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Abstract
Active and semi-supervised learning are impor-
tant techniques when labeled data are scarce.
We combine the two under a Gaussian random
field model. Labeled and unlabeled data are rep-
resented as vertices in a weighted graph, with
edge weights encoding the similarity between in-
stances. The semi-supervised learning problem
is then formulated in terms of a Gaussian random
field on this graph, the mean of which is char-
acterized in terms of harmonic functions. Ac-
tive learning is performed on top of the semi-
supervised learning scheme by greedily select-
ing queries from the unlabeled data to minimize
the estimated expected classification error (risk);
in the case of Gaussian fields the risk is effi-
ciently computed using matrix methods. We
present experimental results on synthetic data,
handwritten digit recognition, and text classifica-
tion tasks. The active learning scheme requires a
much smaller number of queries to achieve high
accuracy compared with random query selection.

1. Introduction

Semi-supervised learning targets the common situation
where labeled data are scarce but unlabeled data are abun-
dant. Under suitable assumptions, it uses unlabeled data
to help supervised learning tasks. Various semi-supervised
learning methods have been proposed and show promising
results; Seeger (2001) gives a survey. These methods typi-
cally assume that the labeled data set is given and fixed.

In practice, it may make sense to utilize active learning
in conjunction with semi-supervised learning. That is, we
might allow the learning algorithm to pick a set of unla-
beled instances to be labeled by a domain expert, which

will then be used as (or to augment) the labeled data set. In
other words, if we have to label a few instances for semi-
supervised learning, it may be attractive to let the learning
algorithm tell us which instances to label, rather than se-
lecting them randomly. We will limit the range of query se-
lection to the unlabeled data set, a practice known as pool-
based active learning or selective sampling.

There has been a great deal of research in active learning.
For example, Tong and Koller (2000) select queries to min-
imize the version space size for support vector machines;
Cohn et al. (1996) minimize the variance component of the
estimated generalization error; Freund et al. (1997) employ
a committee of classifiers, and query a point whenever the
committee members disagree. Most of the active learning
methods do not take further advantage of the large amount
of unlabeled data once the queries are selected. Exceptions
include McCallum and Nigam (1998) who use EM with un-
labeled data integrated into the active learning, and Muslea
et al. (2002) who use a semi-supervised learning method
during training. In addition to this body of work from the
machine learning community, there is a large literature on
the closely related topic of experimental design in statistics;
Chaloner and Verdinelli (1995) give a survey of experimen-
tal design from a Bayesian perspective.

Recently Zhu et al. (2003) introduced a semi-supervised
learning framework which is based on Gaussian random
fields and harmonic functions. In this paper we demon-
strate how this framework allows a combination of active
learning and semi-supervised learning. In brief, the frame-
work allows one to efficiently estimate the expected gener-
alization error after querying a point, which leads to a bet-
ter query selection criterion than naively selecting the point
with maximum label ambiguity. Then, once the queries are
selected and added to the labeled data set, the classifier can
be trained using both the labeled and remaining unlabeled
data. We present results on synthetic data, text classifica-
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tion and image classification tasks that indicate the com-
bination of these techniques can result in highly effective
learning schemes.

2. Gaussian random fields and harmonic
energy minimizing functions

We begin by briefly describing the semi-supervised learn-
ing framework of Zhu et al. (2003). There are � la-
beled points �������	�
��������������������	����� , and � unlabeled points������������������������� ; usually ����� . We will use  , ! to de-
note the labeled and unlabeled set, and "$#%�'&(� the
total number of points. We assume the labels are binary:�*),+.-0/1��243 . We assume a connected graph 56#6�87'�	9:�
is given with nodes 7 corresponding to the " data points,
of which the nodes in  are labeled with the corresponding� ’s. The edges 9 are represented by an "<;=" weight matrix>

which is given. For example if �?+A@CB ,
>

can be the
radial basis function (RBF):DFEHG #JI�KML NPO 2Q�R BSTVU � ��� E T O � G T � R�W (1)

so that nearby points in Euclidean space are assigned large
edge weights. Other weightings are possible, of course,
and may be more appropriate when � is discrete or sym-
bolic. For our purposes the matrix

>
fully specifies the

data manifold structure. We note that a method for learn-
ing the scale parameter Q is proposed in (Zhu et al., 2003).

The semi-supervised algorithm in this paper is based on
a relaxation of the requirement that labels are binary, re-
sulting in a simple and tractable family of algorithms. We
allow continuous labels on unlabeled nodes �MXZY[7]\^@ .
The labels on labeled data are still constrained to be 0 or 1:����_`�C#a�4)b�c_��d+A-e/���243 for _P#(24���������f� . We also denote the
constraint by ��g ) U�h�i . Since we want unlabeled points that
are nearby in the graph to have similar labels, we define the
energy to be 9j�c�1�C# 2k S E�l G D EmG ������_`� O ���onp��� R (2)

so that low energy corresponds to a slowly varying function
over the graph. Define the diagonal matrix q6#sr*_`t*u[�8r E �
whose entries r E #wv G DFEmG are the weighted degrees of
the nodes in 5 . The combinatorial Laplacian is the "x;y"
matrix z{#aq O > . We can rewrite the energy function in
matrix form as 9|�c�1��#(��}�z:� . We consider the Gaussian
random field ~ �c�1�C# 2�P� IKML<� OF� 9j�c�1�f�
where

�
is an “inverse temperature” parameter, and

� �
is the partition function

��� #s� h�� i U�h i I�KpL<� OF� 9j���M�	��r4� .

The Gaussian random field differs from the “standard” dis-
crete Markov random field in that the field configurations
are over a continuous state space. Moreover, for a Gaus-
sian field the joint probability distribution over unlabeled
nodes is Gaussian with covariance matrix �� z|� ��0� . z��0� is
the submatrix of z corresponding to unlabeled data.

The minimum energy function ��# arg min

h�� i U�h i 9|�c�1� of
the Gaussian field is harmonic; that is, it satisfies z��A#�/
on unlabeled data points ! , and is equal to �
) on the la-
beled data points  . The harmonic property means that the
value at each unlabeled node is the average of neighboring
nodes:�b�onp�C# 2r G S E���G D�EmG �b��_`�� for n�#Z��&a24���������f��&?�
which is consistent with our prior notion of smoothness
with respect to the graph. Because of the maximum prin-
ciple of harmonic functions (Doyle & Snell, 1984), � is
unique. Furthermore, � satisfies /��(�b�onp����2 for n�+�!
when ! is connected and labeled nodes from both classes
are present at the boundary (the usual case; otherwise �
takes on the extremum 0 or 1). By definition � is the mode
of the Gaussian random field, but since the joint distribu-
tion is Gaussian, � is also the mean of the field.

The harmonic energy minimizing function � can be com-
puted with matrix methods. We partition the Laplacian ma-
trix z into blocks for labeled and unlabeled nodes,z�#�� z��m� z����z �e� z �0���
and let �,# � �0���� � where ����#�� ) , and ��� denotes the

mean values on the unlabeled data points. The solution is
given by � � # O z � ��0� z �e� � � (3)

It is not hard to show that the Gaussian field, conditioned on
labeled data, is a multivariate normal: �*�y�a���������fz � ��0� � .
To carry out classification with a Gaussian field, we note
that the harmonic energy minimizing function � is the
mean of the field. Therefore the Bayes classification rule
is to label node _ as class 1 in case �b�c_��d�J/1�H� , and to label
node _ class 0 otherwise.

The harmonic function � has many nice interpretations, of
which the random walk view is particularly relevant here.
Define the transition matrix ��# q � � > . Consider the
random walk on graph 5 by a particle. Starting from an
unlabeled node _ , it moves to a node n with probability � EHG
after one step. The walk continues until the particle reaches
a labeled node. Then � E is the probability that the particle,
starting from node _ , reaches a labeled node with label 1.



The labeled data are the absorbing boundary for the random
walk. More on this semi-supervised learning framework
can be found in (Zhu et al., 2003).

3. Active learning

We propose to perform active learning with the Gaussian
random field model by greedily selecting queries from the
unlabeled data to minimize the risk of the harmonic energy
minimization function. The risk is the estimated general-
ization error of the Bayes classifier, and can be efficiently
computed with matrix methods.

We define the true risk � ����� of the Bayes classifier based
on the harmonic function � to be

� ����� # �S E U � Sh
�
U
� l � � sgn ��� E ���# � E�� ~ � ��� E g  �

where sgn �8� E � is the Bayes decision rule, where (with a
slight abuse of notation) sgn ��� E ��# 2 if � E �^/�� � and
sgn ��� E � #,/ otherwise. Here

~
� ��� E g  � is the unknown true

label distribution at node _ , given the labeled data. Because
of this � �8��� is not computable. In order to proceed, it is
necessary to make assumptions. We begin by assuming that
we can estimate the unknown distribution

~
� �c� E g  d� with the

mean of the Gaussian field model:
~

� �c� E # 2pg  d�
	Z� E
Intuitively, recalling � E is the probability of reaching 1 in
a random walk on the graph, our assumption is that we
can approximate the distribution using a biased coin at each
node, whose probability of heads is � E . With this assump-
tion we can compute the estimated risk �� �8��� as

����8��� # �S E U � � sgn ��� E ���# / � ��2 O � E ��& �
sgn �8� E ���#(2 � � E

# �S E U � ���� ��� E ��2 O � E � (4)

If we perform active learning and query an unlabeled node�
, we will receive an answer ��� (0 or 1). Adding this point

to the training set and retraining, the Gaussian field and its
mean function will of course change. We denote the new
harmonic function by � ������� l h ��� . The estimated risk will
also change:

�� ��� ����� � l h � � � # �S E U � ���� �8� ����� � l
h
� �E ��2 O � ����� � l h � �E �

Since we do not know what answer � � we will receive,
we again assume the answer is approximated with ����	
~

� ����� # 2
g  � . The expected estimated risk after querying
node

�
is therefore

�� ��� � � � � # ��2 O �!�4�"�� �8� ����� � l � � � & �!�#�� �8� ����� � l �$� �

Input:  =�V! , weight matrix
>

While more labeled data required:
Compute harmonic � using (3)
Find best query

�
using (5)

Query point � � , receive answer � �
Add �c� � ��� � � to  , remove � � from !

end
Output:  and classifier � .

Figure 1. The active learning algorithm

The active learning criterion we use in this paper is the
greedy procedure of choosing the next query

�
that min-

imizes the expected estimated risk:
� # arg min ��% �� �8� � � � % � (5)

To carry out this procedure, we need to compute the har-
monic function � ����� � l h � � after adding �c�&�1������� to the cur-
rent labeled training set. This is the retraining problem and
is computationally intensive in general. However for Gaus-
sian fields and harmonic functions, there is an efficient way
to retrain. Recall that the harmonic function solution is� � # O z � ��0� z �e� � �
What is the solution if we fix the value � � for node

�
?

This is the same as finding the conditional distribution of
all unlabeled nodes, given the value of �'� . Noting that�*�,�$���������fz � ��0� � , a multivariate normal distribution, a
standard result (a derivation is given in Appendix A) gives
the conditional once we fix �'� :� ����� � l h � �� # � � &Z�c� � O � � � �8z � ��0� �)( ��8z � ��0� �$�*�
where �8z � ��0� � ( � is the

�
-th column of the inverse Laplacian

on unlabeled data, and ��z � ��0� � �+� is the
�

-th diagonal ele-
ment of the same matrix. Both are already computed when
we compute the harmonic function � . This is a linear com-
putation and therefore can be carried out efficiently.

To summarize, the active learning algorithm is shown in
Figure 1. The time complexity to find the best query is, ��" R � . As a final word on computational efficiency, we
note that after adding query � � and its answer to  , in
the next iteration we will need to compute �	�8z �0� �.- � � � � ,
the inverse of the Laplacian on unlabeled data, with the
row/column for � � removed. Instead of naively taking the
inverse, there are efficient algorithms to compute it from��z �e�M� � � ; a derivation is given in Appendix B.

4. Experiments

Figure 2 shows (top left) a synthetic dataset with two la-
beled data (marked ‘1’, ‘0’), an unlabeled point ‘a’ in the
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Figure 2. Synthetic data experiments. Top left: synthetic data 1; top right: synthetic data 2. Bottom left: risk on synthetic data 2; bottom
right: classification accuracy on synthetic data 2. Standard errors are shown as dotted lines.

center above and a cluster of 9 unlabeled points ‘B’ be-
low. ‘B’ is slighted shifted to the right. The graph is fully
connected with weight D=EmG #�IKML � O r REmG � , where r EmG is the
Euclidean distance between _V� n . In this configuration, we
have the most uncertainty in ‘a’: �b��tM��# /�� ��� . Points in
‘B’ have � around 0.32, so we are more certain about the
labels of ‘B’ than ‘a’. However, the risk minimization cri-
terion picks the upper center point (marked with a star) in
‘B’ to query, instead of ‘a’. In fact the estimated risk is
�� �8tM�|# k � � , and �� ��� +���� 	w24� 2 . This shows that the
active learning algorithm is not simply picking the most
uncertain point for query, but rather it “thinks globally.”

Figure 2 also shows (top right) another synthetic dataset,
where the true labels for the 400 points form a chess-board
pattern. We expect active learning to discover the pattern
and query a small number of representatives from each
cluster. On the other hand, we expect a much larger num-
ber of queries if queries are randomly selected. We use
a fully connected graph with weight D�EmG #{I�KpL�� O r REmG	� �
� .
We perform 20 random trials. At the beginning of each
trial we randomly select a positive example and a negative
example as the initial training set. We then run active learn-
ing and compare it to two baselines: (1) “Random Query”:
randomly selecting the next query from ! ; (2) “Most Un-
certain Query”: selecting the most uncertain instance in ! ,
i.e. the one with � closest to 0.5. In each case we run for 20
iterations (queries). At each iteration we plot the estimated

risk (4) of the selected query (lower left), and the classifi-
cation accuracy on ! (lower right). The error bars are 
�2
standard deviation, averaged over the random trials. As ex-
pected, with active learning we reduce risk more quickly
than random queries or the most uncertain queries. In fact,
active learning with about 15 queries (plus 2 initial random
points) learns the correct concept, which is nearly optimal
given that there are 16 clusters. Looking at the queries, we
find that active learning mostly selects the central points of
the clusters.

Next we report the results of document categorization ex-
periments using the 20 newsgroups dataset1. We evaluate
the following binary classification tasks: rec.sport.baseball
(994 documents) vs. rec.sport.hockey (999); comp.sys.-
ibm.pc.hardware (982) vs. comp.sys.mac.hardware (961);
talk.religion.misc (628) vs. alt.atheism (799). They repre-
sent easy, moderate and hard problems respectively. Each
document is minimally processed into a “tf.idf” vector,
without applying header removal, frequency cutoff, stem-
ming, or a stopword list. Two documents �P��� are connected
by an edge if � is among � ’s 10 nearest neighbors or if � is
among � ’s 10 nearest neighbors, as measured by their co-
sine similarity �� ��� # � } �� � �H� � � . We use the following weight
function on the edges: D ���J# IKML<� O ��2 O ��e����� � /1� /��*�
As before, we perform 20 trials, and randomly pick two

1http://www.ai.mit.edu/people/jrennie/20Newsgroups/
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Figure 3. Risk (top) and classification accuracy (bottom) on 20 newsgroups, compared to random queries; Baseball vs. Hockey (left),
PC vs. MAC (center), and Religion vs. Atheism (right).

initial training examples to start each trial. The rest of the
documents are treated as unlabeled data. In each trial we
answer 50 queries. Again we compare active learning with
two baselines:

1. Figure 3 compares it with random queries. Active
learning reduces risk faster, and achieves high clas-
sification accuracy more rapidly than random queries.
For easy datasets only a handful of queries are neces-
sary for active learning to achieve 90% accuracy. We
observe that active learning tends to query the same
small set of documents in different trials. We also
trained a SVM classifier on the random queries, with
the cosine similarity kernel and � #,� (which was the
best setting among several different kernels and a wide
range of � values). Note that the SVM does not utilize
unlabeled data; on these datasets the semi-supervised
method outperforms the SVM.

2. Figure 4 compares it with the most uncertain queries.
“Most Uncertain Query” selects the instance whose �
value is closest to 0.5 as the next query. “SVM Most
Uncertain” selects the instance whose margin is clos-
est to 0 (closest to the decision boundary). As before
the SVM does not utilize unlabeled data. The har-
monic function classification is worse with the most
uncertain queries than with random queries, while the
SVM improves with the most uncertain queries.

In all cases our proposed active learning scheme clearly
outperforms both baselines for the 20 newsgroups datasets.

We then evaluate active learning on a handwritten digits
dataset, originally from the Cedar Buffalo binary digits
database (Hull, 1994). The digits were preprocessed to re-
duce the size of each image down to a 2�� ;,2�� grid by
down-sampling and Gaussian smoothing, with pixel val-
ues ranging from 0 to 255 (Le Cun et al., 1990). They are
further scaled down to ��;�� by averaging

k ; k pixel bins.
Each image is thus represented by a 64-dimensional vector.
We consider the binary problem of classifying digits “1”
vs. “2,” with 1100 images in each class. We create a graph
on the 2200 images, with an edge between images _V��n iff _
is in n ’s 10 nearest neighbors (in Euclidean distance) or vice
versa. The weights on edges are D EmG #{I�KpL�� O r REmG � ���4/ R	�
where r EmG is the pixel-wise Euclidean distance between im-
ages _V��n . In each of 20 trials we randomly pick one exam-
ple from each class to form the initial training set. We then
compare active learning with random queries and the most
uncertain queries for 50 iterations. Figure 5 (left) shows
the risk. With active learning the risk decreases faster than
with the baselines. Figure 5 (center) shows the classifica-
tion accuracy where active learning is seen to outperform
the baselines. Again only a handful of examples are needed
for active learning to reach high accuracy. The SVM uses
kernel ��2 &a� }E � G � R and � # 2 , which is one of the best
among polynomial kernels with order 1 to 5, and a wide
range of � values. We also observe that there are certain
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Figure 4. Risk (top) and classification accuracy (bottom) on 20 newsgroups, compared to the most uncertain queries; Baseball vs. Hockey
(left), PC vs. MAC (center), and Religion vs. Atheism (right).

images that active learning frequently queries in different
trials. Figure 5 (right) shows some of the most frequently
queried images; we believe these images are representative
of the variations in the dataset.

We also evaluate on the difficult binary problem of classify-
ing odd digits vs. even digits. That is, we group “1,3,5,7,9”
and “2,4,6,8,0” into two classes. There are 400 images per
digit (2000 per class). It is a difficult dataset because the
target concept is rather artificial; on the other hand this
dataset resembles synthetic data 2 (Figure 2) where each
class has several internal clusters. The experimental setup
is the same as above except that we run for 100 iterations.
Figure 6 shows the results. Again active learning is supe-
rior than the baselines. We also see that odd vs. even is a
harder concept which takes active learning about 50 queries
to approximately learn. The digits shown are the 25 most
frequently queried instances in the first 30 iterations across
all trials. With 4000 instances this dataset is also the largest
and slowest. With a naive Matlab implementation, the cal-
culations take roughly 50 seconds per iteration on a 1GHz
Linux machine. In contrast, the “1” vs. “2” dataset re-
quires five seconds per iteration, while all of the 20 news-
groups datasets take less than two seconds per iteration.

We finally note that if we train an SVM on the active
queries chosen from the harmonic function risk minimiza-
tion procedure, the accuracy is always worse than our pro-
posed active learning method, and often even worse than

the SVM on random queries.

5. Summary

We have proposed an approach to active learning which is
tightly coupled with semi-supervised learning using Gaus-
sian fields and harmonic functions. The algorithm selects
queries to minimize an approximation to the expected gen-
eralization error. Experiments on text categorization and
handwritten digit recognition indicate that the active learn-
ing algorithm can be highly effective.
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Appendix A: The harmonic function after
knowing one more label

Construct the graph as usual. The random walk solution is� � # O z � ��e� z �e� � � #�z � ��0� > �e� � � . There are � unlabeled
nodes. We ask the question: what is the solution if we add
a node with value � � to the graph, and connect the new
node to unlabeled node _ with weight D � ? The new node
is a “dongle” attached to node _ . Besides the usage here,
dongle nodes can be useful for handling noisy labels where
one would put the observed labels on the dongles, and infer
the hidden true labels for the nodes attached to dongles.
Note that when D � \�� , we effectively assign label � � to
node _ .
Since the dongle is a labeled node in the augmented graph,� �� # z ��e� � � > ���� � �� #(�8q ��0� O > �0�p� � � > ��e� � ��# � D ����� } & q �0� O > �0� � � � � D � � ��� & > �e� � � �# � D ����� } &�z �0� � � � � D � � ��� & > �e� � � �
where � is a column vector of length � with 1 in position _
and 0 elsewhere. Note that we can use the matrix inversion

lemma here, to obtain� D ����� } & z �e� � � � # z � ��0� O z|� ��e� � � D � � �� � D � � � } z|� ��0�2 &Z� � D ��� � } z � ��0� � � D ��� �# 5 O 22 & D � 5 EoE D � 5 � E 5
where we use the shorthand 5 # z � ��0� (the Green’s func-
tion); 5 E E is the _ -th row, _ -th column element in 5 ; 5 � E is a
square matrix with 5 ’s _ -th column and 0 elsewhere. Some
calculation gives� �� # ����& D � � � O D � � E2 & D � 5 EoE 5�( E
where � E is the unlabeled node’s original solution, and 5#( E
is the _ -th column vector in 5 . If we want to pin down the
unlabeled node to value � � , we can let D � \�� to obtain� �� # � � & � � O � E5 EoE 5 ( E
Appendix B: The inverse of a matrix with one
row/column removed

Let � be an "J;x" non-singular matrix. Given � � � , we
would like a fast algorithm to compute � � �- E , where � - E is
the ��" O 20�b;��c" O 2e� matrix obtained by removing the _ -th
row and column from � .

Let �6# perm �	�:��_�� be the matrix created by moving the_ -th row in front of the 1st row, and the _ -th column in front
of the 1st column of � . Then

� � �- E # � perm �
�<��_��.- � � � � #(� ��- � � � �
Also note � � � # perm �
� � � �	_`� . So we only need to con-
sider the special case of removing the first row/column of a

matrix. Write � out as �s# � � �f� � � �

� � � � - � � , where � � � #� � ��R ����� � � � � and � � � # � � R�� ����� � � � �	} . We will transform
� into a block diagonal form in two steps. First, let ����#� 2 /

� � � ��- �y� # �s&�� �M} where ��#$� O 24�f/1�������[�	/
�f}
and ��# ��� �	� O 2*� � � � �	} . We are interested in � �� � � �
which will be used in the next step. By the matrix inver-
sion lemma (Sherman-Morrison-Woodbury formula),� � � � � � #s� �,& � � } � � � # � � � O � � � � �M} � � �2'& � } � � � �
Next let �� ��# � 2 // ��- �y� # ����& D ��} where D #�8/1� � � ��f} . Applying the matrix inversion lemma again,��� ��� � � � #(��� � & D � } � � � #(��� � � � � O ����� � � � D ��}P� �� � � �2 & � } ��� � � � � D
But since � � � is block diagonal, we know ��� ��� �V� � #� 2 // ��� - ��� � � � . Therefore ��� - ��� � � #s����������� � � � - � .



10 20 30 40 50
100

200

300

400

500

600

700

800

Labeled set size

R
is

k

Active Learning
Random Query

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Labeled set size

A
cc

ur
ac

y

Active Learning
Random Query
SVM

10 20 30 40 50
100

200

300

400

500

600

700

800

Labeled set size

R
is

k

Active Learning
Most Uncertain Query

10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Labeled set size

A
cc

ur
ac

y

Active Learning
Most Uncertain Query
SVM Most Uncertain

Figure 5. Handwritten digits “1” vs. “2”, compared with random queries (top) and the most uncertain queries (bottom); Risk (left),
classification accuracy (center) and frequently queried images (right).
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Figure 6. Handwritten digits odd vs. even, compared with random queries (top) and the most uncertain queries (bottom); Risk (left),
classification accuracy (center) and frequently queried images (right).


