
Parameter Estimation for Linear Dynamical SystemsZoubin GhahramaniGeo�rey E. HintonDepartment of Computer ScienceUniversity of Toronto6 King's College RoadToronto, Canada M5S 1A4Email: zoubin@cs.toronto.eduTechnical Report CRG-TR-96-2February 22, 1996AbstractLinear systems have been used extensively in engineering to model and control thebehavior of dynamical systems. In this note, we present the Expectation Maximization(EM) algorithm for estimating the parameters of linear systems (Shumway and Sto�er,1982). We also point out the relationship between linear dynamical systems, factoranalysis, and hidden Markov models.IntroductionThe goal of this note is to introduce the EM algorithm for estimating the parameters oflinear dynamical systems (LDS). Such linear systems can be used both for supervised andunsupervised modeling of time series. We �rst describe the model and then brie
y point outits relation to factor analysis and other data modeling techniques.The ModelLinear time-invariant dynamical systems, also known as linear Gaussian state-space models,can be described by the following two equations:xt+1 = Axt +wt (1)yt = Cxt+ vt: (2)Time is indexed by the discrete index t. The output yt is a linear function of the state, xt, andthe state at one time step depends linearly on the previous state. Both state and output noise,wt and vt, are zero-mean normally distributed random variables with covariance matrices Qand R, respectively. Only the output of the system is observed, the state and all the noisevariables are hidden.Rather than regarding the state as a deterministic value corrupted by random noise,we combine the state variable and the state noise variable into a single Gaussian random1



variable; we form a similar combination for the output. Based on (1) and (2) we can writethe conditional densities for the state and output,P (ytjxt) = exp��12[yt � Cxt]0R�1[yt � Cxt]� (2�)�p=2jRj�1=2 (3)P (xtjxt�1) = exp��12[xt �Axt�1]0Q�1[xt �Axt�1]� (2�)�k=2jQj�1=2 (4)A sequence of T output vectors (y1;y2; : : : ;yT ) is denoted by fyg; a subsequence (yt0;yt0+1; : : : ;yt1)by fygt1t0; similarly for the states.By the Markov property implicit in this model,P (fxg; fyg) = P (x1) TYt=2P (xtjxt�1) TYt=1P (ytjxt): (5)Assuming a Gaussian initial state densityP (x1) = exp��12[x1 ��1]0V �11 [x1� �1]� (2�)�k=2jV1j�1=2: (6)Therefore, the joint log probability is a sum of quadratic terms,logP (fxg; fyg) = � TXt=1�12[yt � Cxt]0R�1[yt �Cxt]�� T2 log jRj� TXt=2�12[xt �Axt�1]0Q�1[xt �Axt�1]�� T � 12 log jQj�12[x1 � �1]0V �11 [x1 � �1]� 12 log jV1j � T (p+ k)2 log 2�: (7)Often the inputs to the system can also be observed. In this case, the goal is to modelthe input{output response of a system. Denoting the inputs by ut, the state equation isxt+1 = Axt +But +wt: (8)where B is the input matrix relating inputs linearly to states. We will present the learningalgorithm for the output-only case, although the extensions to the input{output case arestraightforward.If only the outputs of the system can be observed the problem can be seen as an unsuper-vised problem. That is, the goal is to model the unconditional density of the observations.If both inputs and outputs are observed, the problem becomes supervised, modeling theconditional density of the output given the input.Related MethodsIn its unsupervised incarnation, this model is an extension of maximum likelihood factoranalysis (Everitt, 1984). The factor, xt, evolves over time according to linear dynamics. Infactor analysis, a further assumption is made that the output noise along each dimension2



is uncorrelated, i.e. that R is diagonal. The goal of factor analysis is therefore to compressthe correlational structure of the data into the values of the lower dimensional factors, whileallowing independent noise terms to model the uncorrelated noise. The assumption of adiagonal R matrix can also be easily incorporated into the estimation procedure for theparameters of a linear dynamical system.The linear dynamical system can also be seen as a continuous-state analogue of thehidden Markov model (HMM; see Rabiner and Juang, 1986, for a review). The forward partof the forward-backward algorithm from HMMs is computed by the well-known Kalman�lter in LDSs; similarly, the backward part is computed by using Rauch's recursion (Rauch,1963). Together, these two recursions can be used to solve the problem of inferring theprobabilities probabilities of the states given the observation sequence (known in engineeringas the smoothing problem). These posterior probabilities form the basis of the E step of theEM algorithm.Finally, linear dynamical systems can also be represented as graphical probabilistic mod-els (sometimes referred to as belief networks). The Kalman-Rauch recursions are specialcases of the probability propagation algorithms that have been developed for graphical mod-els (Lauritzen and Spiegelhalter, 1988; Pearl, 1988).The EM AlgorithmShumway and Sto�er (1982) presented an EM algorithm for linear dynamical systems wherethe observation matrix, C, is known. Since then, many authors have presented closely relatedmodels and extensions, also �t with the EM algorithm (Shumway and Sto�er, 1991; Kim,1994; Athaide, 1995). Here we present a basic form of the EM algorithm with C unknown,an obvious modi�cation of Shumway and Sto�er's original work. This note is meant as asuccinct review of this literature for those wishing to implement learning in linear dynamicalsystems.The E step of EM requires computing the expected log likelihood,Q = E[logP (fxg; fyg)jfyg]: (9)This quantity depends on three expectations|E[xtjfyg], E[xtx0tjfyg], E[xtx0t�1jfyg]|whichwe will denote by the symbols: x̂t � E[xtjfyg] (10)Pt � E[xtx0tjfyg] (11)Pt;t�1 � E[xtx0t�1jfyg]: (12)Note that the state estimate, x̂t, di�ers from the one computed in a Kalman �lter in that itdepends on past and future observations; the Kalman �lter estimates E[xtjfygt1] (Andersonand Moore, 1979). We �rst describe the M step of the parameter estimation algorithm beforeshowing how the above expectations are computed in the E step.3



1 The M stepThe parameters of this system are A, C, R, Q, �1, V1. Each of these is re-estimated bytaking the corresponding partial derivative of the expected log likelihood, setting to zero,and solving. This results in the following:� Output matrix: @Q@C = � TXt=1R�1ytx̂0t + TXt=1R�1CPt = 0 (13)Cnew =  TXt=1 ytx̂0t! TXt=1 Pt!�1 (14)� Output noise covariance:@Q@R�1 = T2 R� TXt=1 �12yty0t � Cx̂ty0t + 12CPtC 0� = 0 (15)Rnew = 1T TXt=1 (yty0t � Cnewx̂ty0t) (16)� State dynamics matrix:@Q@A = � TXt=2Q�1Pt;t�1 + TXt=2Q�1APt�1 = 0 (17)Anew =  TXt=2 Pt;t�1! TXt=2 Pt�1!�1 (18)� State noise covariance:@Q@Q�1 = T � 12 Q� 12 TXt=2 (Pt �APt�1;t � Pt;t�1A0 +APt�1A0) = 0= T � 12 Q� 12  TXt=2 Pt �Anew TXt=2Pt�1;t! (19)Qnew = 1T � 1  TXt=2 Pt �Anew TXt=2Pt�1;t! (20)� Initial state mean: @Q@�1 = (x̂1 � �1)V �11 = 0 (21)�new1 = x̂1 (22)4



� Initial state covariance:@Q@V �11 = 12V1 � 12(P1 � x̂1�01 � �1x̂01 + �1�01) (23)V new1 = P1 � x̂1x̂01 (24)The above equations can be readily generalized to multiple observation sequences, withone subtlety regarding the estimate of the initial state covariance. Assume N observationsequences of length T , let x̂(i)t be the estimate of state at time t given the ith sequence, and�̂xt = 1N NXi=1 x̂(i)t :Then the initial state covariance isV new1 = P1 � �̂x1 �̂x01 + 1N NXi=1 [x̂(i)1 � �̂x1] [x̂(i)1 � �̂x1]0: (25)2 The E stepUsing x�t to denote E(xtjfyg�1), and V �t to denote Var(xtjfyg�1), we obtain the followingKalman �lter forward recursions:xt�1t = Axt�1t�1 (26)V t�1t = AV t�1t�1 A0 +Q (27)Kt = V t�1t C 0(CV t�1t C 0 +R)�1 (28)xtt = xt�1t +Kt(yt � Cxt�1t ) (29)V tt = V t�1t �KtCV t�1t ; (30)where x01 = �1 and V 01 = V1. Following Shumway and Sto�er (1982), to compute x̂t � xTtand Pt � V Tt + xTt xT 0t one performs a set of backward recursions usingJt�1 = V t�1t�1 A0(V t�1t )�1 (31)xTt�1 = xt�1t�1 + Jt�1(xTt �Axt�1t�1) (32)V Tt�1 = V t�1t�1 + Jt�1(V Tt � V t�1t )J 0t�1: (33)We also require Pt;t�1 � V Tt;t�1 + xTt xT 0t�1, which can be obtained through the backwardrecursions V Tt�1;t�2 = V t�1t�1 J 0t�2 + Jt�1(V Tt;t�1 �AV t�1t�1 )J 0t�2; (34)which is initialized V TT;T�1 = (I �KTC)A V T�1T�1 :5
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