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2 MICHAEL I. JORDAN ET AL.1. IntroductionThe problem of probabilistic inference in graphical models is the problem ofcomputing a conditional probability distribution over the values of some ofthe nodes (the \hidden" or \unobserved" nodes), given the values of othernodes (the \evidence" or \observed" nodes). Thus, letting H represent theset of hidden nodes and letting E represent the set of evidence nodes, wewish to calculate P (HjE):P (HjE) = P (H;E)P (E) : (1)General exact inference algorithms have been developed to perform thiscalculation (Cowell, this volume; Jensen, 1996); these algorithms take sys-tematic advantage of the conditional independencies present in the jointdistribution as inferred from the pattern of missing edges in the graph.We often also wish to calculate marginal probabilities in graphical mod-els, in particular the probability of the observed evidence, P (E). Viewed asa function of the parameters of the graphical model, for �xed E, P (E) is animportant quantity known as the likelihood. As is suggested by Eq. (1), theevaluation of the likelihood is closely related to the calculation of P (HjE).Indeed, although inference algorithms do not simply compute the numera-tor and denominator of Eq. (1) and divide, they in fact generally producethe likelihood as a by-product of the calculation of P (HjE). Moreover, al-gorithms that maximize likelihood (and related quantities) generally makeuse of the calculation of P (HjE) as a subroutine.Although there are many cases in which the exact algorithms providea satisfactory solution to inference and learning problems, there are othercases, several of which we discuss in this paper, in which the time or spacecomplexity of the exact calculation is unacceptable and it is necessary tohave recourse to approximation procedures. Within the context of the junc-tion tree construction, for example, the time complexity is exponential inthe size of the maximal clique in the junction tree. As we will see, there arenatural architectural assumptions that necessarily lead to large cliques.Even in cases in which the complexity of the exact algorithms is man-ageable, there can be reason to consider approximation procedures. Notein particular that the exact algorithms make no use of the numerical rep-resentation of the joint probability distribution associated with a graphicalmodel; put another way, the algorithms have the same complexity regard-less of the particular probability distribution under consideration withinthe family of distributions that is consistent with the conditional inde-pendencies implied by the graph. There may be situations in which nodesor clusters of nodes are \nearly" conditionally independent, situations in



AN INTRODUCTION TO VARIATIONAL METHODS 3which node probabilities are well determined by a subset of the neighbors ofthe node, or situations in which small subsets of con�gurations of variablescontain most of the probability mass. In such cases the exactitude achievedby an exact algorithm may not be worth the computational cost. A varietyof approximation procedures have been developed that attempt to iden-tify and exploit such situations. Examples include the pruning algorithmsof Kj�rul� (1994), the \bounded conditioning" method of Horvitz, Suer-mondt, and Cooper (1989), search-based methods (e.g., Henrion, 1991), andthe \localized partial evaluation" method of Draper and Hanks (1994). Avirtue of all of these methods is that they are closely tied to the exact meth-ods and thus are able to take full advantage of conditional independencies.This virtue can also be a vice, however, given the exponential growth incomplexity of the exact algorithms.A related approach to approximate inference has arisen in in appli-cations of graphical model inference to error-control decoding (McEliece,MacKay, & Cheng, 1996). In particular, Kim and Pearl's algorithm forsingly-connected graphical models (Pearl, 1988) has been used successfullyas an iterative approximate method for inference in non-singly-connectedgraphs.Another approach to the design of approximation algorithms involvesmaking use of Monte Carlo methods. A variety of Monte Carlo algorithmshave been developed (see MacKay, this volume, and Neal, 1993) and appliedto the inference problem in graphical models (Dagum & Luby, 1993; Fung& Favero, 1994; Gilks, Thomas, & Spiegelhalter, 1994; Jensen, Kong, &Kj�rul�, 1995; Pearl, 1988). Advantages of these algorithms include theirsimplicity of implementation and theoretical guarantees of convergence.The disadvantages of the Monte Carlo approach are that the algorithmscan be slow to converge and it can be hard to diagnose their convergence.In this chapter we discuss variational methods, which provide yet an-other approach to the design of approximate inference algorithms. Vari-ational methodology yields deterministic approximation procedures thatgenerally provide bounds on probabilities of interest. The basic intuitionunderlying variational methods is that complex graphs can be probabilis-tically simple; in particular, in graphs with dense connectivity there areaveraging phenomena that can come into play, rendering nodes relativelyinsensitive to particular settings of values of their neighbors. Taking advan-tage of these averaging phenomena can lead to simple, accurate approxi-mation procedures.It is important to emphasize that the various approaches to inferencethat we have outlined are by no means mutually exclusive; indeed theyexploit complementary features of the graphical model formalism. The bestsolution to any given problem may well involve an algorithm that combines



4 MICHAEL I. JORDAN ET AL.aspects of the di�erent methods. In this vein, we will present variationalmethods in a way that emphasizes their links to exact methods. Indeed, aswe will see, exact methods often appear as subroutines within an overallvariational approximation (cf. Jaakkola & Jordan, 1996; Saul & Jordan,1996).It should be acknowledged at the outset that there is as much \art" asthere is \science" in our current understanding of how variational meth-ods can be applied to probabilistic inference. Variational transformationsform a large, open-ended class of approximations, and although there isa general mathematical picture of how these transformations can be ex-ploited to yield bounds on probabilities in graphical models, there is not asyet a systematic algebra that allows particular variational transformationsto be matched optimally to particular graphical models. We will provideillustrative examples of general families of graphical models to which varia-tional methods have been applied successfully, and we will provide a generalmathematical framework which encompasses all of these particular exam-ples, but we are not as yet able to provide assurance that the frameworkwill transfer easily to other examples.We begin in Section 2 with a brief overview of exact inference in graph-ical models, basing the discussion on the junction tree algorithm. Section 3presents several examples of graphical models, both to provide motivationfor variational methodology and to provide examples that we return to anddevelop in detail as we proceed through the chapter. The core material onvariational approximation is presented in Section 4. Sections 5 and 6 �llin some of the details, focusing on sequential methods and block methods,respectively. In these latter two sections, we also return to the examplesand work out variational approximations in each case. Finally, Section 7presents conclusions and directions for future research.2. Exact inferenceIn this section we provide a brief overview of exact inference for graphicalmodels, as represented by the junction tree algorithm (for relationshipsbetween the junction tree algorithm and other exact inference algorithms,see Shachter, Andersen, and Szolovits, 1994; see also Dechter, this volume,and Shenoy, 1992, for recent developments in exact inference). Our intentionhere is not to provide a complete description of the junction tree algorithm,but rather to introduce the \moralization" and \triangulation" steps of thealgorithm. An understanding of these steps, which create data structuresthat determine the run time of the inference algorithm, will su�ce for our
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Figure 1. A directed graph is parameterized by associating a local conditional probabilitywith each node. The joint probability is the product of the local probabilities.purposes.1 For a comprehensive introduction to the junction tree algorithmsee Cowell (this volume) and Jensen (1996).Graphical models come in two basic avors|directed graphical modelsand undirected graphical models. A directed graphical model is speci�ednumerically by associating local conditional probabilities with each of thenodes in an acyclic directed graph. These conditional probabilities specifythe probability of node Si given the values of its parents, i.e., P (SijS�(i)),where �(i) represents the set of indices of the parents of node Si and S�(i)represents the corresponding set of parent nodes (see Fig. 1).2 To obtain thejoint probability distribution for all of theN nodes in the graph, i.e., P (S) =P (S1; S2; : : : ; SN ), we take the product over the local node probabilities:P (S) = NYi=1P (SijS�(i)) (2)Inference involves the calculation of conditional probabilities under thisjoint distribution.An undirected graphical model (also known as a \Markov random �eld")is speci�ed numerically by associating \potentials" with the cliques of thegraph.3 A potential is a function on the set of con�gurations of a clique1Our presentation will take the point of view that moralization and triangulation,when combined with a local message-passing algorithm, are su�cient for exact inference.It is also possible to show that, under certain conditions, these steps are necessary forexact inference. See Jensen and Jensen (1994).2Here and elsewhere we identify the ith node with the random variable Si associatedwith the node.3We de�ne a clique to be a subset of nodes which are fully connected and maximal;i.e., no additional node can be added to the subset so that the subset remains fullyconnected.
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Figure 2. An undirected graph is parameterized by associating a potential with eachclique in the graph. The cliques in this example are C1 = fS1; S2; S3g, C2 = fS3; S4; S5g,and C3 = fS4; S5; S6g. A potential assigns a positive real number to each con�gurationof the corresponding clique. The joint probability is the normalized product of the cliquepotentials.(that is, a setting of values for all of the nodes in the clique) that associatesa positive real number with each con�guration. Thus, for every subset ofnodes Ci that forms a clique, we have an associated potential �i(Ci) (seeFig. 2). The joint probability distribution for all of the nodes in the graphis obtained by taking the product over the clique potentials:P (S) = QMi=1 �i(Ci)Z ; (3)where M is the total number of cliques and where the normalization factorZ is obtained by summing the numerator over all con�gurations:Z =XfSg(MYi=1�i(Ci)) : (4)In keeping with statistical mechanical terminology we will refer to this sumas a \partition function."The junction tree algorithm compiles directed graphical models intoundirected graphical models; subsequent inferential calculation is carriedout in the undirected formalism. The step that converts the directed graphinto an undirected graph is called \moralization." (If the initial graph isalready undirected, then we simply skip the moralization step). To under-stand moralization, we note that in both the directed and the undirectedcases, the joint probability distribution is obtained as a product of local
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(a) (b)Figure 3. (a) The simplest non-triangulated graph. The graph has a 4-cycle without achord. (b) Adding a chord between nodes B and D renders the graph triangulated.functions. In the directed case, these functions are the node conditionalprobabilities P (SijS�(i)). In fact, this probability nearly quali�es as a po-tential function; it is certainly a real-valued function on the con�gurationsof the set of variables fSi; S�(i)g. The problem is that these variables donot always appear together within a clique. That is, the parents of a com-mon child are not necessarily linked. To be able to utilize node conditionalprobabilities as potential functions, we \marry" the parents of all of thenodes with undirected edges. Moreover we drop the arrows on the otheredges in the graph. The result is a \moral graph," which can be used torepresent the probability distribution on the original directed graph withinthe undirected formalism.4The second phase of the junction tree algorithm is somewhat more com-plex. This phase, known as \triangulation," takes a moral graph as inputand produces as output an undirected graph in which additional edgeshave (possibly) been added. This latter graph has a special property thatallows recursive calculation of probabilities to take place. In particular, in atriangulated graph, it is possible to build up a joint distribution by proceed-ing sequentially through the graph, conditioning blocks of interconnectednodes only on predecessor blocks in the sequence. The simplest graph inwhich this is not possible is the \4-cycle," the cycle of four nodes shownin Fig. 3(a). If we try to write the joint probability sequentially as, forexample, P (A)P (BjA)P (CjB)P (DjC), we see that we have a problem. Inparticular, A depends onD, and we are unable to write the joint probabilityas a sequence of conditionals.A graph is not triangulated if there are 4-cycles which do not have achord, where a chord is an edge between non-neighboring nodes. Thus the4Note in particular that Fig. 2 is the moralization of Fig. 1.



8 MICHAEL I. JORDAN ET AL.graph in Fig. 3(a) is not triangulated; it can be triangulated by adding achord as in Fig. 3(b). In the latter graph we can write the joint probabilitysequentially as P (A;B;C;D) = P (A)P (B;DjA)P (CjB;D).More generally, once a graph has been triangulated it is possible toarrange the cliques of the graph into a data structure known as a junctiontree. A junction tree has the running intersection property: If a node appearsin any two cliques in the tree, it appears in all cliques that lie on the pathbetween the two cliques. This property has the important consequence thata general algorithm for probabilistic inference can be based on achievinglocal consistency between cliques. (That is, the cliques assign the samemarginal probability to the nodes that they have in common). In a junctiontree, because of the running intersection property, local consistency impliesglobal consistency.The probabilistic calculations that are performed on the junction treeinvolve marginalizing and rescaling the clique potentials so as to achievelocal consistency between neighboring cliques. The time complexity of per-forming this calculation depends on the size of the cliques; in particular fordiscrete data the number of values required to represent the potential isexponential in the number of nodes in the clique. For e�cient inference, itis therefore critical to obtain small cliques.In the remainder of this paper, we will investigate speci�c graphicalmodels and consider the computational costs of exact inference for thesemodels. In all of these cases we will either be able to display the \obvious"triangulation, or we will be able to lower bound the size of cliques in atriangulated graph by considering the cliques in the moral graph. Thus wewill not need to consider speci�c algorithms for triangulation (for discussionof triangulation algorithms, see, e.g., Kj�rul�, 1990).3. ExamplesIn this section we present examples of graphical models in which exactinference is generally infeasible. Our �rst example involves a diagnosticsystem in which a �xed graphical model is used to answer queries. Theremaining examples involve estimation problems in which a graphical modelis �t to data and subsequently used for prediction or diagnosis.3.1. THE QMR-DT DATABASEThe QMR-DT database is a large-scale probabilistic database that is in-tended to be used as a diagnostic aid in the domain of internal medicine.55The acronym \QMR-DT" refers to the \Decision Theoretic" version of the \QuickMedical Reference."
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diseases

symptomsFigure 4. The structure of the QMR-DT graphical model. The shaded nodes representevidence nodes and are referred to as \�ndings."We provide a brief overview of the QMR-DT database here; for furtherdetails see Shwe, et al. (1991).The QMR-DT database is a bipartite graphical model in which the up-per layer of nodes represent diseases and the lower layer of nodes representsymptoms (see Fig. 4). There are approximately 600 disease nodes and4000 symptom nodes in the database.The evidence is a set of observed symptoms; henceforth we refer toobserved symptoms as \�ndings" and represent the vector of �ndings withthe symbol f . The symbol d denotes the vector of diseases. All nodes arebinary, thus the components fi and di are binary random variables. Makinguse of the conditional independencies implied by the bipartite form of thegraph,6 and marginalizing over the unobserved symptom nodes, we obtainthe following joint probability over diseases and �ndings:P (f; d) = P (f jd)P (d) (5)= "Yi P (fijd)# 24Yj P (dj)35 : (6)The prior probabilities of the diseases, P (dj), were obtained by Shwe, et al.from archival data. The conditional probabilities of the �ndings given thediseases, P (fijd), were obtained from expert assessments under a \noisy-OR" model. That is, the conditional probability that the ith symptom is6In particular, the pattern of missing edges in the graph implies that (a) the diseasesare marginally independent, and (b) given the diseases, the symptoms are conditionallyindependent.



10 MICHAEL I. JORDAN ET AL.absent, P (fi = 0jd), is expressed as follows:P (fi = 0jd) = (1� qi0) Yj2�(i)(1� qij)dj (7)where the qij are parameters obtained from the expert assessments. Con-sidering cases in which only one disease is present, that is, fdj = 1g andfdk = 0; k 6= jg, we see that qij can be interpreted as the probability thatthe ith �nding is present if only the jth disease is present. Considering thecase in which all diseases are absent, we see that the qi0 parameter can beinterpreted as the probability that the ith �nding is present even thoughno disease is present.We will �nd it useful to rewrite the noisy-OR model in an exponentialform: P (fi = 0jd) = e�Pj2�(i) �ijdj��i0 (8)where �ij � � ln(1 � qij) are the transformed parameters. Note also thatthe probability of a positive �nding is given as follows:P (fi = 1jd) = 1� e�Pj2�(i) �ijdj��i0 (9)These forms express the noisy-OR model as a generalized linear model.If we now form the joint probability distribution by taking products ofthe local probabilities P (fijd) as in Eq. (6), we see that negative �ndingsare benign with respect to the inference problem. In particular, a productof exponential factors that are linear in the diseases (cf. Eq. (8)) yields ajoint probability that is also the exponential of an expression linear in thediseases. That is, each negative �nding can be incorporated into the jointprobability in a linear number of operations.Products of the probabilities of positive �ndings, on the other hand,yield cross products terms that are problematic for exact inference. Thesecross product terms couple the diseases (they are responsible for the \ex-plaining away" phenomena that arise for the noisy-OR model; see Pearl,1988). Unfortunately, these coupling terms can lead to an exponentialgrowth in inferential complexity. Considering a set of standard diagnos-tic cases (the \CPC cases"; see Shwe, et al. 1991), Jaakkola and Jordan(1997c) found that the median size of the maximal clique of the moralizedQMR-DT graph is 151.5 nodes. Thus even without considering the trian-gulation step, we see that diagnostic calculation under the QMR-DT modelis generally infeasible.77Jaakkola and Jordan (1997c) also calculated the median of the pairwise cutset size.This value was found to be 106.5, which also rules out exact cutset methods for inferencefor the QMR-DT.
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OutputFigure 5. The layered graphical structure of a neural network. The input nodes andoutput nodes comprise the set of evidence nodes.3.2. NEURAL NETWORKS AS GRAPHICAL MODELSNeural networks are layered graphs endowed with a nonlinear \activation"function at each node (see Fig. 5). Let us consider activation functionsthat are bounded between zero and one, such as those obtained from thelogistic function f(z) = 1=(1+ e�z). We can treat such a neural network asa graphical model by associating a binary variable Si with each node andinterpreting the activation of the node as the probability that the associatedbinary variable takes one of its two values. For example, using the logisticfunction, we write:P (Si = 1jS�(i)) = 11 + e�Pj2�(i) �ijSj��i0 (10)where �ij are the parameters associated with edges between parent nodesj and node i, and �i0 is the \bias" parameter associated with node i. Thisis the \sigmoid belief network" introduced by Neal (1992). The advantagesof treating a neural network in this manner include the ability to performdiagnostic calculations, to handle missing data, and to treat unsupervisedlearning on the same footing as supervised learning. Realizing these bene-�ts, however, requires that the inference problem be solved in an e�cientway.In fact, it is easy to see that exact inference is infeasible in general lay-ered neural network models. A node in a neural network generally has asparents all of the nodes in the preceding layer. Thus the moralized neuralnetwork graph has links between all of the nodes in this layer (see Fig. 6).That these links are necessary for exact inference in general is clear|in par-ticular, during training of a neural network the output nodes are evidencenodes, thus the hidden units in the penultimate layer become probabilisti-cally dependent, as do their ancestors in the preceding hidden layers.Thus if there are N hidden units in a particular hidden layer, the timecomplexity of inference is at least O(2N ), ignoring the additional growth
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Hidden

OutputFigure 6. Moralization of a neural network. The output nodes are evidence nodesduring training. This creates probabilistic dependencies between the hidden nodes whichare captured by the edges added by the moralization.
Si

Sj
jiθFigure 7. A Boltzmann machine. An edge between nodes Si and Sj is associated with afactor exp(�ijSiSj) that contributes multiplicatively to the potential of one of the cliquescontaining the edge. Each node also contributes a factor exp(�i0Si) to one and only onepotential.in clique size due to triangulation. Given that neural networks with dozensor even hundreds of hidden units are commonplace, we see that training aneural network using exact inference is not generally feasible.3.3. BOLTZMANN MACHINESA Boltzmann machine is an undirected graphical model with binary-valuednodes and a restricted set of potential functions (see Fig. 7). In partic-ular, the clique potentials are formed by taking products of \Boltzmannfactors"|exponentials of terms that are at most quadratic in the Si (Hin-ton & Sejnowski, 1986). Thus each clique potential is a product of factorsexpf�ijSiSjg and factors expf�i0Sig, where Si 2 f0; 1g.88It is also possible to consider more general Boltzmann machines with multivaluednodes, and potentials that are exponentials of arbitrary functions on the cliques. Suchmodels are essentially equivalent to the general undirected graphical model of Eq. (3)



AN INTRODUCTION TO VARIATIONAL METHODS 13A given pair of nodes Si and Sj can appear in multiple, overlappingcliques. For each such pair we assume that the expression expf�ijSiSjg ap-pears as a factor in one and only one clique potential. Similarly, the factorsexpf�i0Sig are assumed to appear in one and only one clique potential.Taking the product over all such clique potentials (cf. Eq. (3)), we have:P (S) = ePi<j �ijSiSj+Pi �i0SiZ ; (11)where we have set �ij = 0 for nodes Si and Sj that are not neighbors inthe graph|this convention allows us to sum indiscriminately over all pairsSi and Sj and still respect the clique boundaries. We refer to the negativeof the exponent in Eq. (11) as the energy. With this de�nition the jointprobability in Eq. (11) has the general form of a Boltzmann distribution.Saul and Jordan (1994) pointed out that exact inference for certainspecial cases of Boltzmann machine|such as trees, chains, and pairs ofcoupled chains|is tractable and they proposed a decimation algorithm forthis purpose. For more general Boltzmann machines, however, decimationis not immune to the exponential time complexity that plagues other exactmethods. Indeed, despite the fact that the Boltzmann machine is a specialclass of undirected graphical model, it is a special class only by virtue ofits parameterization, not by virtue of its conditional independence struc-ture. Thus, exact algorithms such as decimation and the junction tree algo-rithm, which are based solely on the graphical structure of the Boltzmannmachine, are no more e�cient for Boltzmann machines than they are forgeneral graphical models. In particular, when we triangulate generic Boltz-mann machines, including the layered Boltzmann machines and grid-likeBoltzmann machines, we obtain intractably large cliques.Sampling algorithms have traditionally been used to attempt to copewith the intractability of the Boltzmann machine (Hinton & Sejnowski,1986). The sampling algorithms are overly slow, however, and more recentwork has considered the faster \mean �eld" approximation (Peterson &Anderson, 1987). We will describe the mean �eld approximation for Boltz-mann machines later in the paper|it is a special form of the variationalapproximation approach that provides lower bounds on marginal probabili-ties. We will also discuss a more general variational algorithm that providesupper and lower bounds on probabilities (marginals and conditionals) forBoltzmann machines (Jaakkola & Jordan, 1997a).(although the latter can represent zero probabilities while the former cannot).



14 MICHAEL I. JORDAN ET AL.
A A

B B B B

q q

1 2 3 T

1 2 3 T

π

X X X X

Y Y Y YFigure 8. A HMM represented as a graphical model. The left-to-right spatial dimensionrepresents time. The output nodes Yi are evidence nodes during the training process andthe state nodes Xi are hidden.3.4. HIDDEN MARKOV MODELSIn this section, we briey review hiddenMarkov models. The hiddenMarkovmodel (HMM) is an example of a graphical model in which exact inferenceis tractable; our purpose in discussing HMMs here is to lay the groundworkfor the discussion of intractable variations on HMMs in the following sec-tions. See Smyth, Heckerman, and Jordan (1997) for a fuller discussion ofthe HMM as a graphical model.An HMM is a graphical model in the form of a chain (see Fig. 8).Consider a sequence of multinomial \state" nodes Xi and assume that theconditional probability of node Xi, given its immediate predecessor Xi�1,is independent of all other preceding variables. (The index i can be thoughtof as a time index). The chain is assumed to be homogeneous; that is, thematrix of transition probabilities,A = P (XijXi�1), is invariant across time.We also require a probability distribution � = P (X1) for the initial stateX1.The HMM model also involves a set of \output" nodes Yi and an emis-sion probability law B = P (YijXi), again assumed time-invariant.An HMM is trained by treating the output nodes as evidence nodes andthe state nodes as hidden nodes. An expectation-maximization (EM) algo-rithm (Baum, et al., 1970; Dempster, Laird, & Rubin, 1977) is generallyused to update the parameters A;B; �; this algorithm involves a simple iter-ative procedure having two alternating steps: (1) run an inference algorithmto calculate the conditional probabilities P (XijfYig) and P (Xi;Xi�1jfYig);(2) update the parameters via weighted maximum likelihood where theweights are given by the conditional probabilities calculated in step (1).It is easy to see that exact inference is tractable for HMMs. The mor-alization and triangulation steps are vacuous for the HMM; thus the time
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1Y 2Y 3YFigure 9. A factorial HMM with three chains. The transition matrices are A(1), A(2), andA(3) associated with the horizontal edges, and the output probabilities are determinedby matrices B(1), B(2), and B(3) associated with the vertical edges.complexity can be read o� from Fig. 8 directly. We see that the maximalclique is of size N2, where N is the dimensionality of a state node. Inferencetherefore scales as O(N2T ), where T is the length of the time series.3.5. FACTORIAL HIDDEN MARKOV MODELSIn many problem domains it is natural to make additional structural as-sumptions about the state space and the transition probabilities that arenot available within the simple HMM framework. A number of structuredvariations on HMMs have been considered in recent years (see Smyth, etal., 1997); generically these variations can be viewed as \dynamic belief net-works" (Dean & Kanazawa, 1989; Kanazawa, Koller, & Russell, 1995). Herewe consider a particular simple variation on the HMM theme known as the\factorial hidden Markov model" (Ghahramani & Jordan, 1997; Williams& Hinton, 1991).The graphical model for a factorial HMM (FHMM) is shown in Fig. 9.The system is composed of a set of M chains indexed by m. Let the statenode for the mth chain at time i be represented by X(m)i and let the tran-sition matrix for the mth chain be represented by A(m). We can view thee�ective state space for the FHMM as the Cartesian product of the statespaces associated with the individual chains. The overall transition proba-bility for the system by taking the product across the intra-chain transition
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1Y 2Y 3YFigure 10. A triangulation of an FHMM with two component chains. The moralizationstep links states at a single time step. The triangulation step links states diagonallybetween neighboring time steps.probabilities: P (XijXi�1) = MYm=1A(m)(X(m)i jX(m)i�1 ); (12)where the symbol Xi stands for the M -tuple (X(1)i ;X(2)i ; : : : ;X(M)i ).Ghahramani and Jordan utilized a linear-Gaussian distribution for theemission probabilities of the FHMM. In particular, they assumed:P (YijXi) = N (Xm B(m)X(m)i ;�); (13)where the B(m) and � are matrices of parameters.The FHMM is a natural model for systems in which the hidden stateis realized via the joint con�guration of an uncoupled set of dynamicalsystems. Moreover, an FHMM is able to represent a large e�ective statespace with a much smaller number of parameters than a single unstructuredCartesian product HMM. For example, if we have 5 chains and in eachchain the nodes have 10 states, the e�ective state space is of size 100,000,while the transition probabilities are represented compactly with only 500parameters. A single unstructured HMM would require 1010 parameters forthe transition matrix in this case.The fact that the output is a function of the states of all of the chainsimplies that the states become stochastically coupled when the outputsare observed. Let us investigate the implications of this fact for the timecomplexity of exact inference in the FHMM. Fig. 10 shows a triangulationfor the case of two chains (in fact this is an optimal triangulation). Thecliques for the hidden states are of size N3; thus the time complexity of
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Figure 11. A triangulation of the state nodes of a three-chain FHMM with three com-ponent chains. (The observation nodes have been omitted in the interest of simplicity).
...
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Figure 12. This graph is not a triangulation of a three-chain FHMM.
exact inference is O(N3T ), where N is the number of states in each chain(we assume that each chain has the same number of states for simplicity).Fig. 11 shows the case of a triangulation of three chains; here the triangula-tion (again optimal) creates cliques of size N4. (Note in particular that thegraph in Fig. 12, with cliques of size three, is not a triangulation; there are4-cycles without a chord). In the general case, it is not di�cult to see thatcliques of size NM+1 are created, where M is the number of chains; thusthe complexity of exact inference for the FHMM scales as O(NM+1T ). Fora single unstructured Cartesian product HMM having the same number ofstates as the FHMM|i.e., NM states|the complexity scales as O(N2MT ),thus exact inference for the FHMM is somewhat less costly, but the expo-nential growth in complexity in either case shows that exact inference isinfeasible for general FHMMs.
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U1

Y1

U2

Y2

U3

Y3Figure 13. A hidden Markov decision tree. The shaded nodes fUig and fYig representa time series in which each element is an (input, output) pair. Linking the inputs andoutputs are a sequence of decision nodes which correspond to branches in a decision tree.These decisions are linked horizontally to represent Markovian temporal dependence.3.6. HIGHER{ORDER HIDDEN MARKOV MODELSA related variation on HMMs considers a higher-order Markov model inwhich each state depends on the previous K states instead of the singleprevious state. In this case it is again readily shown that the time complex-ity is exponential in K. We will not discuss the higher{order HMM furtherin this chapter; for a variational algorithm for the higher{order HMM seeSaul and Jordan (1996).3.7. HIDDEN MARKOV DECISION TREESFinally, we consider a model in which a decision tree is endowed withMarko-vian dynamics (Jordan, et al., 1997). A decision tree can be viewed as agraphical model by modeling the decisions in the tree as multinomial ran-dom variables, one for each level of the decision tree. Referring to Fig. 13,and focusing on a particular time slice, the shaded node at the top of thediagram represents the input vector. The unshaded nodes below the inputnodes are the decision nodes. Each of the decision nodes are conditionedon the input and on the entire sequence of preceding decisions (the verticalarrows in the diagram). In terms of a traditional decision tree diagram, thisdependence provides an indication of the path followed by the data point asit drops through the decision tree. The node at the bottom of the diagramis the output variable.If we now make the decisions in the decision tree conditional not only



AN INTRODUCTION TO VARIATIONAL METHODS 19on the current data point, but also on the decisions at the previous momentin time, we obtain a hidden Markov decision tree (HMDT). In Fig. 13, thehorizontal edges represent this Markovian temporal dependence. Note inparticular that the dependency is assumed to be level-speci�c|the proba-bility of a decision depends only on the previous decision at the same levelof the decision tree.Given a sequence of input vectors Ui and a corresponding sequenceof output vectors Yi, the inference problem is to compute the conditionalprobability distribution over the hidden states. This problem is intractablefor general HMDTs|as can be seen by noting that the HMDT includesthe FHMM as a special case.4. Basics of variational methodologyVariational methods are used as approximation methods in a wide variety ofsettings, include �nite element analysis (Bathe, 1996), quantum mechanics(Sakurai, 1985), statistical mechanics (Parisi, 1988), and statistics (Rustagi,1976). In each of these cases the application of variational methods convertsa complex problem into a simpler problem, where the simpler problemis generally characterized by a decoupling of the degrees of freedom inthe original problem. This decoupling is achieved via an expansion of theproblem to include additional parameters, known as variational parameters,that must be �t to the problem at hand.The terminology comes from the roots of the techniques in the calculusof variations. We will not start systematically from the calculus of varia-tions; instead, we will jump o� from an intermediate point that emphasizesthe important role of convexity in variational approximation. This point ofview turns out to be particularly well suited to the development of varia-tional methods for graphical models.4.1. EXAMPLESLet us begin by considering a simple example. In particular, let us expressthe logarithm function variationally:ln(x) = min� f�x� ln�� 1g: (14)In this expression � is the variational parameter, and we are required toperform the minimization for each value of x. The expression is readilyveri�ed by taking the derivative with respect to �, solving and substituting.The situation is perhaps best appreciated geometrically, as we show inFig. 14. Note that the expression in braces in Eq. (14) is linear in x withslope �. Clearly, given the concavity of the logarithm, for each line having
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xFigure 14. Variational transformation of the logarithm function. The linear functions(�x� ln�� 1) form a family of upper bounds for the logarithm, each of which is exactfor a particular value of x.slope � there is a value of the intercept such that the line touches thelogarithm at a single point. Indeed, � ln�� 1 in Eq. (14) is precisely thisintercept. Moreover, if we range across �, the family of such lines forms anupper envelope of the logarithm function. That is, for any given x, we have:ln(x) � �x� ln�� 1; (15)for all �. Thus the variational transformation provides a family of upperbounds on the logarithm. The minimum over these bounds is the exactvalue of the logarithm.The pragmatic justi�cation for such a transformation is that we haveconverted a nonlinear function into a linear function. The cost is that wehave obtained a free parameter � that must be set, once for each x. Forany value of � we obtain an upper bound on the logarithm; if we set �well we can obtain a good bound. Indeed we can recover the exact value oflogarithm for the optimal choice of �.Let us now consider a second example that is more directly relevant tographical models. For binary-valued nodes it is common to represent theprobability that the node takes one of its values via a monotonic nonlinear-ity that is a simple function|e.g., a linear function|of the values of theparents of the node. An example is the logistic regression model:f(x) = 11 + e�x ; (16)



AN INTRODUCTION TO VARIATIONAL METHODS 21which we have seen previously in Eq. (10). Here x is the weighted sum ofthe values of the parents of a node.The logistic function is neither convex nor concave, so a simple linearbound will not work. However, the logistic function is log concave. That is,the function g(x) = � ln(1 + e�x) (17)is a concave function of x (as can readily be veri�ed by calculating thesecond derivative). Thus we can bound the log logistic function with linearfunctions and thereby bound the logistic function by the exponential. Inparticular, we can write:g(x) = min� f�x�H(�)g; (18)whereH(�) is the binary entropy function,H(�) = �� ln��(1��) ln(1��).(We will explain how the binary entropy function arises below; for now itsu�ces to think of it simply as the appropriate intercept term for the loglogistic function). We now take the exponential of both sides, noting thatthe minimum and the exponential function commute:f(x) = min� he�x�H(�)i : (19)This is a variational transformation for the logistic function; examples areplotted in Fig. 15. Finally, we note once again that for any value of � weobtain an upper bound of the logistic function for all values of x:f(x) � e�x�H(�): (20)Good choices for � provide better bounds.The advantages of the transformation in Eq. (20) are signi�cant in thecontext of graphical models. In particular, to obtain the joint probabil-ity in a graphical model we are required to take a product over the localconditional probabilities (cf. Eq. (2)). For conditional probabilities repre-sented with logistic regression, we obtain products of functions of the formf(x) = 1=(1 + e�x). Such a product is not in a simple form. If instead weaugment our network representation by including variational parameters|i.e. representing each logistic function variationally as in Eq. (20)|we seethat a bound on the joint probability is obtained by taking products ofexponentials. This is tractable computationally, particularly so given thatthe exponents are linear in x.4.2. CONVEX DUALITYCan we �nd variational transformations more systematically? Indeed, manyof the variational transformations that have been utilized in the literature
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xFigure 15. Variational transformation of the logistic function.on graphical models are examples of the general principle of convex duality.It is a general fact of convex analysis (Rockafellar, 1972) that a concavefunction f(x) can be represented via a conjugate or dual function as follows:f(x) = min� f�Tx� f�(�)g; (21)where we now allow x and � to be vectors. The conjugate function f�(�)can be obtained from the following dual expression:f�(�) = minx f�Tx� f(x)g: (22)This relationship is easily understood geometrically, as shown in Fig. 16.Here we plot f(x) and the linear function �x for a particular value of �. Theshort vertical segments represent values �x�f(x). It is clear from the �gurethat we need to shift the linear function �x vertically by an amount which isthe minimum of the values �x�f(x) in order to obtain an upper boundingline with slope � that touches f(x) at a single point. This observation bothjusti�es the form of the conjugate function, as a minimum over di�erences�x�f(x), and explains why the conjugate function appears as the interceptin Eq. (21).It is an easy exercise to verify that the conjugate function for the log-arithm is f�(�) = ln� + 1, and the conjugate function for the log logisticfunction is the binary entropy H(�).Although we have focused on upper bounds in this section, the frame-work of convex duality applies equally well to lower bounds; in particular
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Figure 16. The conjugate function f�(�) is obtained by minimizing across the devia-tions|represented as dashed lines|between �x and f(x).for convex f(x) we have:f(x) = max� f�Tx� f�(�)g; (23)where f�(�) = maxx f�Tx� f(x)g (24)is the conjugate function.We have focused on linear bounds in this section, but convex duality isnot restricted to linear bounds. More general bounds can be obtained bytransforming the argument of the function of interest rather than the valueof the function (Jaakkola & Jordan, 1997a). For example, if f(x) is concavein x2 we can write: f(x) = min� f�x2 � �f�(�)g; (25)where �f�(�) is the conjugate function of �f(x) � f(x2). Thus the trans-formation yields a quadratic bound on f(x). It is also worth noting thatsuch transformations can be combined with the logarithmic transformationutilized earlier to obtain Gaussian representations for the upper bounds.This can be useful in obtaining variational approximations for posteriordistributions (Jaakkola & Jordan, 1997b).To summarize, the general methodology suggested by convex dualityis the following. We wish to obtain upper or lower bounds on a functionof interest. If the function is already convex or concave then we simply



24 MICHAEL I. JORDAN ET AL.calculate the conjugate function. If the function is not convex or concave,then we look for an invertible transformation that renders the functionconvex or concave. We may also consider transformations of the argumentof the function. We then calculate the conjugate function in the transformedspace and transform back. For this approach to be useful we need to to�nd a transform, such as the logarithm, whose inverse has useful algebraicproperties.4.3. APPROXIMATIONS FOR JOINT PROBABILITIES ANDCONDITIONAL PROBABILITIESThe discussion thus far has focused on approximations for the local prob-ability distributions at the nodes of a graphical model. How do these ap-proximations translate into approximations for the global probabilities ofinterest, in particular for the conditional distribution P (HjE) that is ourinterest in the inference problem and the marginal probability P (E) thatis our interest in learning problems?Let us focus on directed graphs for concreteness. Suppose that we have alower bound and an upper bound for each of the local conditional probabil-ities P (SijS�(i)). That is, assume that we have forms PU (SijS�(i); �Ui ) andPL(SijS�(i); �Li ), providing upper and lower bounds, respectively, where �Uiand �Li are (generally di�erent) variational parameterizations appropriatefor the upper and lower bounds. Consider �rst the upper bounds. Giventhat the product of upper bounds is an upper bound, we have:P (S) = Yi P (SijS�(i))� Yi PU (SijS�(i); �Ui ) (26)for any settings of values of the variational parameters �Ui . Moreover,Eq. (26) must hold for any subset of S whenever some other subset is held�xed, thus upper bounds on marginal probabilities can be obtained by tak-ing sums over the variational form on the right-hand side of the equation.For example, letting E and H be a disjoint partition of S, we have:P (E) = XfHgP (H;E)� XfHgYi PU (SijS�(i); �Ui ); (27)where, as we will see in the examples to discussed below, we choose the vari-ational forms PU (SijS�(i); �Ui ) so that the summation over H can be carried



AN INTRODUCTION TO VARIATIONAL METHODS 25out e�ciently (this is the key step in developing a variational method). Ineither Eq. (26) or Eq. (27), given that these upper bounds hold for anysettings of values the variational parameters �Ui , they hold in particular foroptimizing settings of the parameters. That is, we can treat the right-handside of Eq. (26) or the right-hand side Eq. (27) as a function to be minimizedwith respect to �Ui . In the latter case, this optimization process will induceinterdependencies between the parameters �Ui . These interdependencies aredesirable; indeed they are critical for obtaining a good variational bound onthe marginal probability of interest. In particular, the best global boundsare obtained when the probabilistic dependencies in the distribution arereected in dependencies in the approximation.To clarify the nature of variational bounds, note that there is an im-portant distinction to be made between joint probabilities (Eq. (26)) andmarginal probabilities (Eq. (27)). In Eq. (26), if we allow the variationalparameters to be set optimally for each value of the argument S, then itis possible (in principle) to �nd optimizing settings of the variational pa-rameters that recover the exact value of the joint probability. (Here weassume that the local probabilities P (SijS�(i)) can be represented exactlyvia a variational transformation, as in the examples discussed in Section4.1). In Eq. (27), on the other hand, we are not generally able to recoverexact values of the marginal by optimizing over variational parameters thatdepend only on the argument E. Consider, for example, the case of a nodeSi 2 E that has parents in H. As we range across fHg there will be sum-mands on the right-hand side of Eq. (27) that will involve evaluating thelocal probability P (SijS�(i)) for di�erent values of the parents S�(i). If thevariational parameter �Ui depends only on E, we cannot in general expectto obtain an exact representation for P (SijS�(i)) in each summand. Thus,some of the summands in Eq. (27) are necessarily bounds and not exactvalues.This observation provides a bit of insight into reasons why a variationalbound might be expected to be tight in some circumstances and loose inothers. In particular, if P (SijS�(i)) is nearly constant as we range acrossS�(i), or if we are operating at a point where the variational representationis fairly insensitive to the setting of �Ui (for example the right-hand side ofthe logarithm in Fig. 14), then the bounds may be expected to be tight.On the other hand, if these conditions are not present one might expectthat the bound would be loose. However the situation is complicated by theinterdependencies between the �Ui that are induced during the optimizationprocess. We will return to these issues in the discussion.Although we have discussed upper bounds, similar comments apply tolower bounds, and to marginal probabilities obtained from lower bounds onthe joint distribution.



26 MICHAEL I. JORDAN ET AL.The conditional distribution P (HjE), on the other hand, is the ratio oftwo marginal distributions; i.e., P (HjE) = P (H;E)=P (E).9 To obtain up-per and lower bounds on the conditional distribution, we must have upperand lower bounds on both the numerator and the denominator. Generallyspeaking, however, if we can obtain upper and lower bounds on the denomi-nator, then our labor is essentially �nished, because the numerator involvesfewer sums. Indeed, in the case in which S = H[E, the numerator involvesno sums and is simply a function evaluation.Finally, it is worth noting that variational methods can also be of inter-est simply as tractable approximations rather than as methods that providestrict bounds (much as sampling methods are used). One way to do this isto obtain a variational approximation that is a bound for a marginal prob-ability, and to substitute the variational parameters thus obtained into theconditional probability distribution. Thus, for example, we might obtain alower bound on the likelihood P (E) by �tting variational parameters. Wecan substitute these parameters into the parameterized variational form forP (H;E) and then utilize this variational form to calculate an approxima-tion to P (HjE).In the following sections we will illustrate the general variational frame-work as it has been applied in a number of worked-out examples. All ofthese examples involve architectures of practical interest and provide con-crete examples of variational methodology. To a certain degree the examplesalso serve as case histories that can be generalized to related architectures.It is important to emphasize, however, that it is not necessarily straight-forward to develop a variational approximation for a new architecture. Theease and the utility of applying the methods outlined in this section dependon architectural details, including the choice of node probability functions,the graph topology and the particular parameter regime in which the modelis operated. In particular, certain choices of node conditional probabilityfunctions lend themselves more readily than others to variational transfor-mations that have useful algebraic properties. Also, certain architecturessimplify more readily under variational transformation than others; in par-ticular, the marginal bounds in Eq. (27) are simple functions in some casesand complex in others. These issues are currently not well understood andthe development of e�ective variational approximations can in some casesrequire substantial creativity.9Note that we treat P (H;E) in general as a marginal probability; that is, we do notnecessarily assume that H and E jointly exhaust the set of nodes S.



AN INTRODUCTION TO VARIATIONAL METHODS 274.4. SEQUENTIAL AND BLOCK METHODSLet us now consider in somewhat more detail how variational methodscan be applied to probabilistic inference problems. The basic idea is thatsuggested above|we wish to simplify the joint probability distribution bytransforming the local probability functions. By an appropriate choice ofvariational transformation, we can simplify the form of the joint probabilitydistribution and thereby simplify the inference problem. We can transformsome or all of the nodes. The cost of performing such transformations isthat we obtain bounds or approximations to the probabilities rather thanexact results.The option of transforming only some of the nodes is important; itimplies a role for the exact methods as subroutines within a variational ap-proximation. In particular, partial transformations of the graph may leavesome of the original graphical structure intact and/or introduce new graph-ical structure to which exact methods can be fruitfully applied. In general,we wish to use variational approximations in a limited way, transformingthe graph into a simpli�ed graph to which exact methods can be applied.This will in general yield tighter bounds than an algorithm that transformsthe entire graph without regard for computationally tractable substructure.The majority of variational algorithms proposed in the literature todate can be divided into two main classes: sequential and block. In thesequential approach, nodes are transformed in an order that is determinedduring the inference process. This approach has the advantage of exibilityand generality, allowing the particular pattern of evidence to determine thebest choices of nodes to transform. In some cases, however, particularlywhen there are obvious substructures in a graph which are amenable toexact methods, it can be advantageous to designate in advance the nodesto be transformed. We will see that this block approach is particularlynatural in the setting of parameter estimation.5. The sequential approachThe sequential approach introduces variational transformations for the nodesin a particular order. The goal is to transform the network until the result-ing transformed network is amenable to exact methods. As we will see inthe examples below, certain variational transformations can be understoodgraphically as a sparsi�cation in which edges are removed from the graph.A series of edge removals eventually renders the graph su�ciently sparsethat an exact method becomes applicable. Alternatively, we can variation-ally transform all of the nodes of the graph and then reinstate the exactnode probabilities sequentially while making sure that the resulting graphstays computationally tractable. The �rst example in the following section



28 MICHAEL I. JORDAN ET AL.illustrates the latter approach and the second example illustrates the formerapproach.Many of the exact methods provide tests that bound their run time. Forexample, one can run a greedy triangulation algorithm to upper bound therun time of the junction tree inference algorithm. If this estimated run timeis su�ciently small, in terms of the overall time allotted to the inferenceprocedure, the system can stop introducing variational transformations andrun the exact procedure.Ideally the choice of the order in which to transform nodes would bemade optimally, that is, an ordering of the nodes would be chosen so thatthe resulting graph would be as simple as possible at each step (in particu-lar, such that the maximal clique of the resulting triangulated graph wouldbe as small as possible). Thus is a di�cult problem, particularly given thata single ordering is unlikely to produce the simplest graph at each step;that is, di�erent partial orders must be considered. In the literature to dateheuristic procedures have been used to choose node orderings.The sequential approach is perhaps best presented in the context ofa speci�c example. In the following section we return to the QMR-DTnetwork and show how a sequential variational approach can be used forinference in this network.5.1. THE QMR-DT NETWORKJaakkola and Jordan (1997c) present an application of sequential varia-tional methods to the QMR-DT network. As we have seen, the QMR-DTnetwork is a bipartite graph in which the conditional probabilities for the�ndings are based on the noisy-OR model (Eq. (8) for the negative �ndingsand Eq. (9) for the positive �ndings). Note that symptom nodes that are not�ndings|i.e., symptoms that are not observed|can simply be marginal-ized out of the joint distribution by omission and therefore they have noimpact on inference. Moreover, as we have discussed, the negative �ndingspresent no di�culties for inference|given the exponential form of the prob-ability in Eq. (8), the e�ects of negative �ndings on the disease probabilitiescan be handled in linear time. Let us therefore assume that the updatesassociated with the negative �ndings have already been made and focus onthe problem of performing inference when there are positive �ndings.Repeating Eq. (9) for convenience, we have the following representationfor the probability of a positive �nding:P (fi = 1jd) = 1� e�Pj2�(i) �ijdj��i0 (28)The function 1 � e�x is log concave; thus, as in the case of the logisticfunction, we are able to express the variational upper bound in terms of
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diseases

symptomsFigure 17. The QMR-DT graph after the lightly shaded �nding has been subjected to avariational transformation. The e�ect is equivalent to delinking the node from the graph.the exponential of a linear function. In particular:1� e�x � e�x�f�(�); (29)where the conjugate function is as follows:f�(�) = �� ln�+ (�+ 1) ln(�+ 1): (30)Plugging the argument of Eq. (28) into Eq. (29), and noting that we needa di�erent variational parameter �i for each transformed node, we obtain:P (fi = 1jd) � e�i�Pj2�(i) �ijdj+�i0��f�(�i) (31)= e�i�i0�f�(�i) Yj2�(i) he�i�ij idj : (32)The �nal equation displays the e�ect of the variational transformation. Theexponential factor outside of the product is simply a constant. The productis taken over all nodes in the parent set for node i, but unlike the casein which the graph is moralized for exact computation, the contributionsassociated with the dj nodes are uncoupled. That is, each factor exp(�i�ij) issimply a constant that is multiplied into the probability that was previouslyassociated with node dj (for dj = 1). There is no coupling of dj and dk nodesas there would be if we had taken products of the untransformed noisy-OR.The graphical e�ect of the variational transformation is shown in Fig. 17;we see that the variational transformation essentially delinks the ith �ndingfrom the graph. In our particular example, the graph is now rendered singlyconnected and an exact inference algorithm can be invoked. (Recall thatmarginalizing over the unobserved symptoms simply removes them fromthe graph).



30 MICHAEL I. JORDAN ET AL.The sequential methodology utilized by Jaakkola and Jordan for infer-ence in the QMR-DT network actually proceeds in the opposite direction.They �rst transform all of the nodes in the graph. They then make use ofa simple heuristic to choose the ordering of nodes to reinstate, basing thechoice on the e�ect of reinstating each node individually starting from thecompletely transformed state. (Despite the suboptimality of this heuristic,they found that it yielded an approximation that was orders of magnitudemore accurate than that of an algorithm that used a random ordering). Thealgorithm then proceeds as follows: (1) Pick a node to reinstate, and con-sider the e�ect of reintroducing the links associated with the node into thecurrent graph. (2) If the resulting graph is still amenable to exact methods,reinstate the node and iterate. Otherwise stop and run an exact method.Finally, (3) we must also choose the parameters �i so as to make the ap-proximation as tight as possible. It is not di�cult to verify that products ofthe expression in Eq. (32) yield an overall bound that is a convex function ofthe �i parameters (Jaakkola & Jordan, 1997c). Thus standard optimizationalgorithms can be used to �nd good choices for the �i.Jaakkola and Jordan (1997c) presented results for approximate inferenceon the \CPC cases" that were mentioned earlier. These are di�cult caseswhich have up to 100 positive �ndings. Their study was restricted to upperbounds because it was found that the simple lower bounds that they triedwere not su�ciently tight. They used the upper bounds to determine vari-ational parameters that were subsequently used to form an approximationto the conditional posterior probability. They found that the variationalapproach yielded reasonably accurate approximations to the conditionalposterior probabilities for the CPC cases, and did so within less than aminute of computer time.5.2. THE BOLTZMANN MACHINELet us now consider a rather di�erent example. As we have discussed, theBoltzmann machine is a special subset of the class of undirected graph-ical models in which the potential functions are composed of products ofquadratic and linear \Boltzmann factors." Jaakkola and Jordan (1997a) in-troduced a sequential variational algorithm for approximate inference in theBoltzmann machine. Their method, which we discuss in this section, yieldsboth upper and lower bounds on marginal and conditional probabilities ofinterest.Recall the form of the joint probability distribution for the Boltzmannmachine: P (S) = ePi<j �ijSiSj+Pi �i0SiZ : (33)



AN INTRODUCTION TO VARIATIONAL METHODS 31To obtain marginal probabilities such as P (E) under this joint distribu-tion, we must calculate sums over exponentials of quadratic energy func-tions. Moreover, to obtain conditional probabilities such as P (HjE) =P (H;E)=P (E), we take ratios of such sums, where the numerator requiresfewer sums than the denominator. The most general such sum is the par-tition function itself, which is a sum over all con�gurations fSg. Let ustherefore focus on upper and lower bounds for the partition function as thegeneral case; this allows us to calculate bounds on any other marginals orconditionals of interest.Our approach is to perform the sums one sum at a time, introducingvariational transformations to ensure that the resulting expression stayscomputationally tractable. In fact, at every step of the process that wedescribe, the transformed potentials involve no more than quadratic Boltz-mann factors. (Exact methods can be viewed as creating increasingly higher-order terms when the marginalizing sums are performed). Thus the trans-formed Boltzmann machine remains a Boltzmann machine.Let us �rst consider lower bounds. We write the partition function asfollows:XfSg ePj<k �jkSjSk+Pj �j0Sj = XfSnSig XSi2f0;1g ePj<k �jkSjSk+Pj �j0Sj ; (34)and attempt to �nd a tractable lower bound on the inner summand overSi on the right-hand side. It is not di�cult to show that this expression islog convex. Thus we bound its logarithm variationally:ln0@ XSi2f0;1g ePj<k �jkSjSk+Pj �j0Sj1A= Xfj<kg6=i �jkSjSk +Xj 6=i �j0Sj + ln0@ XSi2f0;1g ePj 6=i �ijSiSj+�i0Si1A= Xfj<kg6=i �jkSjSk +Xj 6=i �j0Sj + ln�1 + ePj 6=i �ijSj+�i0� (35)� Xfj<kg6=i �jkSjSk +Xj 6=i �j0Sj + �Li 0@Xj 6=i �ijSj + �i01A+H(�Li ); (36)where the sum in the �rst term on the right-hand side is a sum over allpairs j < k such that neither j nor k is equal to i, where H(�) is as beforethe binary entropy function, and where �Li is the variational parameterassociated with node Si. In the �rst line we have simply pulled outsideof the sum all of those terms not involving Si, and in the second line we
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Figure 18. The transformation of the Boltzmann machine under the approximatemarginalization over node Si for the case of lower bounds. (a) The Boltzmann machinebefore the transformation. (b) The Boltzmann machine after the transformation, whereSi has become delinked. All of the pairwise parameters, �jk, for j and k not equal toi, have remained unaltered. As suggested by the wavy lines, the linear coe�cients havechanged for those nodes that were neighbors of Si.have performed the sum over the two values of Si. Finally, to lower boundthe expression in Eq. (35) we need only lower bound the term ln(1 + ex)on the right-hand side. But we have already found variational bounds fora related expression in treating the logistic function; recall Eq. (18). Theupper bound in that case translates into the lower bound in the currentcase: ln(1 + e�x) � �x+H(�): (37)This is the bound that we have utilized in Eq. (36).Let us consider the graphical consequences of the bound in Eq. (36)(see Fig. 18). Note that for all nodes in the graph other than node Siand its neighbors, the Boltzmann factors are unaltered (see the �rst twoterms in the bound). Thus the graph is unaltered for such nodes. Fromthe term in parentheses we see that the neighbors of node Si have beenendowed with new linear terms; importantly, however, these nodes havenot become linked (as they would have become if we had done the exactmarginalization). Neighbors that were linked previously remain linked withthe same �jk parameter. Node Si is absent from the transformed partitionfunction and thus absent from the graph, but it has left its trace via the newlinear Boltzmann factors associated with its neighbors. We can summarizethe e�ects of the transformation by noting that the transformed graph is anew Boltzmann machine with one fewer node and the following parameters:



AN INTRODUCTION TO VARIATIONAL METHODS 33~�jk = �jk j; k 6= i~�j0 = �j0 + �Li �ij j 6= i .Note �nally that we also have a constant term �Li �i0+H(�Li ) to keep trackof. This term will have an interesting interpretation when we return to theBoltzmann machine later in the context of block methods.Upper bounds are obtained in a similar way. We again break the par-tition function into a sum over a particular node Si and a sum over thecon�gurations of the remaining nodes SnSi. Moreover, the �rst three linesof the ensuing derivation leading to Eq. (35) are identical. To complete thederivation we now �nd an upper bound on ln(1+ ex). Jaakkola and Jordan(1997a) proposed using quadratic bounds for this purpose. In particular,they noted that: ln(1 + ex) = ln(ex=2 + e�x=2) + x=2 (38)and that ln(ex=2 + e�x=2) is a concave function of x2 (as can be veri�ed bytaking the second derivative with respect to x2). This implies that ln(1+ex)must have a quadratic upper bound of the following form:ln(1 + ex) � �x2 + x=2� �g�(�): (39)where �g�(�) is an appropriately de�ned conjugate function. Using theseupper bounds in Eq. (35) we obtain:ln0@ XSi2f0;1g ePj<k �jkSjSk+Pj �j0Sj1A � Xfj<kg6=i �jkSjSk +Xj 6=i �j0Sj+ �Ui 0@Xj 6=i �ijSj + �i01A2 + 12 0@Xj 6=i �ijSj + �i01A� �g�(�Ui ); (40)where �Ui is the variational parameter associated with node Si.The graphical consequences of this transformation are somewhat dif-ferent than those of the lower bounds (see Fig. 19). Considering the �rsttwo terms in the bound, we see that it is still the case that the graph isunaltered for all nodes in the graph other than node Si and its neighbors,and moreover neighbors of Si that were previously linked remain linked.The quadratic term, however, gives rise to new links between the previ-ously unlinked neighbors of node Si and alters the parameters betweenpreviously linked neighbors. Each of these nodes also acquires a new linearterm. Expanding Eq. (40) and collecting terms, we see that the approxi-mate marginalization has yielded a Boltzmann machine with the followingparameters:
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Figure 19. The transformation of the Boltzmann machine under the approximatemarginalization over node Si for the case of upper bounds. (a) The Boltzmann ma-chine before the transformation. (b) The Boltzmann machine after the transformation,where Si has become delinked. As the dashed edges suggest, all of the neighbors of Sihave become linked and those that were formerly linked have new parameter values. Assuggested by the wavy lines, the neighbors of Si also have new linear coe�cients. Allother edges and parameters are unaltered.~�jk = �jk + 2�Ui �ji�ik j; k 6= i~�j0 = �j0 + �ij=2 + 2�Ui �i0�ij + �Ui �2ij j 6= i .Finally, the constant term is given by �i0=2 + �Ui �2i0 � �g�(�Ui ).The graphical consequences of the lower and upper bound transforma-tions also have computational consequences. In particular, given that thelower bound transformation introduces no additional links when nodes aredelinked, it is somewhat more natural to combine these transformationswith exact methods. In particular, the algorithm simply delinks nodes un-til a tractable structure (such as a tree) is revealed; at this point an exactalgorithm is called as a subroutine. The upper bound transformation, onthe other hand, by introducing links between the neighbors of a delinkednode, does not reveal tractable structure as readily. This seeming disad-vantage is mitigated by the fact that the upper bound is a tighter bound(Jaakkola & Jordan, 1997a).6. The block approachAn alternative approach to variational inference is to designate in advancea set of nodes that are to be transformed. We can in principle view this\block approach" as an o�-line application of the sequential approach. Inthe case of lower bounds, however, there are advantages to be gained by



AN INTRODUCTION TO VARIATIONAL METHODS 35developing a methodology that is speci�c to block transformation. In thissection, we show that a natural global measure of approximation accuracycan be obtained for lower bounds via a block version of the variationalformalism. The method meshes readily with exact methods in cases in whichtractable substructure can be identi�ed in the graph. This approach was�rst presented by Saul and Jordan (1996), as a re�ned version of mean�eld theory for Markov random �elds, and has been developed further in anumber of recent studies (e.g., Ghahramani & Jordan, 1997; Ghahramani& Hinton, 1996; Jordan, et al., 1997).In the block approach, we begin by identifying a substructure in thegraph of interest that we know is amenable to exact inference methods (or,more generally, to e�cient approximate inference methods). For example,we might pick out a tree or a set of chains in the original graph. We wishto use this simpli�ed structure to approximate the probability distributionon the original graph. To do so, we consider a family of probability distri-butions that are obtained from the simpli�ed graph via the introduction ofvariational parameters. We choose a particular approximating distributionfrom the simplifying family by making a particular choice for the variationalparameters. As in the sequential approach a new choice of variational pa-rameters must be made each time new evidence is available.More formally, let P (S) represent the joint distribution on the graphicalmodel of interest, where as before S represents all of the nodes of the graphand H and E are disjoint subsets of S representing the hidden nodes andthe evidence nodes, respectively. We wish to approximate the conditionalprobability P (HjE). We introduce an approximating family of conditionalprobability distributions, Q(HjE; �), where � are variational parameters.The graph representing Q is not generally the same as the graph repre-senting P ; generally it is a sub-graph. From the family of approximat-ing distributions Q, we choose a particular distribution by minimizing theKullback-Leibler (KL) divergence, D(QkP ), with respect to the variationalparameters: �� = argmin� D(Q(HjE; �) k P (HjE)); (41)where for any probability distributions Q(S) and P (S) the KL divergenceis de�ned as follows:D(QkP ) =XfSgQ(S) ln Q(S)P (S) : (42)The minimizing values of the variational parameters, ��, de�ne a partic-ular distribution, Q(HjE; ��), that we treat as the best approximation ofP (HjE) in the family Q(HjE; �).



36 MICHAEL I. JORDAN ET AL.One simple justi�cation for using the KL divergence as a measure ofapproximation accuracy is that it yields the best lower bound on the prob-ability of the evidence P (E) (i.e., the likelihood) in the family of approxi-mations Q(HjE; �). Indeed, we bound the logarithm of P (E) using Jensen'sinequality as follows:lnP (E) = lnXfHgP (H;E)= lnXfHgQ(HjE) � P (H;E)Q(HjE)� XfHgQ(HjE) ln �P (H;E)Q(HjE) � : (43)The di�erence between the left and right hand sides of this equation iseasily seen to be the KL divergence D(QkP ). Thus, by the positivity of theKL divergence (Cover & Thomas, 1991), the right-hand side of Eq. (43) isa lower bound on P (E). Moreover, by choosing � according to Eq. (41), weobtain the tightest lower bound.6.1. CONVEX DUALITY AND THE KL DIVERGENCEWe can also justify the choice of KL divergence by making an appeal to con-vex duality theory, thereby linking the block approach with the sequentialapproach (Jaakkola, 1997). Consider, for simplicity, the case of discrete-valued nodes H. The distribution Q(HjE; �) can be viewed as a vectorof real numbers, one for each con�guration of the variables H. Treat thisvector as the vector-valued variational parameter \�" in Eq. (23). More-over, the log probability lnP (H;E) can also be viewed as a vector of realnumbers, de�ned on the set of con�gurations of H. Treat this vector asthe variable \x" in Eq. (23). Finally, de�ne f(x) to be lnP (E). It can beveri�ed that the following expression for lnP (E):lnP (E) = ln0@XfHg elnP (H;E)1A (44)is indeed convex in the values lnP (H;E). Moreover, by direct substitutionin Eq. (23):f�(Q) = min8<:XfHgQ(HjE; �) lnP (H;E) � lnP (E)9=; (45)



AN INTRODUCTION TO VARIATIONAL METHODS 37and minimizing with respect to lnP (H;E), the conjugate function f�(Q)is seen to be the negative entropy functionPfHgQ(HjE) lnQ(HjE). Thus,using Eq. (23), we can lower bound the log likelihood as follows:lnP (E) � XfHgQ(HjE) lnP (H;E)�Q(HjE) lnQ(HjE) (46)This is identical to Eq. (43). Moreover, we see that we could in principle re-cover the exact log likelihood if Q were allowed to range over all probabilitydistributions Q(HjE). By ranging over a parameterized family Q(HjE; �),we obtain the tightest lower bound that is available within the family.6.2. PARAMETER ESTIMATION VIA VARIATIONAL METHODSNeal and Hinton (this volume) have pointed out that the lower bound inEq. (46) has a useful role to play in the context of maximum likelihoodparameter estimation. In particular, they make a link between this lowerbound and parameter estimation via the EM algorithm.Let us augment our notation to include parameters � in the speci�cationof the joint probability distribution P (Sj�). As before, we designate a subsetof the nodes E as the observed evidence. The marginal probability P (Ej�),thought of as a function of �, is known as the likelihood. The EM algorithmis a method for maximum likelihood parameter estimation that hillclimbsin the log likelihood. It does so by making use of the convexity relationshipbetween lnP (H;Ej�) and lnP (Ej�) described in the previous section.In Section 6 we showed that the functionL(Q; �) = XfHgQ(HjE) lnP (H;Ej�)�Q(HjE) lnQ(HjE) (47)is a lower bound on the log likelihood for any probability distributionQ(HjE). Moreover, we showed that the di�erence between lnP (Ej�) andthe bound L(Q; �) is the KL divergence between Q(HjE) and P (HjE).Suppose now that we allow Q(HjE) to range over all possible probabilitydistributions on H and minimize the KL divergence. It is a standard re-sult (cf. Cover & Thomas, 1991) that the KL divergence is minimized bychoosing Q(HjE) = P (HjE; �), and that the minimal value is zero. This isveri�ed by substituting P (HjE; �) into the right-hand side of Eq. (47) andrecovering lnP (Ej�).This suggests the following algorithm. Starting from an initial param-eter vector �(0), we iterate the following two steps, known as the \E (ex-pectation) step" and the \M (maximization) step." First, we maximize thebound L(Q; �) with respect to probability distributions Q. Second, we �x



38 MICHAEL I. JORDAN ET AL.Q and maximize the bound L(Q; �) with respect to the parameters �. Moreformally, we have:(E step) : Q(k+1) = argmaxQ L(Q; �(k)) (48)(M step) : �(k+1) = argmax� L(Q(k+1); �) (49)which is coordinate ascent in L(Q; �).This can be related to the traditional presentation of the EM algorithm(Dempster, Laird, & Rubin, 1977) by noting that for �xed Q, the right-hand side of Eq. (47) is a function of � only through the lnP (H;Ej�) term.Thus maximizing L(Q; �) with respect to � in the M step is equivalent tomaximizing the following function:XfHgP (HjE; �(k)) lnP (H;Ej�): (50)Maximization of this function, known as the \complete log likelihood" inthe EM literature, de�nes the M step in the traditional presentation of EM.Let us now return to the situation in which we are unable to com-pute the full conditional distribution P (HjE; �). In such cases variationalmethodology suggests that we consider a family of approximating distribu-tions. Although we are no longer able to perform a true EM iteration giventhat we cannot avail ourselves of P (HjE; �), we can still perform coordinateascent in the lower bound L(Q; �). Indeed, the variational strategy of min-imizing the KL divergence with respect to the variational parameters thatde�ne the approximating family is exactly a restricted form of coordinateascent in the �rst argument of L(Q; �). We then follow this step by an \Mstep" that increases the lower bound with respect to the parameters �.This point of view, which can be viewed as a computationally tractableapproximation to the EM algorithm, has been exploited in a number ofrecent architectures, including the sigmoid belief network, factorial hiddenMarkov model and hidden Markov decision tree architectures that we dis-cuss in the following sections, as well as the \Helmholtz machine" of Dayan,et al. (1995) and Hinton, et al. (1995).6.3. EXAMPLESWe now return to the problem of picking a tractable variational parame-terization for a given graphical model. We wish to pick a simpli�ed graphwhich is both rich enough to provide distributions that are close to thetrue distribution, and simple enough so that an exact algorithm can be uti-lized e�ciently for calculations under the approximate distribution. Similarconsiderations hold for the variational parameterization: the variational pa-rameterization must be representationally rich so that good approximations



AN INTRODUCTION TO VARIATIONAL METHODS 39are available and yet simple enough so that a procedure that minimizes theKL divergence has some hope of �nding good parameters and not gettingstuck in a local minimum. It is not necessarily possible to realize all of thesedesiderata simultaneously; however, in a number of cases it has been foundthat relatively simple variational approximations can yield reasonably ac-curate solutions. In this section we discuss several such examples.6.3.1. Mean �eld Boltzmann machineIn Section 5.2 we discussed a sequential variational algorithm that yieldedupper and lower bounds for the Boltzmann machine. We now revisit theBoltzmann machine within the context of the block approach and discusslower bounds. We also relate the two approaches.Recall that the joint probability for the Boltzmann machine can bewritten as follows: P (Sj�) = ePi<j �ijSiSj+Pi �i0SiZ ; (51)where �ij = 0 for nodes Si and Sj that are not neighbors in the graph.Consider now the representation of the conditional distribution P (HjE; �)in a Boltzmann machine. For nodes Si 2 E and Sj 2 E, the contribution�ijSiSj reduces to a constant, which vanishes when we normalize. If Si 2H and Sj 2 E, the quadratic contribution becomes a linear contributionthat we associate with node Si. Finally, linear terms associated with nodesSi 2 E also become constants and vanish. In summary, we can express theconditional distribution P (HjE; �) as follows:P (HjE; �) = ePi<j �ijSiSj+Pi �ci0SiZc ; (52)where the sums are restricted to range over nodes in H and the updatedparameters �ci0 include contributions associated with the evidence nodes:�ci0 = �i0 +Xj2E �ijSj: (53)The updated partition function Zc is given as follows:Zc = XfHg�ePi<j �ijSiSj+Pi �ci0Si� : (54)In sum, we have a Boltzmann machine on the subset H.The \mean �eld" approximation (Peterson & Anderson, 1987) for Boltz-mann machines is a particular form of variational approximation in which a
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(a) (b)

Si iµ

Sj jµFigure 20. (a) A node Si in a Boltzmann machine with its Markov blanket. (b) Theapproximating mean �eld distribution Q is based on a graph with no edges. The mean�eld equations yield a deterministic relationship, represented in the �gure with the dottedlines, between the variational parameters �i and �j for nodes j in the Markov blanket ofnode i.completely factorized distribution is used to approximate P (HjE; �). Thatis, we consider the simplest possible approximating distribution; one thatis obtained by dropping all of the edges in the Boltzmann graph (seeFig. 20). For this choice of Q(HjE;�), (where we now use � to repre-sent the variational parameters), we have little choice as to the variationalparameterization|to represent as large an approximating family as possi-ble we endow each degree of freedom Si with its own variational parameter�i. Thus Q can be written as follows:Q(HjE;�) = Yi2H �Sii (1� �i)1�Si ; (55)where the product is taken over the hidden nodes H.Forming the KL divergence between the fully factorized Q distributionand the P distribution in Eq. (52), we obtain:D(QkP ) =Xi [�i ln�i + (1� �i) ln(1� �i)]�Xi<j �ij�i�j �Xi �ci0�i + lnZc; (56)where the sums range across nodes in H. In deriving this result we haveused the fact that, under the Q distribution, Si and Sj are independentrandom variables with mean values �i and �j.We now take derivatives of the KL divergence with respect to �i|notingthat Zc is independent of �i|and set the derivative to zero to obtain thefollowing equations: �i = �0@Xj �ij�j + �i01A ; (57)



AN INTRODUCTION TO VARIATIONAL METHODS 41where �(z) = 1=(1 + e�z) is the logistic function and we de�ne �ij equalto �ji for j < i. Eq. (57) de�nes a set of coupled equations known as the\mean �eld equations." These equations are solved iteratively for a �xedpoint solution. Note that each variational parameter �i updates its valuebased on a sum across the variational parameters in its Markov blanket(cf. Fig. 20b). This can be viewed as a variational form of a local messagepassing algorithm.The mean �eld approximation for Boltzmann machines can provide areasonably good approximation to conditional distributions in dense Boltz-mann machines, and is the basis of a useful approach to combinatorial opti-mization known as \deterministic annealing." There are also cases, however,in which it is known to break down. These cases include sparse Boltzmannmachines and Boltzmann machines with \frustrated" interactions; these arenetworks whose potential functions embody constraints between neighbor-ing nodes that cannot be simultaneously satis�ed (see also Galland, 1993).In the case of sparse networks, exact algorithms can provide help; indeed,this observation led to the use of exact algorithms as subroutines withinthe \structured mean �eld" approach pursued by Saul and Jordan (1996).Let us now consider the parameter estimation problem for Boltzmannmachines. Writing out the lower bound in Eq. (47) for this case, we have:lnP (Ej�) �Xi<j �ij�i�j +Xi �ci0�i � lnZ�Xi [�i ln�i + (1� �i) ln(1� �i)] (58)Taking the derivative with respect to �ij yields a gradient which has a simple\Hebbian" term �i�j as well as a contribution from the derivative of lnZwith respect to �ij. It is not hard to show that this derivative is hSiSji;where the brackets signify an average with respect to the unconditionaldistribution P (Sj�). Thus we have the following gradient algorithm forperforming an approximate M step:��ij / (�i�j � hSiSji): (59)Unfortunately, however, given our assumption that calculations under theBoltzmann distribution are intractable for the graph under consideration, itis intractable to compute the unconditional average. We can once again ap-peal to mean �eld theory and compute an approximation to hSiSji, wherewe now use a factorized distribution on all of the nodes; however, the Mstep is now a di�erence of gradients of two di�erent bounds and is thereforeno longer guaranteed to increase L. There is a more serious problem, more-over, which is particularly salient in unsupervised learning problems. If the



42 MICHAEL I. JORDAN ET AL.data set of interest is a heterogeneous collection of sub-populations, suchas in unsupervised classi�cation problems, the unconditional distributionwill generally be required to have multiple modes. Unfortunately the fac-torized mean �eld approximation is unimodal and is a poor approximationfor a multi-modal distribution. One approach to this problem is to utilizemulti-modal Q distributions within the mean-�eld framework; for example,Jaakkola and Jordan (this volume) discuss the use of mixture models asapproximating distributions.These issues �nd a more satisfactory treatment in the context of di-rected graphs, as we see in the following section. In particular, the gradientfor a directed graph (cf. Eq. (68)) does not require averages under theunconditional distribution.Finally, let us consider the relationship between the mean �eld approx-imation and the lower bounds that we obtained via a sequential algorithmin Section 5.2. In fact, if we run the latter algorithm until all nodes areeliminated from the graph, we obtain a bound that is identical to the mean�eld bound (Jaakkola, 1997). To see this, note that for a Boltzmann ma-chine in which all of the nodes have been eliminated there are no quadraticand linear terms; only the constant terms remain. Recall from Section 5.2that the constant that arises when node i is removed is �Li �̂i0 + H(�Li ),where �̂i0 refers to the value of �i0 after it has been updated to absorb thelinear terms from previously eliminated nodes j < i. (Recall that the latterupdate is given by ~�i0 = �i0+�Li �ij for the removal of a particular node j).Collecting together such updates for j < i, and summing across all nodesi, we �nd that the resulting constant term is given as follows:Xi n�̂i0�i +H(�i)o =Xi<j �ij�i�j +Xi �ci0�i�Xi [�i ln�i + (1� �i) ln(1� �i)] (60)This di�ers from the lower bound in Eq. (58) only by the term lnZ, whichdisappears when we maximize with respect to �i.6.3.2. Neural networksAs discussed in Section 3, the \sigmoid belief network" is essentially a(directed) neural network with graphical model semantics. We utilize thelogistic function as the node probability function:P (Si = 1jS�(i)) = 11 + e�Pj2�(i) �ijSj��i0 ; (61)where we assume that �ij = 0 unless j is a parent of i. (In particular,�ij 6= 0 ) �ji = 0). Noting that the probabilities for both the Si = 0 case



AN INTRODUCTION TO VARIATIONAL METHODS 43and the Si = 1 case can be written in a single expression as follows:P (SijS�(i)) = e�Pj2�(i) �ijSj+�i0�Si1 + ePj2�(i) �ijSj+�i0 ; (62)we obtain the following representation for the joint distribution:P (Sj�) =Yi 2664e�Pj2�(i) �ijSj+�i0�Si1 + ePj2�(i) �ijSj+�i0 :3775 ; (63)We wish to calculate conditional probabilities under this joint distribution.As we have seen (cf. Fig. 6), inference for general sigmoid belief networksis intractable, and thus it is sensible to consider variational approximations.Saul, Jaakkola, and Jordan (1996) and Saul and Jordan (this volume) haveexplored the viability of the simple completely factorized distribution. Thusonce again we set:Q(HjE;�) = Yi2H �Sii (1� �i)1�Si ; (64)and attempt to �nd the best such approximation by varying the parameters�i. The computation of the KL divergence D(QkP ) proceeds much as itdoes in the case of the mean �eld Boltzmann machine. The entropy term(Q lnQ) is the same as before. The energy term (Q lnP ) is found by takingthe logarithm of Eq. (63) and averaging with respect to Q. Putting theseresults together, we obtain:lnP (Ej�) �Xi<j �ij�i�j +Xi �ci0�i�Xi �ln �1 + ePj2�(i) �ijSj+�i0���Xi [�i ln�i + (1� �i) ln(1� �i)] (65)where h�i denotes an average with respect to the Q distribution. Note that,despite the fact that Q is factorized, we are unable to calculate the averageof ln[1 + ezi ], where zi denotes Pj2�(i) �ijSj + �i0. This is an importantterm which arises directly from the directed nature of the sigmoid beliefnetwork (it arises from the denominator of the sigmoid, a factor whichis necessary to de�ne the sigmoid as a local conditional probability). To



44 MICHAEL I. JORDAN ET AL.deal with this term, Saul et al. (1996) introduced additional variationalparameters �i. These parameters can be viewed as providing a tight formof Jensen's inequality. Note in particular that we require an upper bound onhln[1+ ezi ]i (given that this term appears with a negative sign in Eq. (65)).Jensen's inequality provides such a bound, however Saul et al. found thatthis bound was not su�ciently tight and introduced a tighter bound dueto Seung (1995). In particular:hln[1 + ezi ]i = Dln[e�izie��izi(1 + ezi)]E= �i hzii+ Dln[e��izi + e(1��i)zi ]E� �i hzii+ lnDe��izi + e(1��i)ziE ; (66)which reduces to standard Jensen for �i = 0. The �nal result can be utilizeddirectly in Eq. (65) to provide a tractable lower bound on the log likelihood.Saul and Jordan (this volume) show that in the limiting case of net-works in which each hidden node has a large number of parents, so that acentral limit theorem can be invoked, the parameter �i has a probabilisticinterpretation as the approximate expectation of �(zi), where �(�) is againthe logistic function.For �xed values of the parameters �i, by di�erentiating the KL diver-gence with respect to the variational parameters �i, we obtain the followingconsistency equations:�i = �0@Xj �ij�j + �i0 +Xj �ji(�j � �j) +Kij1A (67)where Kij is an expression that depends on node i, its child j, and theother parents (the \co-parents") of node j. Given that the �rst term is asum over contributions from the parents of node i, and the second termis a sum over contributions from the children of node i, we see that theconsistency equation for a given node again involves contributions fromthe Markov blanket of the node (see Fig. 21). Thus, as in the case ofthe Boltzmann machine, we �nd that the variational parameters are linkedvia their Markov blankets and the consistency equation (Eq. (67)) can beinterpreted as a local message-passing algorithm.Saul, Jaakkola, and Jordan (1996) and Saul and Jordan (this volume)also show how to update the variational parameters �i. The two papers uti-lize these parameters in slightly di�erent ways and obtain di�erent updateequations. Yet another variational approximation for the sigmoid belief net-work, including both upper and lower bounds, is presented in Jaakkola andJordan (1996).
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Figure 21. (a) A node Si in a sigmoid belief network machine with its Markov blanket.(b) The mean �eld equations yield a deterministic relationship, represented in the �gurewith the dotted lines, between the variational parameters �i and �j for nodes j in theMarkov blanket of node i.Finally, we can compute the gradient with respect to the parameters �ijfor �xed variational parameters � and �. The result obtained by Saul andJordan (this volume) takes the following form:��ij / (�i � �i)�j � �ij�i(1� �i)�i(1� �i): (68)Note that there is no need to calculate variational parameters under theunconditional distribution, P (Sj�), as in the case of the Boltzmann machine(a fact �rst noted by Neal, 1992). Note also the interesting appearance of aregularization term|the second term in the equation is a \weight decay"term that is maximal for non-extreme values of the variational parameters(both of these parameters are bounded between zero and one).Saul, et al. (1996) tested the sigmoid belief network on a handwrit-ten digit recognition problem, obtaining results that were competitive withother supervised learning systems. An important advantage of the graph-ical model approach is its ability to deal with missing data. Indeed, Sauland Jordan (this volume) report that the degradation in performance withmissing pixels in the digits is slight. For further comparative empirical workon sigmoid belief networks and related architectures, including comparisonswith Gibbs sampling, see Frey, Hinton, and Dayan (1996).6.3.3. Factorial hidden Markov modelsThe factorial hidden Markov model (FHMM) is a multiple chain structure(see Fig. 22(a)). Using the notation developed earlier (see Section 3.5), thejoint probability distribution for the FHMM is given by:P (fX(m)t g; fYtgj�) =



46 MICHAEL I. JORDAN ET AL.
...

...

...

...

...

...

Figure 22. (a) The FHMM. (b) A variational approximation for the FHMM can beobtained by picking out a tractable substructure in the FHMM graph. Parameterizingthis graph leads to a family of tractable approximating distributions.MYm=1 "�(m)(X(m)1 ) TYt=2A(m)(X(m)t jX(m)t�1 )# TYt=1P (YtjfX(m)t gMm=1) (69)Computation under this probability distribution is generally infeasible, be-cause, as we saw earlier, the clique size becomes unmanageably large whenthe FHMM chain structure is moralized and triangulated. Thus it is neces-sary to consider approximations.For the FHMM there is a natural substructure on which to base avariational algorithm. In particular, the chains that compose the FHMMare individually tractable. Therefore, rather than removing all of the edges,as in the naive mean �eld approximation discussed in the previous twosections, it would seem more reasonable to remove only as many edges asare necessary to decouple the chains. In particular, we remove the edgesthat link the state nodes to the output nodes (see Fig. 22(b)). Withoutthese edges the moralization process no longer links the state nodes and nolonger creates large cliques. In fact, the moralization process on the delinkedgraph in Fig. 22(b) is vacuous, as is the triangulation. Thus the cliques onthe delinked graph are of size N2, where N is the number of states for asingle chain. Inference in the approximate graph runs in time O(MTN2),where M is the number of chains and T is the length of the time series.Let us now consider how to express a variational approximation usingthe delinked graph of Fig. 22(b) as an approximation. The idea is to intro-duce one free parameter into the approximating probability distribution,Q, for each edge that we have dropped. These free parameters, which wedenote as �(m)t , essentially serve as surrogates for the e�ect of the obser-vation at time t on state component m. When we optimize the divergenceD(QkP ) with respect to these parameters they become interdependent;this (deterministic) interdependence can be viewed as an approximation tothe probabilistic dependence that is captured in an exact algorithm via themoralization process.



AN INTRODUCTION TO VARIATIONAL METHODS 47Referring to Fig. 22(b), we write the approximating Q distribution inthe following factorized form:Q(fX(m)t gjfYtg; �; �) = MYm=1 ~�(m)(X(m)1 ) TYt=2 ~A(m)(X(m)t jX(m)t�1 ); (70)where � is the vector of variational parameters �(m)t . We de�ne the transi-tion matrix ~A(m) to be the product of the exact transition matrix A(m)and the variational parameter �(m)t :~A(m)(X(m)t jX(m)t�1 ) = A(m)(X(m)t jX(m)t�1 )�(m)t ; (71)and similarly for the initial state probabilities ~�(m):~�(m)(X(m)1 ) = �(m)(X(m)1 )�(m)1 : (72)This family of distributions respects the conditional independence state-ments of the approximate graph in Fig. 22, and provides additional degreesof freedom via the variational parameters.Ghahramani and Jordan (1997) present the equations that result fromminimizing the KL divergence between the approximating probability dis-tribution (Eq. (70)) and the true probability distribution (Eq. (69)). Theresult can be summarized as follows. As in the other architectures that wehave discussed, the equation for a variational parameter (�(m)t ) is a functionof terms that are in the Markov blanket of the corresponding delinked node(i.e., Yt). In particular, the update for �(m)t depends on the parameters �(n)t ,for n 6= m, thus linking the variational parameters at time t. Moreover, theupdate for �(m)t depends on the expected value of the states X(m)t , wherethe expectation is taken under the distribution Q. Given that the chainsare decoupled under Q, expectations are found by running one of the exactalgorithms (for example, the forward-backward algorithm for HMMs), sep-arately for each chain. These expectations of course depend on the currentvalues of the parameters �(m)t (cf. Eq. (70)), and it is this dependence thate�ectively couples the chains.To summarize, �tting the variational parameters for a FHMM is aniterative, two-phase procedure. In the �rst phase, an exact algorithm is runas a subroutine to calculate expectations for the hidden states. This is doneindependently for each of the M chains, making reference to the currentvalues of the parameters �(m)t . In the second phase, the parameters �(m)tare updated based on the expectations computed in the �rst phase. Theprocedure then returns to the �rst phase and iterates.
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Figure 23. The \forest of chains approximation" for the HMDT. Parameterizing thisgraph leads to an approximating family of Q distributions.Ghahramani and Jordan (1997) reported results on �tting an FHMMto the Bach chorale data set (Merz & Murphy, 1996). They showed thatsigni�cantly larger e�ective state spaces could be �t with the FHMM thanwith an unstructured HMM, and that performance in terms of probabilityof the test set was an order of magnitude larger for the FHMM. Moreover,evidence of over�tting was seen for the HMM for 35 states or more; noevidence of over�tting for the FHMM was seen for up to 1000 states.6.3.4. Hidden Markov decision treesAs a �nal example we return to the hidden Markov decision tree (HMDT)described in the introduction and briey discuss variational approxima-tion for this architecture. As we have discussed, a HMDT is essentially aMarkov time series model, where the probability model at each time step isa (probabilistic) decision tree with hidden decision nodes. The Markoviandependence is obtained via separate transition matrices at the di�erentlevels of the decision tree, giving the model a factorized structure.The variational approach to �tting a HMDT is closely related to that of�tting a FHMM; however, there are additional choices as to the variationalapproximation. In particular, we have two substructures worth consideringin the HMDT: (1) Dropping the vertical edges, we recover a decoupledset of chains. As in the FHMM, these chains can each be handled by theforward-backward algorithm. (2) Dropping the horizontal edges, we recovera decoupled set of decision trees. We can calculate probabilities in thesetrees using the posterior propagation algorithm described in Jordan (1994).The �rst approach, which we refer to as the \forest of chains approx-imation," is shown in Fig. 23. As in the FHMM, we write a variationalapproximation for the forest of chains approximation by respecting theconditional independencies in the approximating graph and incorporatingvariational parameters to obtain extra degrees of freedom (see Jordan, etal., 1997, for the details).
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Figure 24. The \forest of trees approximation" for the HMDT. Parameterizing thisgraph leads to an approximating family of Q distributions.We can also consider a \forest of trees approximation" in which thehorizontal links are eliminated (see Fig. 24). Given that the decision tree isa fully connected graph, this is essentially a naive mean �eld approximationon a hypergraph.Finally, it is also possible to develop a variational algorithm for theHMDT that is analogous to the Viterbi algorithm for HMMs. In particular,we utilize an approximation Q that assigns probability one to a single pathin the state space. The KL divergence for this Q distribution is particularlyeasy to evaluate, given that the entropy contribution to the KL divergence(i.e., the Q lnQ term) is zero. Moreover, the evaluation of the energy (i.e.,the Q lnP term) reduces to substituting the states along the chosen pathinto the P distribution.The resulting algorithm involves a subroutine in which a standard Viterbialgorithm is run on a single chain, with the other chains held �xed. Thissubroutine is run on each chain in turn.Jordan, et al. (1997) found that performance of the HMDT on the Bachchorales was essentially the same as that of the FHMM. The advantage ofthe HMDT was its greater interpretability; most of the runs resulted in acoarse-to-�ne ordering of the temporal scales of the Markov processes fromthe top to the bottom of the tree.7. DiscussionWe have described a variety of applications of variational methods to prob-lems of inference and learning in graphical models. We hope to have con-vinced the reader that variational methods can provide a powerful andelegant tool for graphical models, and that the algorithms that result aresimple and intuitively appealing. It is important to emphasize, however,that research on variational methods for graphical models is of quite recentorigin, and there are many open problems and unresolved issues. In this



50 MICHAEL I. JORDAN ET AL.section we discuss a number of these issues. We also broaden the scope ofthe presentation and discuss a number of related strands of research.7.1. RELATED RESEARCHThe methods that we have discussed all involve deterministic, iterativeapproximation algorithms. It is of interest to discuss related approximationschemes that are either non-deterministic or non-iterative.7.1.1. Recognition models and the Helmholtz machineAll of the algorithms that we have presented have at their core a nonlinearoptimization problem. In particular, after having introduced the variationalparameters, whether sequentially or as a block, we are left with a boundsuch as that in Eq. (27) that must be optimized. Optimization of thisbound is generally achieved via a �xed-point iteration or a gradient-basedalgorithm. This iterative optimization process induces interdependenciesbetween the variational parameters which give us a \best" approximationto the marginal or conditional probability of interest.Consider in particular a problem in which a directed graphical modelis used for unsupervised learning. A common approach in unsupervisedlearning is to consider graphical models that are oriented in the \generative"direction; that is, they point from hidden variables to observables. In thiscase the \predictive" calculation of P (EjH) is elementary. The calculationof P (HjE), on the other hand, is a \diagnostic" calculation that proceedsbackwards in the graph. Diagnostic calculations are generally non-trivialand require the full power of an inference algorithm.An alternative approach to solving iteratively for an approximationto the diagnostic calculation is to learn both a generative model and a\recognition" model that approximates the diagnostic distributionP (HjE).Thus we associate di�erent parameters with the generative model and therecognition model and rely on the parameter estimation process to bringthese parameterizations into register. This is the basic idea behind the\Helmholtz machine" (Dayan, et al., 1995; Hinton, et al., 1995).The key advantage of the recognition-model approach is that the calcu-lation of P (HjE) is reduced to an elementary feedforward calculation thatcan be performed quickly.There are some disadvantages to the approach as well. In particular,the lack of an iterative algorithm makes the Helmholtz machine unable todeal naturally with missing data, and with phenomena such as \explaining-away," in which the couplings between hidden variables change as a functionof the conditioning variables. Moreover, although in some cases there is aclear natural parameterization for the recognition model that is induced



AN INTRODUCTION TO VARIATIONAL METHODS 51from the generative model (in particular for linear models such as factoranalysis), in general it is di�cult to insure that the models are matchedappropriately.10 Some of these problems might be addressed by combiningthe recognition-model approach with the iterative variational approach;essentially treating the recognition-model as a \cache" for storing goodinitializations for the variational parameters.7.1.2. Sampling methodsIn this section we make a few remarks on the relationships between vari-ational methods and stochastic methods, in particular the Gibbs sampler.In the setting of graphical models, both classes of methods rely on ex-tensive message-passing. In Gibbs sampling, the message-passing is par-ticularly simple: each node learns the current instantiation of its Markovblanket. With enough samples the node can estimate the distribution overits Markov blanket and (roughly speaking) determine its own statistics.The advantage of this scheme is that in the limit of very many samples, itis guaranteed to converge to the correct statistics. The disadvantage is thatvery many samples may be required.The message-passing in variational methods is quite di�erent. Its pur-pose is to couple the variational parameters of one node to those of itsMarkov blanket. The messages do not come in the form of samples, butrather in the form of approximate statistics (as summarized by the varia-tional parameters). For example, in a network of binary nodes, while theGibbs sampler is circulating messages of binary vectors that correspondto the instantiations of Markov blankets, the variational methods are cir-culating real-valued numbers that correspond to the statistics of Markovblankets. This may be one reason why variational methods often convergefaster than Gibbs sampling. Of course, the disadvantage of these schemes isthat they do not necessarily converge to the correct statistics. On the otherhand, they can provide bounds on marginal probabilities that are quitedi�cult to estimate by sampling. Indeed, sampling-based methods|whilewell-suited to estimating the statistics of individual hidden nodes|are ill-equipped to compute marginal probabilities such as P (E) =PH P (H;E).An interesting direction for future research is to consider combinationsof sampling methods and variational methods. Some initial work in thisdirection has been done by Hinton, Sallans, and Ghahramani (this volume),who discuss brief Gibbs sampling from the point of view of variationalapproximation.10The particular recognition model utilized in the Helmholtz machine is a layeredgraph, which makes weak conditional independence assumptions and thus makes it pos-sible, in principle, to capture fairly general dependencies.



52 MICHAEL I. JORDAN ET AL.7.1.3. Bayesian methodsVariational inference can be applied to the general problem of Bayesianparameter estimation. Indeed we can quite generally treat parameters asadditional nodes in a graphical model (cf. Heckerman, this volume) andthereby treat Bayesian inference on the same footing as generic probabilisticinference in a graphical model. This probabilistic inference problem is oftenintractable, and variational approximations can be useful.A variational method known as \ensemble learning" was originally in-troduced as a way of �tting an \ensemble" of neural networks to data, whereeach setting of the parameters can be thought of as a di�erent member ofthe ensemble (Hinton & van Camp, 1993). Let Q(�jE) represent a varia-tional approximation to the posterior distribution P (�jE). The ensemble is�t by minimizing the appropriate KL divergence:KL(QkP ) = Z Q(�jE) ln Q(�jE)P (�jE)d�: (73)Following the same line of argument as in Section 6, we know that thisminimization must be equivalent to the maximization of a lower bound. Inparticular, copying the argument from Section 6, we �nd that minimizingthe KL divergence yields the best lower bound on the following quantity:lnP (E) = ln Z P (Ej�)P (�)d�; (74)which is the logarithm of the marginal likelihood; a key quantity in Bayesianmodel selection and model averaging.More recently, the ensemble learning approach has been applied to mix-ture of experts architectures (Waterhouse, et al, 1996) and hidden Markovmodels (MacKay, 1997a). One interesting aspect of these applications isthat they do not assume any particular parametric family for Q, just thatQ factorizes in a speci�c way. The variational minimization itself determinesthe best family given this factorization and the prior on �. In related work,MacKay (1997b) has described a connection between variational inferenceand Type II maximum likelihood inference.Jaakkola and Jordan (1997b) have also developed variational methodsfor Bayesian inference, using a variational approach to �nd an analyticallytractable approximation for logistic regression with a Gaussian prior on theparameters.7.1.4. Perspective and prospectivesPerhaps the key issue that faces developers of variational methods is theissue of approximation accuracy. At the current state of development ofvariational methods for graphical models, we have little theoretical insight



AN INTRODUCTION TO VARIATIONAL METHODS 53into conditions under which variational methods can be expected to beaccurate and conditions under which they might be expected to be inac-curate. Moreover, there is little understanding of how to match variationaltransformations to architectures.One can develop an intuition for when variational methods work by ex-amining their properties in certain well-studied cases. For mean �eld meth-ods, a good starting point is to understand the examples in the statisticalmechanics literature where this approximation gives not only good, butindeed exact, results. These are densely connected graphs with uniformlyweak (but non-negative) couplings between neighboring nodes (Parisi, 1988).The mean �eld equations for these networks have a unique solution that de-termines the statistics of individual nodes in the limit of very large graphs.In more general graphical models, of course, the conditions for a mean�eld approximation may not be so favorable. Typically, this can be diag-nosed by the presence of multiple solutions to the mean �eld equations.Roughly speaking, one can interpret each solution as corresponding to amode of the posterior distribution; thus, multiple solutions indicate a mul-timodal posterior distribution. The simplest mean �eld approximations, inparticular those that utilize a completely factorized approximating distri-bution, are poorly designed for such situations. However, they can suc-ceed rather well in applications where the joint distribution P (H;E) ismultimodal, but the posterior distribution P (HjE) is not. It is worth em-phasizing this distinction between joint and posterior distributions. Thisis what allows simple variational methods|which make rather strong as-sumptions of conditional independence|to be used in the learning of non-trivial graphical models.A second key issue has to do with broadening the scope of variationalmethods. In this paper we have presented a restricted set of variationaltechniques, those based on convexity transformations. For these techniquesto be applicable the appropriate convexity properties need to be identi�ed.While it is relatively easy to characterize small classes of models wherethese properties lead to simple approximation algorithms, such as the casein which the local conditional probabilities are log-concave generalized lin-ear models, it is not generally easy to develop variational algorithms forother kinds of graphical models. A broader characterization of variationalapproximations is needed and a more systematic algebra is needed to matchthe approximations to models.Other open problems include: (1) the problem of combining variationalmethods with sampling methods and with search based methods, (2) theproblem of making more optimal choices of node ordering in the case ofsequential methods, (3) the development of upper bounds within the blockframework, (4) the combination of multiple variational approximations for
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AN INTRODUCTION TO VARIATIONAL METHODS 57temporally distorted strings. In Touretzky, D. S., Elman, J., Sejnowski, T., & Hinton,G. E., (Eds.), Proceedings of the 1990 Connectionist Models Summer School. SanMateo, CA: Morgan Kaufmann.9. AppendixIn this section, we calculate the conjugate functions for the logarithm func-tion and the log logistic function.For f(x) = lnx, we have:f�(�) = minx f�x� lnxg: (75)Taking the derivative with respect to x and setting to zero yields x = ��1.Substituting back in Eq. (75) yields:f�(�) = ln�+ 1; (76)which justi�es the representation of the logarithm given in Eq. (14).For the log logistic function g(x) = � ln(1 + e�x), we have:g�(�) = minx f�x+ ln(1 + e�x)g: (77)Taking the derivative with respect to x and setting to zero yields:� = e�x1 + e�x ; (78)from which we obtain: x = ln 1� �� (79)and ln(1 + e�x) = 11� �: (80)Plugging these expressions back into Eq. (77) yields:f�(�) = �� ln�� (1� �) ln(1 � �); (81)which is the binary entropy function H(�). This justi�es the representationof the logistic function given in Eq. (19).


