Expectation Propagation

Tom Minka Microsoft Research, Cambridge, UK

2006 Advanced Tutorial Lecture Series, CUED

A typical machine learning problem

Spam filtering by linear separation

Choose a boundary that will generalize to new data

Linear separation

Too close to data – won't generalize well

Linear separation

Ignores information in the vertical direction

Linear separation

Has a margin, and uses information in all dimensions

Geometry of linear separation

Separator is any vector w such that:

 $\mathbf{w}^{T} \mathbf{x}_{i} > 0 \quad (\text{class 1})$ $\mathbf{w}^{T} \mathbf{x}_{i} < 0 \quad (\text{class 2})$ $\|\mathbf{w}\| = 1 \quad (\text{sphere})$

This set has an unusual shape SVM: Optimize over it Bayes: Average over it

Performance on linear separation

EP Gaussian approximation to posterior

Bayesian paradigm

 Consistent use of probability theory for representing unknowns (parameters, latent variables, missing data)

Model S Posterior -> Decision Distribution More Data

Factor graphs

 Shows how a function of several variables can be factored into a product of simpler functions

 $f(x) = x^{n}$

= x · x · . x

10

- f(x,y,z) = (x+y)(y+z)(x+z)
- Very useful for representing posteriors

Example factor graphs P(X; | m) = N(X; ; m, 1) $p(m \mid x, \dots \times n) \times p(m) p(x, lm) \dots p(x_n lm)$ $\frac{f}{f} = \int \int \int \int f(x_{+}|x_{+})$ \times_3 11

Two tasks

- Modeling
 - What graph should I use for this data?
- Inference
 - Given the graph and data, what is the mean of x (for example)?
 - Algorithms:
 - Sampling
 - Variable elimination
 - Message-passing (Expectation Propagation, Variational Bayes, ...)

Division of labor

- Model construction
 - Domain specific (computer vision, biology, text)
- Inference computation
 - Generic, mechanical
 - Further divided into:
 - Fitting an approximate posterior
 - Computing properties of the approx posterior

Benefits of the division

- Algorithmic knowledge is consolidated into general graph-based algorithms (like EP)
- Applied research has more freedom in choosing models
- Algorithm research has much wider impact

Take-home message

- Applied researcher:
 - express your model as factor graph
 - use graph-based inference algorithms
- Algorithm researcher:
 - present your algorithm in terms of graphs

A (seemingly) intractable problem

Clutter problem

• Want to estimate x given multiple y's

$$p(x) = \mathcal{N}(x; 0, 100)$$

$$p(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

$$(y_i|x) = (0.5)\mathcal{N}(y_i; x, 1) + (0.5)\mathcal{N}(y_i; 0, 10)$$

Exact posterior

Representing posterior distributions

Good for complex, multi-modal distributions

Slow, but predictable accuracy

Deterministic approximation

Good for simple, smooth distributions

Fast, but unpredictable accuracy ¹⁹

Deterministic approximation

Laplace's method

- Bayesian curve fitting, neural networks (MacKay)
- Bayesian PCA (Minka)

Variational bounds

- Bayesian mixture of experts (Waterhouse)
- Mixtures of PCA (Tipping, Bishop)
- Factorial/coupled Markov models (Ghahramani, Jordan, Williams)

Moment matching

Best Gaussian by moment matching

Strategy

Approximate *each* factor by a Gaussian in x

Approximating a single factor

p(y; | x)

 $\mathcal{N}(x; m; v;)$

 $E[x] = \int x p(y_i | x) dx$ $\int p(y; lx) dx$

Gaussian multiplication formula

 $\mathcal{N}(x; m_1, v_1) \mathcal{N}(x; m_2, v_2) = \mathcal{N}(m_1; m_2, v_1 + v_2) \mathcal{N}(x; m, v)$ where $v = \frac{1}{\frac{1}{v_1} + \frac{1}{v_2}}$ $m = v \left(\frac{m_1}{v_1} + \frac{m_2}{v_2}\right)$

$$\mathcal{N}(x; m_1, v_1) / \mathcal{N}(x; m_2, v_2) = \frac{v_2 \mathcal{N}(x; m, v)}{(v_2 - v_1) \mathcal{N}(m_1; m_2, v_2 - v_1)}$$

where $v = \frac{1}{\frac{1}{v_1} - \frac{1}{v_2}}$
 $m = v \left(\frac{m_1}{v_1} - \frac{m_2}{v_2}\right)$ 28

Approximation with narrow context

Approximation with medium context

Approximation with wide context

Two factors

Three factors

Message Passing = Distributed Optimization $q(x) = f_{1}(x) f_{2}(x) f_{3}(x)$

- Messages represent a simpler distribution q(x) that approximates p(x)
 - A *distributed* representation
- Message passing = optimizing q to fit p
 - \boldsymbol{q} stands in for \boldsymbol{p} when answering queries
- Choices:
 - What type of distribution to construct (approximating family)
 - What cost to minimize (divergence measure)

Distributed divergence minimization

• Write p as product of factors:

$$p(x) = \prod_a f_a(x)$$

- Approximate factors one by one: $f_a(x) o ilde{f}_a(x)$
- Multiply to get the approximation:

$$q(x) = \prod_a \tilde{f}_a(x)$$

Global divergence to local divergence

- Global divergence: D(p(x) || q(x)) = $D(f_a(x) \prod_{b \neq a} f_b(x) || \tilde{f}_a(x) \prod_{b \neq a} \tilde{f}_b(x))$
- Local divergence:

$D(f_a(x)\prod_{b\neq a}\tilde{f}_b(x) || \tilde{f}_a(x)\prod_{b\neq a}\tilde{f}_b(x))$
Message passing

- Messages are passed between *factors*
- Messages are factor approximations: $\tilde{f}_a(x)$
- Factor *a* receives $\tilde{f}_b(x), b \neq a$
 - Minimize local divergence to get $\tilde{f}_a(x)$
 - Send to other factors
 - Repeat until convergence

Gaussian found by EP

Other methods

Accuracy

Posterior mean:

exact = 1.64864 ep = 1.64514 laplace = 1.61946 vb = 1.61834

Posterior variance:

exact	= 0.359673
ер	= 0.311474
laplace	= 0.234616
vb	= 0.171155

Cost vs. accuracy

Deterministic methods improve with more data (posterior is more Gaussian) Sampling methods do not

Time series problems

Example: Tracking

Guess the position of an object given noisy measurements

Factor graph

e.g. $x_t = x_{t-1} + v_t$ (random walk)

 $y_t = x_t + \text{noise}$

want distribution of x's given y's

44

Approximate factor graph

Splitting a pairwise factor

Example: Poisson tracking

 y_t is a Poisson-distributed integer with mean exp(x_t)

Poisson tracking model

 $p(x_1) \sim N(0,100)$

$$p(x_t | x_{t-1}) \sim N(x_{t-1}, 0.01)$$

$$p(y_t | x_t) = \exp(y_t x_t - e^{x_t}) / y_t!$$

Factor graph

Approximating a measurement factor

 $x_{1} = q_{q}(x_{1})$ $\downarrow \mathcal{P}_{\bullet}(y_{1}; e^{x_{1}})$ $N(x_{1}; m_{1}, y_{1}) = \underbrace{\rho_{0}(y_{1}, y_{1})}_{q_{0}(x_{1})}$ $\hat{q}_{\mathcal{D}}(\mathbf{x}_{l})$ $x_{1} = q_{x_{1}}(x_{i}) \qquad N(x_{i}; m_{i}, v_{i}) q_{x_{1}}(x_{i}) = p_{\tau_{0}} \int \left[P_{0}(y_{1}; e^{x_{i}}) q_{x_{1}}(x_{1}) \right]$

EP for signal detection

- Wireless communication problem
- Transmitted signal = $a \sin(\omega t + \phi)$
- (a,ϕ) vary to encode each symbol
- In complex numbers: $ae^{i\phi}$

Binary symbols, Gaussian noise

- Symbols are 1 and -1 (in complex plane)
- Received signal = $a \sin(\omega t + \phi) + \text{noise}$
- Recovered $\hat{a}e^{\hat{\phi}} = ae^{\phi} + \text{noise} = y_t$
- Optimal detection is easy in this case

Fading channel

Channel systematically changes amplitude and phase:

 $y_t = x_t s + \text{noise}$

• x_t changes over time

Differential detection

- Use last measurement to estimate state
- Binary symbols only
- No smoothing of state = noisy

Factor graph

Symbols can also be correlated (e.g. error-correcting code)Dynamics are learned from training data (all 1's)64

Splitting a transition factor

Splitting a measurement factor

On-line implementation

- Iterate over the last δ measurements
- Previous measurements act as prior
- Results comparable to particle filtering, but much faster

Linear separation revisited

Geometry of linear separation

Separator is any vector w such that:

 $\mathbf{w}^{T} \mathbf{x}_{i} > 0 \quad \text{(class 1)} \\ \mathbf{w}^{T} \mathbf{x}_{i} < 0 \quad \text{(class 2)} \\ \|\mathbf{w}\| = 1 \quad \text{(sphere)}$

This set has an unusual shape SVM: Optimize over it Bayes: Average over it

Factor graph

 $p(y_i = \pm 1 \mid \mathbf{x}_i, \mathbf{w}) = I(y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w} > 0)$

Performance on linear separation

EP Gaussian approximation to posterior

Time vs. accuracy

TAP = cavity method (equiv to Gaussian EP for this problem)

Gaussian kernels

Map data into high-dimensional space so that

$$\phi(\mathbf{x}_i)^{\mathrm{T}}\phi(\mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Bayesian model comparison

- Multiple models M_i with prior probabilities $p(M_i)$
- Posterior probabilities:

 $p(M_i|D) \propto p(D|M_i)p(M_i)$

• For equal priors, models are compared using model evidence:

 $p(D|M_i) = \int_{\theta} p(D, \theta | M_i) d\theta$

Highest-probability kernel

78

Margin-maximizing kernel

Bayesian feature selection

Synthetic data where 6 features are relevant (out of 20)

EP versus Monte Carlo

- Monte Carlo is general but expensive
 A sledgehammer
- EP exploits underlying simplicity of the problem (if it exists)
- Monte Carlo is still needed for complex problems (e.g. large isolated peaks)
- Trick is to know what problem you have

Further reading

- Bayes Point Machine toolbox
 <u>http://research.microsoft.com/~minka/papers/ep/bpm/</u>
- EP bibliography

http://research.microsoft.com/~minka/papers/ep/roadmap.html

• EP quick reference

http://research.microsoft.com/~minka/papers/ep/minka-epquickref.pdf