two mappings, f and ¢, adapt so as to extract
the information common to their inputs. Maximizing the mutual information between
two modalities therefore corresponds to maximizing the information transmitted in
each modality while maximizing predictability between their outputs.?

Becker & Hinton (1992) applied their algorithm to the problem of discovering
disparity from random-dot stereograms (Julesz, 1971). The model consisted of two
modules, each a neural network, which received inputs from corresponding patches
from the two eyes. The mutual information criterion was used to derive gradient
descent rules for adjusting the weights in the networks. As the only information
common to corresponding patches in the two eyes was the shift due to stereo disparity,
the output of the network formed a reliable representation of the stereo disparity.

This model made two important contributions to the theory of information-theoretic
perceptual learning. First, it extended the simple idea of information transmission to
structures with multiple modules. Second, it showed that this extension could cap-

ture interesting structure, such as stereo disparity, that is not present in inputs to any

! Just like maximizing information transmission in the linear Gaussian case reduces to the stan-
dard statistical technique of PCA| maximizing mutual information reduces to canonical correlation.
The goal of canonical correlation is to find projections of two data sets that have both high variance
(high information) and are maximally correlated (low joint information). See Johnson and Wichern
(1992) for a text describing canonical correlation.
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single module. Other researchers have since worked on related ideas. For example,
de Sa (1994) showed how the related notion of maximizing coherence across modules
could be used for classification. The basic goal in all this work is for each modality to
extract the information that is common between its input and the other modality’s.
To this end, mutual information seems like an ideal information-theoretic criterion

for multisensory integration.

5.3 Topographic Mutual Information

One of the fundamental properties of coordinate transformations in the central ner-
vous system that is not captured by models based on information transmission is
topographic organization. From early visual, somatosensory, and auditory areas, to
multisensory areas such as the colliculus and parietal cortex, neurons are arranged
with their receptive fields forming topographic maps of the input space (Kandel et al.,
1991). In multisensory areas, these topographic maps coincide, making transforma-
tion between the different coordinate frames possible. In the superior colliculus, for
example, maps of visual and auditory space are aligned with the motor map for pro-
ducing saccadic eye movements (Sparks and Nelson, 1987). This alignment allows the
disparate representations of visual and auditory inputs to be mapped into a common
motor representation.

In this chapter we propose an extension of the mutual information criterion for
multisensory integration that incorporates topographic constraints. The goal is to
derive an unsupervised computational model for the formation of aligned topological
maps based purely on input statistics. The approach will be to first formulate the
cost function which combines both mutual information maximization principles and
topographic constraints, and then derive the learning algorithm which will minimize

this cost function.
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5.3.1 The cost function

The basic model consists of several sensory modalities, indexed by 7, each of which
converts an input, x;, into a transformed representation, z; (Figure 5-1). The cost
function we derive maximizes the mutual information between the z;, while maintain-
ing a prespecified topographic order between and within the z;. If the topographic
constraints between the modalities are chosen to specity a one-to-one mapping, then
the transformed representations are equivalent and can be used as a common rep-
resentation to convert inputs from one coordinate frame to another. Furthermore,
this common representation can serve to integrate multiple modalities into a common
motor pathway.

We start by expressing each of the sensory transformations as a Gaussian mixture
model (McLachlan and Basford, 1988). The input to modality ¢ is a real vector x;
and the transformed representation is the zero—one vector z;. Element z;; = 1 if unit
7 1s active; in a mixture model, one and only one element is allowed to be active at
any one time. Given this constraint of mixture models, the total probability of the
input can be written as the sum over the exhaustive and mutually-exclusive hidden

representations:
Z;

For a Gaussian mixture model, the conditional probability of the input given the

hidden representation follows a Gaussian distribution:
1
P(x;]z;) o eXP{—§(Xz’ - VViZi)TVfl(Xi — Wizi)} (5.4)

where W; is the matrix whose rows are the means of the Gaussians and V; is the
covariance matrix common to all the Gaussians. The overall cost function will be

defined in terms of the negative log likelihood, or energy, of the model. Taking the
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Figure 5-1: The basic model for multisensory integration, shown with some possible
labels for the sensory modalities. Information from the different modalities arrives
in different coordinate systems. Each modality transforms its inputs into a com-
mon coordinate system, which can then be used to integrate the inputs into a single
representation. The dashed arrows represent the possible transformations, from the
common representation back into the modality-specific representation, which may
mediate intersensory adaptation.
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negative of the log of (5.4) we obtain the first term in the cost function:
mix 1 Ty/—1
Ei = §(X2 — VVZZZ) ‘/Z (Xi - VVZZZ) (55)

The Gaussian mixture model defined by (5.3) and (5.4) is a statistical formal-
ization of a layer of units with Gaussian receptive fields in which both the centers
and sizes of the receptive fields adapt competitively to capture the distribution of
the data (Nowlan, 1991). As a model of competitive learning or clustering, it is
closely related to von der Malsburg’s (1973) model of self-organization, the Neocog-
nitron (Fukushima, 1975; Fukushima, 1980), Kohonen’s feature maps (1982, 1989),
Adaptive Resonance Theory (ART; Grossberg, 1987; Carpenter & Grossberg, 1988)
and Rumelhart and Zipser’s (1985) competitive learning model. The Gaussian mix-
ture model, however, is firmly grounded in statistics, and can, therefore, be naturally
expressed in the equivalent language of information theory. In information process-
ing terms, a mixture model converts a continuous signal into a discrete code whose
information content is related to the posterior probability of the codes through the
free energy (Hinton and Zemel, 1994).

Under cost function (5.5) the units in each mixture model are not arranged topo-
graphically. We can induce a topographic order by adding the following term to the
cost function:

1

£ = 52[%]%(”@]‘ — W) "V (Wi — Wig). (5.6)
i

The matrix W; encodes the topography of the map; its elements [W,];; are inversely
related to the distance between unit j and k. This term penalizes units nearby on
the topographic map for having the centers of their receptive fields far away in input
space. By choice of the values in W;, a 1-D lattice, 2-D lattice, circular or other

topologies? can be induced. We will restrict our attention to 2-D lattices as they are

?Whereas the topography defines distances between neighbors, the topology defines only the neigh-
borhood relations and is invariant to arbitrary stretching or scaling.
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most representative of the layered maps found in many areas of the CNS.

The topographic term (5.6) is identical to the cost minimized by elastic networks
(Durbin and Willshaw, 1987; Yuille, 1990) and closely related to the cost implic-
itly minimized by Kohonen’s feature maps (1982, 1989). It also has an interesting
information-theoretic interpretation. The matrix ¥; encodes the confusability of vec-
tor z;, i.e. the probability of transmitting an incorrect code k& when the true code is
J. When ¥, is symmetric, it defines a distance metric over the space of codes. This
confusability matrix therefore implicitly defines a topology in a system whose goal
is maximizing information transmission (Luttrell, 1989, 1994; G.E. Hinton, personal
communication).

The topographic term (5.6) introduces constraints within each sensory modality.

We introduce a topographic constraint between two modalities via the term:

Ealisn — %ZZT Wz (5.7)

This term acts to align pairs of modalities, with the matrix ¥;, playing a role very

similar to W;. Intuitively, the elements of ¥;, encode the confusability of codes across

the two modalities. If U, is the negative identity matrix, for example, codes where
z; = j when z, = j, are favored relative to all other codes.

Finally, we introduce into the cost function the mutual information between the

outputs of two modalities:
Frout — —ziT log 7w, — ng log 7, + ZZT log 11;,z,. (5.8)

The first two terms are the information transmitted within each modality with respect
to the prior probabilities 7; and 7r;; the last term is the negative joint information

with respect to the prior II;,.?

3This can be generalized to more than two modalities by using the mutual information of multiple
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To summarize, the total energy is composed of

E(X1,X3,21,29) = M 4 ERX L o[} oy 4 gpgelien 4 pmut (5.10)

1 1
= §(X1 - W1Z1)TV1_1(X1 — Whzq) + §(X2 - W2Z2)TV2_1(X2 — Wazy)

1
+ Sa D[] (Way = W) TV (Wi — Why)
7

1 1
+ o D[ Waly (Wi - Wy )TV (Way — W) + 6§zf\1112z2
g

— le log 7y — z2T log 7wy + le log 1152

The first two terms capture the mapping from inputs to transformed representations;
the next three terms capture topographic constraints within and between the maps;
and the last three terms are the mutual information; a and 3 set the relative impor-

tance of these terms.

5.3.2 The learning algorithm

The goal of the learning algorithm is to minimize the cost (5.10). The traditional
approach to learning is based on gradient descent: The cost is minimized by taking
its gradient with respect to the parameters and changing the parameters by a small
amount in the direction of this gradient at each time step. Previous approaches to
mutual information have found this method prohibitively slow, even for accelerated
methods such as conjugate gradient descent (G.E. Hinton and P. Dayan, personal
communication). We derive an alternative learning algorithm for this architecture

based on the EM algorithm (Dempster et al., 1977).

signals X;, ¢ = 1,...,n, which is defined as

(X1, Xn) =Y H(X) =Y H(X, Xj) + .+ (1) H(X, LX), (5.9)

Such a generalization is often impractical as it requires modeling the nt? order statistics of the z;.
In practice, maximizing the pairwise mutual informations may be a suitable alternative.
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The EM algorithm relies on the natural separation of variables into observables,
the inputs x;, and hidden variables, the representations z;. If we assume that the
model parameters are correct, the hidden variables can often be easily estimated.
Conversely, if we assume that the values of the hidden variables are known, then the
problem of estimating the model parameters often becomes trivial. The EM algorithm
iterates between assuming correct parameters and computing the expectations of the
hidden variables (E step), and using these expectations to find new parameters that
maximize the expected likelihood (M step).

The energy defined in equation (5.10) can be related to a probability model via

the Boltzmann equation,

1
P(x1,X2,21,%2) = Zexp{_E(XhX?levZ?)}v (5.11)

where 7 is the normalization constant, also known as the partition function. The EM

algorithm maximizes the expected log likelihood of the parameters ¢/,

Q(¢/|¢) = <—E(X17X27Z17Z2) — log Z>07 (5.12)

where ¢ denotes the current parameters, ¢ = {Wy, Wy, Vi, Vo, 71, 79, 11}, and (). de-
notes expectation given the inputs and ¢. The parameters, WUy, Wy, Uyq, are fixed by
the prespecified topographic structure of the network. If the Gaussians are normal-
ized to account for the variances, and the priors 7, sy, Il are normalized to satisfy
probability constraints, then a global computation of the partition function is unnec-
essary as it does not depend on the parameters. Therefore, unlike the Boltzmann
machine (Ackley et al., 1985), an unclamped phase of learning is unnecessary. A
discussion of fast single-phase learning in this and associated models with constant
partition functions can be found in (Neal, 1992) and (Ghahramani, 1995).

The E step of the algorithm computes the expected log likelihood of the parame-

ters. Like in the Boltzmann machine, this amounts to calculating the first and second
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order statistics, (z1)., (z1), and (z,2]).. For the examples in this chapter, these ex-
pectations were evaluated exactly. For m modalities, each with a having k-element
hidden vector, the exact E step is an O(k™) computation. More efficient approxima-
tions can be obtained using Gibbs sampling (Geman and Geman, 1984), and mean
field theory (Parisi, 1988). The M step of the algorithm uses the expectations calcu-
lated in the E step to estimate a new set of parameters. A detailed derivation of the

EM algorithm for this architecture is given in Appendix A of this chapter.

5.4 Experiment: Polar and Cartesian Coordinates

The algorithm for maximizing topographic mutual information was tested on a small
coordinate transformation problem. The problem consisted of extracting a common
representation from two input modalities: One coding stimulus locations in Cartesian

coordinates, (x,y), and the other in polar coordinates, (r,6), where

0 = tan"'(y/z).

Polar stimulus coordinates were input into one network, and the corresponding Carte-
sian stimulus coordinates were simultaneously input into a second network. Each net-
work consisted of 25 Gaussian units arranged in a 5 X 5 map, and there were a total
of 100 polar-Cartesian input pairs. The networks were trained both with the topo-
graphic mutual information cost function (equation (5.10) with o = 0.1, 8 = 16), and
with a non-topographic control (v = # = 0). The two parameters of the topographic
cost function, a and 3, were set by trial and error, and reflect the importance of pre-
serving between- and within-map topographic order relative to maximizing mutual
information.

Both algorithms rapidly formed representations of the two modalities with high

mutual information (Figure 5-2). Whereas the topographic constraints aided the
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generation of high mutual information representations early in learning, the non-
topographic algorithm rapidly caught up and in some simulations surpassed the to-

pographic cost function in terms of mutual information (not shown).
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Figure 5-2: Learning curves for non-topographic (solid) and topographic (dashed)
mutual information algorithms. The mutual information as a fraction of maximum
possible information (log, 25 = 4.64 bits) is plotted as a function of iterations of the
EM algorithm. Fach iteration is one pass through the data set.

At the end of learning, the non-topographic algorithm showed all the signatures
of high mutual information (Figure 5-3 bottom row). Both the polar and Cartesian
representations had high information content: The receptive field centers had spread
to capture the input distribution. Moreover, activity in the polar map was highly
predictable from activity in the Cartesian map and vice-versa, as evidenced by the

sparse joint probability matrix. However, there was no sign of topographic order,



180 Chapter 5. Learning Coordinate Transformations through Mutual Information

either within each of the two maps, or between them.

On the other hand, the topographic algorithm showed both high mutual infor-
mation and topographic order at the end of learning (Figure 5-4 bottom row). The
representations that emerged were map-like and orderly within and between the two

modalities.

5.5 Discussion

In this chapter we have derived an information-theoretic criterion for learning com-
mon representations of multiple modalities. The criterion is based on maximizing
the mutual information between the representations in each sensory modality. We
augment this criterion by imposing topographic structure within and between the sen-
sory modalities. The representations derived from this new criterion can be used both
to transform between representations in the different modalities, and as a common
representation subserving motor output.

The Polar—Cartesian problem illustrated that although mutual information can
be maximized without any topographic constraints, the representations derived do
not reflect the structure of the input space. Highly structured representations can be
obtained by adding the appropriate terms. In future simulations we plan to explore
the problem of transforming visual and auditory inputs into a common spatial map.

It should be noted that the topographic structure imposed between and within
sensory modalities may be different. For example, a two-dimensional map (e.g. inter-
aural time difference (ITD) and interaural intensity difference (IID)) may be mapped
onto a one-dimensional continuum (location in azimuth) in another modality. More
esoteric structures, such as the helical structure of perceived tones revealed by sim-
ilarity judgements (Shepard, 1982), may also be induced through combinations of
circular and linear topologies.

The algorithm can be extended to more than two modalities by use of the n-
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Figure 5-3: Learning in the non-topographic mutual information algorithm. FEach
row is a snap-shot at a different stage of learning: early (iteration 5; top), middle
(iteration 20; middle), and late (iteration 60; bottom). The first column displays
the joint probability distribution for the activity of corresponding pairs of units in
the two maps—with lighter shades indicating high probability of joint activity and
darker shades indicating low probability. The second and third columns display the
arrangement of receptive fields in the Cartesian and polar maps, respectively. The
dark circles are receptive field centers; the light circles are the data points (sensory

inputs); the lines indicate neighborhood relations between receptive fields.
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Figure 5-4: Learning in the topographic mutual information algorithm. Each row is
a snap-shot at a different stage of learning: early (iteration 1; top), middle (iteration
5; middle), and late (iteration 60; bottom). The plots are arranged as in the previous
figure.
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channel generalization of mutual information (5.9). Generalizing to n modalities
requires both the estimation of n'™ order statistics of the hidden representation in the
E step, and the corresponding n'* order parameters in the M step. Both computation
time and overfitting problems render such a generalization infeasible. A natural
tractable approximation can be obtained by truncating (5.9) to include only the first
and second order joint entropy terms, thereby reducing the mutual information cost
function to just pairwise terms. This approach has not been tried.

It may seem that the algorithm derived in Appendix A is so biologically far-
fetched it has little relevance to the natural learning and development of coordinate
transformations that takes place in the CNS. The data are all processed in batch;
the algorithm relies on matrix inversion and relatively complex linear algebra; oper-
ations are non-local, etc. However, inspection of the cost function shows that it is
composed primarily of quadratic terms relating the different representations. These
can be exactly implemented through Gaussian receptive fields and Gaussian connec-
tivity patterns among hidden units. A stochastic gradient descent algorithm applied
to this architecture results in a learning rule which moves these receptive fields in
the direction of inputs, receptive fields of nearby units in the same map, and recep-
tive fields of corresponding units in the other sensory map. Therefore, although the
present implementation of the algorithm is biologically implausible, it can probably
be implemented using learning rules based on receptive field plasticity and changes
in connectivity. Plasticity of receptive fields and changes in connectivity are not only
neurally plausible but closely linked to many types of experience-dependent plasticity,
such as that found in the visual (Wiesel and Hubel, 1963), somatosensory (Merzenich
et al., 1983), and motor systems (Sanes et al., 1990; Donaghue et al., 1990). Using
these mechanisms, a model based on maximizing mutual information in topographic
maps may capture some basic properties of experience-dependent development of
mutually-aligned maps.

In conclusion, an unsupervised algorithm for learning coordinate transformations
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has been derived from information-theoretic terms. This algorithm combines the
principles of maximizing mutual information and preserving topographic structure.
Many questions for further research arise from this framework. We will briefly outline
three of these questions.

First, the algorithm provides a natural model for the psychophysics of multisen-
sory integration and adaptation (cf. Chapters 2 and 4). For example, the model can
predict, based on information-theoretic principles, the effect of varying amounts of
noise in the input modalities. These quantitative predictions apply to all three condi-
tions studied in Chapter 2: Fusion of unperturbed signals, adaptation to added bias,
and adaptation to added variance. Comparison of the empirical results in Chapter
2 with the predictions made by this model therefore seems the next natural step in
this research project.

Second, the model roughly captures some of the essential features of multisensory
areas such as the superior colliculus: topology, alignment, and adaptability. It may be
fruitful to make this analogy more explicit. For example, the receptive fields and con-
nectivity within these multisensory maps could be used to predict the structure that
would emerge from the topographic mutual information criterion. Furthermore, it
would be fruitful to consider whether a local Hebbian-like learning rule, coupled with
the physiologically observed connectivity, could implement the topographic mutual
information cost function.

Third, from a purely computational standpoint, it is important to derive more
tractable approximations to the EM algorithm derived in this chapter. The main
problem is that in large networks the exact E step is computationally expensive. It
should be fairly straightforward to derive both a stochastic version of the algorithm

based on Gibbs sampling, and a deterministic variant based on mean field theory.
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Appendix A: Derivation of the EM algorithm

The E step of the algorithm computes the expected log likelihood Q(¢’|¢) of the pa-
rameters. For this model, dropping the terms that do not play into the maximization

and noting that (z!z;). = 1,
1 1
Q) = —xiV ' Wilz)e — x2Vy Wa(za)e + §W1TV1_1W1 + §W2TV2_1W2
+ _O‘Z i (Wi — Wiy TV (Way — W)
+ _OéZ 2] WQZ WZj)T‘/Q_l(WQi — WQJ)
+ §ﬂtr[\llf2<zlzg>c] - <Z1>Zlog ™ — (z > log 7y + tr[log H12<Z1Z2> ].
The E step therefore relies on calculating the first and second order statistics, (z1).,
(1), and (z12])..
The M step maximizes the expected log likelihood with respect to the parameters.

Assume the data set consists of N patterns {x;,}"_,. Setting the derivatives of Q

with respect to the mean vectors to zero, we obtain a linear system of equations

aQ szn Zzyn - 2] Z Zzyn QQNZ M/ZJ mk) 0
oWy

for W;. The solution to this gives
W\i — A_l inn<zin>za

where A = 0;5(3,(Zijn)e + 2aN 3 [Wi]51) — 2aN[W;]k, and é;; is the Kronecker
delta.

To estimate V;, we solve = ( obtaining the linear equation

oV

1 2 N
N Z Zzyn c in - m])(xzn - W T a Z - mk)(m] — mk)T

>
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where A = N(1 4 2a 3. [Win).

© = 0 obtaining
871-2»

To estimate 7r;, we solve

7/1'\2' = Z(Zm%.

n

In the simulations in this chapter we kept 7 fixed to a maximum entropy distribution,
7w = 1/k.

Estimating 1Ty, is more difficult. Unlike all the other parameters, for which the
expected log likelihood yields a single global maximum, this parameter plays into the
881112 = 0 yields the global minimum. In fact, the

maximalie at the boundaries of a simplex defined by the constraints that >, [Pi12)i; =

cost with a negative sign; setting

7y, and 3 ;[ Piia];j = 7a;. This suggests using linear programming (Press et al., 1988)
to solve the M step. The simpler method employed in this chapter is to use a partial

(gradient) M step for this parameter,

<Z1jz2k>c

Alllia)jp = —n Mol
J
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Appendix B: Matlab Code for Topographic

Mutual Information

bR BRIl bl bl b b ol hto o To o to o to o oo T o o o o ol ol Tl Tl T T o Tt T 2o 2o 6 260 o o o o o o ol ol o

% Maximizing Mutual Information Between Two Gaussian Mixtures h
/ /
% Zoubin Ghahramani 6/20/95. h

bR BRIl bl bl b b ol hto o To o to o to o oo T o o o o ol ol Tl Tl T T o Tt T 2o 2o 6 260 o o o o o o ol ol o

disp(’loading training data’);

load data -ascii;

inputs=data;

sim=1;

K=5; % size of mesh

M=K*K; % number of Gaussians
D=length(inputs(l,:))/2;% dimensionality of the input
N=length(inputs(:,1)); % number of training patterns
epsi=10e-8; J small number for preventing divide by zeros
eta=0.005; 7 gradient step size for Pi

ncycle=60; % number of cycles of EM

alpha=0.1; % equivalent proportion of data represented by
% neibouring weights in within-modality topography

beta=16; ¥ inverse variance of between-modality
% interaction

gamma=72; % inverse variance of within-modality
% interaction

% calculate the within modality topology matrix

top=zeros(M);

for i=1:M
for j=1i:M

top(i,j)=exp(-gamma*sqr(coord(i,K)-coord(j,K))/(2xT));;

end;

end;

top=top+top’;

rs=sum(top’);

TOP=inv (eye (M) +2*alphax*(diag(rs)-top));
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pil=ones(M,1)/M;
pi2=ones(M, 1) /M;
Pi=ones(M,M);
Wi=rand(M,D);
W2=rand(M,D) ;
Wtil=rand(M,D);
Wt2=rand(M,D);

E=zeros (M*M,N) ;

P=zeros (M*M,N) ;
Pl=zeros(M,N);
P2=zeros(M,N);
V1=0.5%ones(1,D);
V2=0.5%ones(1,D) ;
Pi=Pi/sum(sum(Pi));
I=[1;

Cost=[];

for cycle=l1:ncycle;
T=1;

% E step
E=zeros (M*M,N) ;
P=zeros (M*M,N) ;
Pl=zeros(M,N);
P2=zeros(M,N);
Costc=0;
for 1 = 1:N
x1=inputs(1l,1:D);
x2=inputs(1l,D+1:2*D);
for 1=1:M
for j=1:M
e= -sqr((x1-Wi1(i,:))./sqrt(V1))/(2%T)
-sqr((x2-W2(j,:))./sqrt(V2))/(2%T)
-beta*sqr(coord(i,K)-coord(j,K))/(2xT)
+ log(pil(i)) + log(pi2(j)) - log(Pi(i,j));
E((1-1)*M+j,1) = e;
P1(1,1)=P1(i,1)+exp(e);
P2(j,1)=P2(j,1)+exp(e);
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end;
end;
P(:,l)=exp(E(:,1));
P(:,1)=P(:,1)/sum(P(:,1));
for i1=1:MxM
Costc=Costc+E(1i,1)*P(1,1);
end;
P1(:,1)=P1(:,1)/sum(P1(:,1));
P2(:,1)=P2(:,1)/sum(P2(:,1));
end;
Cost=[Cost Costc];

h M step
% means

for i=1:M
Wt1(i,:)=P1(4i,:)*inputs(:,1:D)/sum(P1(i,:));
Wt2(i,:)=P2(4,:)*inputs(:,D+1:2*D)/sum(P2(i,:));
end;

W1=TOP*Wt1;
W2=TOP*Wt2;

% priors -- not updated in this model

% pil=sum(P1’);
h pi2=sum(P2’);
% pil=pil/sum(pil);
h pi2=pi2/sum(pi2);

% diagonal variances

Vi=zeros(1,D);
V2=zeros(1,D);
for i=1:M
for 1=1:N
V1=V1+P1(i,1)*(inputs(l,1:D)-Wi(i,:))."2;
V2=V2+P2(1,1)*(inputs(1l,D+1:2%xD)-W2(1i,:))."2;
end;
end;
Vi=V1/N;
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V2=V2/N;
% joint prior (joint entropy)

Pest=reshape(sum(P’) ,M,M)’/N;
for k=1:2;
for 1=1:M
Pi(i,:)=pil(i)*Pi(i,:)/sum(Pi(i,:));
end;
for 1=1:M
Pi(:,3)=pi2(j)*Pi(:,j)/sum(Pi(:,3));
end;
end;
Pi=Pi-eta*(1./Pi) .*Pest;
pcut=0.01/M;
Pi=(Pi>pcut) .*Pi + (Pi<=pcut)*pcut;
Pi=Pi/sum(sum(Pi));

% calculate the mutual information from the joint entropy and normalize

mi=mutinfo(Pest)/log(M) ;

fprintf(Pcycle %g T %g V1 [h2.2f Y2.2f] V2 [}2.2f %2.2f] 1oL J%g mi %g \n’,...
cycle,T,V1,V2,Costc,mi);

I=[I mil;

clear E P P1 P2;
s=sprintf (’save worldlg.%g’,sim,cycle); % save state at each step
eval(s)

end;



Chapter 6

Conclusion

The first goal of this dissertation was to develop a computational framework for
the study of sensorimotor integration and adaptation. The framework developed
was based on the idea that information from multiple sources is integrated so as to
obtain more accurate and reliable estimates of the state of the sensed world. This
idea can be formalized within estimation theory, a branch of statistics, and leads to
explicit models of sensorimotor integration. A testable premise of the computational
framework is that adaptation to intersensory discrepancies is intimately linked to
integration of information from multiple senses. From any model of multisensory
integration, a model of intersensory adaptation can be derived that is consistent with
the integration model.

What can be gained from developing such computational models in the first place?
The models in this thesis have attempted to formalize intuitive ideas on the processes
of integration and adaptation so as to make quantitative predictions possible. Like
any scientific theory, a simple parsimonious model can both account for a large set
of seemingly unrelated observations and provide an intuitive explanation for the phe-
nomena being studied.

The computational models of integration and adaptation that were developed

were tested through psychophysical experiments in three sensorimotor systems. The

191
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principal findings were

1. The patterns of visuo-auditory integration and adaptation suggest a principle

of minimizing localization variance (Chapter 2).

2. The errors in estimating the location of the hand during a movement are also
consistent with the minimum variance principle. Furthermore, the pattern of
errors as a function of movement duration and external forces provides evidence
for the existence of an internal model of the arm’s dynamics in the CNS (Chap-

ter 3).

3. The patterns of adaptation to local and contextual remappings of the visuomo-
tor coordinate transformation suggest that it is represented with units which

have large but localized receptive fields (Chapter 4).

Finally, the problem of converting information from several modalities into a com-
mon coordinate frame was examined (Chapter 5). Using a computational framework
based on information theory, it was shown that mutually-aligned topographic maps
can develop, in an unsupervised manner, from correlations between the inputs to

different sensory modalities.
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