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Part I:
Did you have breakfast today?



Researchers reviewed 47 nutrition studies and
concluded that children and adolescents who
ate breakfast had better mental function and
better school attendance records than those
who did not.

They suggested several possible reasons.
For example, eating breakfast may modulate
short-term metabolic responses to fasting,
cause changes in neurotransmitter
concentrations or simply eliminate the
distracting physiological effects of hunger.



Spurious causality

 Eating makes you faithful
 Will he cheat? How to tell. Ladies, you probably think that

it's just in his nature. He can't help it - he HAS to cheat. But
here's the sad truth: you're not feeding him enough. If
you're worried your guy might cheat, try checking out his
waistline. A new study says the size of his belly may reveal
whether he'll stray.

 Relaxing makes you die
 In a prospective cohort study of thousands of employees

who worked at Shell Oil, the investigators found that
embarking on the Golden Years at age 55 doubled the
risk for death before reaching age 65, compared with
those who toiled beyond age 60.

http://bandit.pc.cs.cmu.edu/spurious/

(?)



What is a cause, after all?

 A causes B:

 Examples of manipulations:
 Medical interventions (treatments)
 Public policies (tax cuts for the rich)
 Private policies (50% off! Everything must go!)

 A manipulation (intervention, policy, treatment, etc.)
changes the data generation mechanism. It sets a
new regime

P(B | A is manipulated to a1) ≠ P(B | A is manipulated to a2)



But what exactly is a manipulation?

 Some intervention T on A can only be
effective if T is a cause of A

 ??!??
 Don’t be afraid of circularities

 Or come up with something better, if you can

– Homer, what is mind?
– It doesn’t matter.
– But what is matter?
– Never mind…



An axiomatic system

 When you can’t define something, axiomatize
it:
 From points to lines and beyond

 We will describe languages that have causal
concepts as primitives

 The goal: use such languages to
 Express causal assumptions
 Compute answers to causal queries that are

entailed by such assumptions



Causal queries: hypothetical causation vs.
counterfactual causation
 I have a headache. If I take an aspirin now,

will it go away?
 I had a headache, but it passed. Was it

because I took an aspirin two hours ago?
Had I not taken such an aspirin, would I still
have a headache?



Prediction vs. explanation

 The first case is a typical “predictive” question
 You are calculating the effect of a hypothetical intervention
 Pretty much within decision theory

 Think well before offering the 50% discount!
 The second case is a typical “explanatory” question

 You are calculating the effect of a counterfactual
intervention
 Have things been different…

 Ex.: law
 What about scientific/medical explanation?



Prediction vs. explanation

 This talk will focus solely on prediction
 Explanation is fascinating, but too messy,

and not particularly useful…



Preparing axioms: Seeing vs. doing

 Observe again the notation

 Why not…

P(B | A is manipulated to a1)

P(B | A = a1)

…?



Seeing vs. doing: an example

 The reading in a barometer is useful to
predict rain

 But hacking a barometer won’t cause rain

 (Sometimes this is called intervening vs. conditioning. I don’t
quite like it.)

P(rain | barometer reading = high) > 
P(rain | barometer reading = low)

P(rain | barometer hacked to high) =
P(rain | barometer hacked to low)



Why is seeing different from doing?

 Issue #1: directionality

Drinking

Car accidents



Why is seeing different from doing?

 Issue #2: confounding (i.e., common causes)

Pressure

Rain Barometer



Why is seeing different from doing?

 Most important lesson: unmeasured
confounding (i.e., hidden common causes) is
perhaps the most complicating factor of all

 (but see also: measurement error and sampling selection bias)

Genotype

Smoking Lung cancer



The do operator (Pearl’s notation)

 A shorter notation
 P(A | B = b): the probability of A being true

given an observation of B = b
 That is, no external intervention
 This is sometimes called the distribution under the

natural state of A
 P(A | do(B = b)): the probability of A given an

intervention that sets B to b
 P(A | do(B)): some shorter notation for

do(B) = true



Different do’s

 P(A | do(B), C)
 Intervening on B, seeing C

 P(A | do(B), do(C))
 Multiple interventions

 P(A | do(P(B) = P’))
 A change on the distribution of B (not only a point

mass distribution)



Causal models

 A causal model is defined by a set of
P(A1, A2, …, AN | do(B1), do(B2), …, do(BM),
BM+1, BM+2, …, BO)

 How to estimate this? Which data can I use?
 The Radical Empiricist says:

Every do is a change of regime. Anything can happen. In
general, there is no logical connection between states!

Every different set of do’s specify a brave new World.
(or does it?)



Learning causal models

 The gold standard*: randomized experiments

…………
0365Medicine
0374Placebo
0403Placebo
+412Medicine
+321Medicine

Heart
Condition

AgePatient IDTreatment

*and a recipe for knighthood



The role of randomization

 Breaking the hidden common causes
 Example: gender may cause both self-

selection of treatment, and heart condition

Gender

Medicine Heart condition



The role of randomization

 The randomized assignment overrides the original
causal mechanisms

 Notice: placebo is a surrogate for no-treatment
 With blind/double-blind assignments, its role is to

avoid psychological effects

Gender

Medicine Heart condition

X



Causal models

 A causal model is defined by a set of
P(A1, A2, …, AN | do(B1), do(B2), …, do(BM),
BM+1, BM+2, …, BO)

 Do I always have to perform an experiment?



Observational studies

 The art and science of inferring causation
without experiments

 This can only be accomplished if extras
assumptions are added

 Most notable case: inferring the link between
smoking and lung cancer

 This talk will focus on observational studies



Observational studies

 If you can do a randomized experiment, you
should do it

 Observational studies have important roles,
though:
 When experiments are impossible for

unethical/practical reasons
 The case for smoking/lung cancer link

 When there are many experiments to perform
 A type of exploratory data analysis/active learning tool

 E.g., biological systems



Observational studies



Observational studies

 But in the end, don’t we always have a
testable condition?

Nasty pictures in
cigarette packages 

Lung cancerSmoke



Observational studies

 Appropriate interventions are much more
subtle than you might think…

Nasty pictures in
cigarette packages Smoke Lung cancer

“Gullibility trait” 
expression level

Smoke      Lung cancer | do(Smoke)



Observational studies:
starting from natural state models
 How are full joint/conditional distributions

specified?

 There is a notion of modularity in the natural
state. Why wouldn’t we have some stable
modularity across “Worlds”?

P(A1, A2, …, AN | B1, B2, …, BM, BM+1, BM+2, …, BO)



Definitions and axioms of
causal modularity: DAGs
 = Directed acyclic graphs
 Start with a “reference system”, a set of

events V
 Each element of V is a vertex in causal graph

G
 A causes B is causal graph G only if A is an

ancestor of B
 DAGs with such an assumption are causal

graphs



Definitions and axioms of
causal modularity
 A is a direct cause of B wrt V if and only if A

causes B for some choice of intervention in
V\{A, B}

 “A is a direct cause of B” implies the edge

A B



The Causal Markov Condition

 Let G be a DAG representing a causal
system over V,  and P a distribution over V

 (G, P) satisfy the Causal Markov Condition if
and only if:

    where A’s parents are its direct causes in G

A     {All of its non-descendants (and parents)} | A’s parents

(Spirtes et al, 2000)



The Causal Markov Condition

D

F G H

A B C

E

D     {E, G, H} | {A, B, C}
G     everybody else | E



Limitations of the Causal Markov
condition?

Sound Picture

TV switch

P(Picture | Switch) < P(Picture | Switch, Sound)
Where did the independence go?

Sound Picture

TV switch

Closed circuit

“The Interactive Fork”

(Spirtes et al, 2000)



Causal models, revisited

 Instead of an exhaustive “table of
interventional distributions”:
 G = (V, E), a causal graph with vertices V and

edges E
 P(θ), a probability over the “natural state” of V,

parameterized by θ
 (G,  θ) is a causal model if pair

(G, P) satisfies the Causal Markov condition
 We will show how to compute the effect of

interventions



To summarize: what’s different?

 As you probably know, DAG models can be
non-causal

 What makes

    causal?

A B

Answer: because I said so! 



To summarize

 A causal graph is a way of encoding causal
assumptions

 Graphical models allow for the evaluation of the
consequences of said assumptions

 Typical criticism:
 “this does not advance the ‘understanding’ of causality”

 However, it is sufficient for predictions
 And no useful non-equivalent alternatives are

offered



Example of axioms in action:
Simpson’s paradox

(Pearl, 2000)

P(E | F, C) < P(E | F, ∼C)
P(E | ∼F, C) < P(E | ∼F, ∼C)

P(E | C) > P(E | ∼C)

The “paradox”:

Which table to use? 
(i.e., condition on gender or not?)



To condition or not to condition:
some possible causal graphs



Dissolving a “paradox” using the do
operator
 Let our population have some subpopulations

 Say, F and ∼F
 Let our treatment C not cause changes in the

distribution of the subpopulations
 P(F | do(C)) = P(F | do(∼C)) = P(F)

 Then for outcome E it is impossible that we
have, simultaneously,
 P(E | do(C), F) < P(E | do(∼C), F)
 P(E | do(C), ∼F) < P(E | do(∼C), ∼F)
 P(E | do(C)) > P(E | do(∼C))



Proof



Part II: 
Predictions with observational data



Goals and methods

 Given: a causal graph, observational data
 Task: estimate P(E | do(C))
 Approach:

 Perform a series of modifications on
P(E | do(C)), as allowed by the causal
assumptions, until no do operators appear

 Estimate quantity using observational data
 That is, reduce the causal query to a probabilistic

query

(Spirtes et al, 2000 – Chapter 7; Pearl, 2000 – Chapter 3)



The trivial case

 Graph:

 A representation of a do(A) intervention

A B

A BT



The trivial case

 B is independent of T given A
 P(B | do(A)) = P(B | A, T) = P(B | A)

 Term on the right is identifiable from
observational data
 do-free

 That is, P(B | do(A)) can be estimated as
P(B | A)



A less trivial case

 Knowledge:

 Query: P(B | do(A))

A B

F



A less trivial case

 With intervention

 B and T are not independent given A
anymore…

A B

F

T



A less trivial case

 Solution: conditioning

 Now, B is independent of T given A and F

A B

F

T



A less trivial case

P(B | do(A)) =
P(B | do(A), F)P(F | do(A)) +
P(B | do(A), ∼F)P(∼F | do(A)) =

P(B | A, F, T)P(F) + P(B | A, ∼F, T)P(∼F) =
P(B | A, F)P(F) + P(B | A, ∼F)P(∼F)

A B

F

T

“F-independent” intervention



Simplified operation for
independent point interventions

A B

F

T

X

A B

F
P(A, B, F) = P(B | A, F)P(A | F)P(F)

Before intervention:

After intervention:

P(A, B, F | do(A)) = P(B | A, F)P(A | F)P(F)X
= P(B | A, F) δ(A = true)P(F)

A “mechanism substitution” system



Those “back-doors”…

 Any common ancestor of A and B in the
graph is a confounder

 Confounders originate “back-door” paths that
need to be blocked by conditioning



Example

 In general, one should condition on and marginalize
minimal sets, since this reduces statistical variability

Xi X6 Xj

X3

X1

X4 X5

X2

T



Unobserved confounding

 If some variables are hidden, then there is no data
for conditioning

 Ultimately, some questions cannot be answered
 without extra assumptions

 But there are other methods beside back-door
adjustment

A B

U



The front-door criterion

 Interestingly enough, P(Y | do(X)) is
identifiable in this case
 Even though we will be conditioning on a variable

Z that is in the causal path!

X Z

U

Y



P(Y | do(X)) =   P(Z | X)   P(Y | Z, U)P(U)∑
Z

∑
u

The front-door criterion

P(X, Y, Z, U) = P(U)P(X | U)P(Z | X)P(Y | Z, U)

X Z

U

Y

P(Y, Z, U | do(X)) = P(Y | Z, U) P(Z | X)P(U)

X



The front-door criterion

X Z

U

Y

P(U | X) = P(U | Z, X)
P(Y | Z, U) = P(Y |  X, Z, U)

P(Y | Z, U)P(U) =        P(Y |X, Z, U)P(U | X)P(X)∑
u

∑
x
∑

u

=        P(Y |X, Z, U)P(U | X, Z)P(X)∑
x
∑

u

=        P(Y |X, Z)P(X)∑
x

U free!



A calculus of interventions

 Back-door and front-door criteria combined
result in a set of reduction rules

 Notation:

GX

X

X X

GX

X

X X



Examples of do-calculus inference rules

 Insertion/deletion of observations:

 Action/observation exchange:

 Sound and complete algorithms that use these rules
exist (Huang and Valtorta, 2006)

(Pearl, 2000)

P(Y | do(X), Z, W) = P(Y | do(X), W), if (Y    Z | X, W) in GX

P(Y | do(X), do(Z), W) = P(Y | do(X), Z, W), if (Y    Z | X, W) in GXZ



A more complex example…

P(Y | do(X), do(Z2)) =
P(Y | Z1, do(X), do(Z2))  x
P(Z1 | do(X), do(Z2))

Y

Z1 Z2

X
∑
z1

=    P(Y | Z1, X, Z2)P(Z1 | X)∑
z1

(Now, Rule 2, for interchanging
 observation/intervention)

Notice: P(Y | do(X)) is NOT identifiable!



… and even more complex examples

Z1

X Z2

Z3

Y

P(Y | do(X)) is identifiable
(I’ll leave it as an exercise)



Planning

 Sequential decision problems:
 More than one intervention, at different times
 Intervention at one time depends on previous

interventions and outcomes
 Example: sequential AIDS treatment (Robins,

1999)

PCP dose Pneumonia HIV  loadAZT dose

T
Will typically depend on
other parents



Total and direct effects

 A definition of causal effect: ACE
 ACE(x, x’, Y) = E(Y | do(X = x’)) – E(Y | do(X = x))

 Controlled direct effects in terms of do(.):
 DEa(pcp1, pcp2, HIV) =

E(HIV | do(AZT) = a, do(PCP = pcp1))
– E(HIV | do(AZT) = a, do(PCP = pcp2))

PCP dose Pneumonia HIV  loadAZT dose



Standardized and natural direct effects

 Controlling intermediate variables can also
be done in a randomized way
 E.g., controlled according to the age of the patient

 This notion is known as standardized effect
 Natural direct effects:

 Intermediate variables arise from natural state
 E.g., adjusting for intermediate psychological

effects by using placebos

(Didelez, Dawid and Geneletti, 2006)



Dealing with unidentifiability

 We saw techniques that identify causal
effects, if possible

 What if it is not possible?
 The dreaded “bow-pattern”:

X Y



Instrumental variables

 One solution: explore parametric
assumptions and other variables

 Classical case: the linear instrumental
variable

X YZ

X =  aZ +  εX
Y =  bX +  εY

εX εY

a b



Instrumental variables

 Let Z be a standard Gaussian:
 σYZ = ab, σxz = a
 That is, b = σYZ / σXZ

 Recent advances in linear systems (Brito and Pearl,
2002)

 No general definition for non-linear systems
 See Pearl (2000), Chapter 8, for some cases

X YZ
a b



Bayesian analysis of confounding

 Priors over confounding factors
 Priors have to have a convincing empirical

basis
 not a small issue

 Example: epidemiological studies of
occupational hazards
 Are industrial sand workers more likely to suffer

from lung cancer?
 Since if so, they should receive compensations

(Steenland and Greenland, 2004)



Bayesian analysis of confounding

 Evidence for:
 Observational evidence of higher proportion of

cancer incidence in said population
 Exposure to silica is likely to damage lungs

 Evidence against:
 Blue-collar workers tend to smoke more than

general population

(Steenland and Greenland, 2004)



Quantitative study

 Sample of 4,626 U.S. workers, 1950s-1996
 Smoking not recorded: becomes unmeasured

confounder
 Prior: empirical priors pulled from population in

general
 Assumes relations between subpopulations are

analogous

(Steenland and Greenland, 2004)

Occupation Lung cancer

Smoking



Quantitative study

(Steenland and Greenland, 2004)



Part III: 
Learning causal structure



From association to causation

 We require a causal model to compute
predictions

 Where do you get the model?
 Standard answer: prior knowledge

 Yet one of the goals is to use observational
data

 Can observational data be used to infer a
causal model?
 or at least parts of it?



From association to causation

 This will require going beyond the Causal
Markov condition…
 independence in the causal graph  ⇒

independence in probability
 …into the Faithfulness Condition

 independence in the causal graph  ⇔
independence in probability

(Spirtes et al., 2000; Pearl, 2000)



Why do we need the
Faithfulness Condition?

X Y

Z

X Y

Z

ab

–ab

X    Y
X    Y | Z

X    Y
X    Y | Z

X    Y
X    Y | Z

X    Y
X    Y | Z

Graph Distribution Graph Distribution



Why would we accept the
Faithfulness Condition?
 Many statisticians don’t

 Putting the Radical Empiricist hat: “anything goes”
 Yet many of these don’t see much of a problem

with the Causal Markov condition
 But then unfaithful distributions are

equivalent to accidental cancellations
between paths
 How likely is that?



Arguments for Faithfulness

 The measure-theoretical argument :
 probability one in multinomial and Gaussian

families (Spirtes et al., 2000)
 The experimental analysis argument:

 Not spared of faithfulness issues
 How often do you see zero-effect causes?

Coffee-Cola
Heart Attack

Exercise+ -

+



Arguments against Faithfulness
(serious and non-serious ones)
 In practice, one only needs a distribution “close” to unfaithful for

things to fail
 Honest concern: this is possible on any sample size

 The chaotical catastrophism argument:
 “there is no such a thing as independence”
 but accepting an independence from data is also a matter of

prior. There is no such a thing called “prior-free” learning
 What exactly does “failing to reject a null hypothesis” mean?
 All models are null hypotheses. Mankind’s knowledge (i.e. model) of

the Universe is a gigantic null hypothesis.
 The Luddite argument:

 “Never trust a machine to do a man’s job”
 Believe me, educated people do make this type of argument



In practice

 Whatever the argument, there is no*
justification for not deriving what data +
faithfulness entail
 Other models can explain the data. Never trust an

“expert” model
 Fear of competition for pet-theory is always a hidden

reason against automatic causality discovery
 No reason why use a single model: sample

graphs from posterior
 Prior knowledge can (and should) always be

added
*Lack of software, lack of computer power, or laziness are somewhat acceptable



X     Z | Y

Algorithms: principles

 Markov equivalence classes:
 Limitations on what can be identifiable with

conditional independence constraints

X Y Z

X Y Z

X Y Z



Algorithms: principles

 The goal:
 Learn a Markov equivalence class
 Some predictions still identifiable (Spirtes et al.,

2000)
 A few pieces of prior knowledge (e.g., time order)

can greatly improve identifiability results
 Provides a roadmap for experimental analysis
 Side note: Markov equivalence class is not the

only one



Initial case: no hidden common causes

 Little motivation for that, but easier to explain
 “Pattern”: a graphical representation of

equivalence classes

X Y K

Z



More on equivalence classes

 Adjacencies are always the same in all
members of a Markov equivalence class

X Y X Y

Never equivalent, since on the left we have
X    Y | some set S 

… … … …

≠



More on equivalence classes

 Unshielded colliders: always identifiable

X Y

Z

Unshielded collider Not a unshielded collider

T U V

X Y

Z

T U V



More on equivalence classes

 “Propagating” unshielded colliders

X Y

Z

W

X Y

Z

W

≠
Why? Different unshielded colliders

Markov



Algorithms: two main families

 Piecewise (constraint-satisfaction) algorithms
 Evaluate each conditional independence

statement individually, put pieces together
 Global (score-based) algorithms

 Evaluate “all” models that entail different
conditional independencies, pick the “best”
 “Best” in a statistical sense
 “All” in a computationally convenient sense

 Two endpoints of a same continuum



A constraint-satisfaction algorithm:
the PC algorithm
 Start by testing marginal independencies

 Is X1 independent of X2?
 Is X1 independent of X3?
 …
 Is XN – 1 independent of XN?

 Such tests are usually frequentist hypothesis
tests of independence
 Not essential: could be Bayes factors too



The PC algorithm

 Next step: conditional independencies tests
of “size” 1
 Is X1 independent of X2 given X3?
 Is X1 independent of X2 given X4?
 …
 (In practice only a few of these tests are

performed, as we will illustrate)
 Continue then with tests of size 2, 3, … etc.

until no tests of a given size pass
 Orient edges according to which tests passed



The PC algorithm: illustration

 Assume the model on the
left is the real model

 Observable: samples
from the observational
distribution

 Goal: recover the pattern
(equivalence class
representation)

X Y

Z

W

T



PC, Step 1: find adjacencies
X Y

Z

W

T

X Y

Z

W

T

Start

X Y

Z

W

T

Size 1

X Y

Z

W

T

Size 2



PC, Step 2: collider orientation

 X and Y are independent given T
 Therefore, X  → T  ← Y is not possible
 At the same time,

 X  ← Z  ← Y
 X  → Z  → Y
 X  ← Z  → Y
are not possible, or otherwise X and Y would not
be independent given T

 Therefore, it has to be the case that X  → Z  ← Y
 Check all unshielded triples

X Y

Z

W

T



PC, Step 3: orientation propagation

 Since X → Z  W is not a collider,
only option left is X → Z → W

 Pattern:

X Y

Z

W

T

X Y

Z

W

T



Advantages and shortcomings

 Fast
 Only submodels are compared
 Prunes search space very effectively

 Consistent
 On the limit on infinite data

 But brittle
 Only submodels are compared: very prone to statistical

mistakes
 Doesn’t enforce global constraint of acyclicity

 Might generate graphs with cycles
 (which is actually good and bad)



Simple application: evolutionary biology

 Using a variation of PC + bootstrapping in
biological domain:

(Shipley, 1999)

Seed 
weight

Fruit 
diameter

Canopy 
projection

Number 
fruit

Number 
seeds

dispersed

Seed 
weight

Fruit 
diameter

Canopy 
projection

Number 
fruit

Number 
seeds

dispersed



Simple application: botanic

 Very small sample size (35):

(Shipley, 1999)

Specific
leaf mass

Leaf
nitrogen

Stomatal
conductance

Internal
CO2

Photosynthesis



Simple application: botanic

 Forcing blue edge by background knowledge

Specific
leaf mass

Leaf
nitrogen

Stomatal
conductance

Internal
CO2

Photosynthesis

(Shipley, 1999)



Global methods for structure learning

 Compares whole graphs against whole
graphs

 Typical comparison criterion (score function):
posterior distribution
 P(G1 | Data) > P(G2 | Data), or the opposite?

 Classical algorithms: greedy search
 Compares nested models: one model differs from

the other by an adjacency
 Some algorithms search over DAGs, others over

patterns



Greedy search over DAGs

 From the current point, evaluate all edge
insertions, deletions and reversals

X Y

Z

W

X Y

Z

W

X Y

Z

W

X Y

Z

W …

Current



Greedy search over patterns

 Evaluate all patterns that differ by one
adjacency from the current one

 Unlike DAG-search, consistent (starting point
doesn’t matter)

 But the problem is NP-hard…

Y

X1 X2 XkX …

Y

X1 X2 XkX …
new 2k different patterns…



Combining observational and
experimental data
 Model selection scores are usually

decomposable:
 Remember DAG factorization:

 Score factorization (such as log-posterior):

∏i P(Xi | Parents(Xi))

Score(G) = ∑i S(Xi, Parents(Xi))

(Cooper and Yoo, 1999)



Combining observational and
experimental data
 Experimental data follows from a local

probability substitution
 Apply the “mechanism substitution” principle:

(Cooper and Yoo, 1999)

X Y Z

T

X



Combining observational and
experimental data
 For data point j, natural state:

 For data point k, random intervention on Y

Xj Yj Zj

Score(G; j) = log P(Xj) + log P(Yj | Xj) + log P(Zj | Yj)

Xk Yk Zk

Tk

Score(G; k) = log P(Xk) + log P(Yk | Tk) + log P(Zk | Yk)
e.g., Score(G; k) = log P(Xk) + log 1/2 + log P(Zk | Yk)

X

(Cooper and Yoo, 1999)



Computing structure posteriors

 Notice: greedy algorithms typically return the
maximum a posteriori (MAP) graph
 Or some local maxima of the posterior

 Posterior distributions
 Practical impossibility for whole graphs

 MCMC methods should be seeing as stochastic search
methods, mixing by the end of the universe

 Still: 2 graphs are more useful than 1
 Doable for (really) small subgraphs: edges, short

paths (Friedman and Koller, 2000)



Computing structure posteriors:
a practical approach
 Generate a few high probability graphs

 E.g.: use (stochastic) beam-search instead of
greedy search

 Compute and plot marginal edge posteriors

X

Y

Z W



A word of warning

 Uniform consistency: impossible with faithfulness
only (Robins et al., 2003)
 Considering the case with unmeasured confounding

 Rigorously speaking, standard Bayesian posteriors
reflect independence models, not causal models

 There is an implicit assumption that the distribution
is not “close” to unfaithfulness
 A lot of work has yet to be done to formalize this (Zhang

and Spirtes, 2003)



Methods robust to hidden common causes

 What happens to these algorithms when
there are hidden common causes?

X YH

X Y



Methods robust to hidden common causes

 Even if directionality is correct:
 they don’t tell you correct direct effects
 which directions are unconfounded

A

B

C

H

D
A

B

C

D



Partial ancestral graphs (PAGs)

 New representation of equivalence classes

(Spirtes et al., 2000)

Smoking

Income
Parent’s

smoking habits

Cilia 
damage

Heart 
disease

Lung
capacity

Breathing
dysfunction

Pollution Genotype



Partial ancestral graphs (PAGs)

 Type of edge:

Smoking

Income
Parent’s

smoking habits

Cilia 
damage

Heart 
disease

Lung
capacity

Breathing
dysfunction



Discovery algorithms

 Discovers and partially orients inducing paths:
 Sequences of edges between nodes that can’t be blocked

 Notice
 Can’t tell if A is a direct or indirect cause of F
 Can’t tell if B is a cause of F

A B C D E F

A B FD



Algorithms

 The “Fast” Causal Inference algorithm (FCI,
Spirtes et al., 2000):
 “Fast” because it has a clever way of avoiding

exhaustive search (e.g., as in Pearl, 2000)
 Sound and complete algorithms are fairly

recent: Zhang, 2005
 Bayesian algorithms are largely

underdeveloped
 Discrete model parameterization still a challenge



Conclusion



Summary and other practical issues

 There is no magic:
 It’s assumptions + data + inference systems
 Emphasis on assumptions

 Still not many empirical studies
 Requires expertise
 Lots of work in low, low, very low-dimensional

epidemiological studies
 Graphical models not that useful (more so in longitudinal

studies)



The future

 Biological systems might be a great domain
 That’s how it all started after all (Wright, 1921)
 High-dimensional: make epidemiological studies

dull in comparison
 Lots of direct and indirect effects of interest

 Domains of testable assumptions
 Observational studies with graphical models can be a

great aid for experimental design
 But beware of all sampling issues: measurement

error, small samples, dynamical systems, etc.



What I haven’t talked about
 Dynamical systems (“continuous-time” models)
 Other models for (Bayesian) analysis of confounding

 Structural equations, mixed graphs et al.
 Potential outcomes (Rosenbaum, 2002)

 Detailed discovery algorithms
 Including latent variable models/non-independence

constraints
 Active learning
 Measurement error, sampling selection bias
 Formalizing non-ideal interventions

 Non-compliance, etc.
 Causal explanation



Thank you
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