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A typical machine learning problem
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A typical machine learning problem



Spam filtering by linear separation
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Spam

Not spam

Choose a boundary that will generalize to new data



Linear separation

Minimum training error

solution (Perceptron)

4Too close to data – won’t generalize well



Linear separation

Maximum-margin 

solution (SVM)

5Ignores information in the vertical direction



Linear separation
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Bayesian 

solution

(via averaging)

Has a margin, and uses information in all dimensions



Geometry of linear separation

Separator is any vector w such that:

0>i

T
xw (class 1)

0<i

T
xw (class 2)

1=w (sphere)
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1=w (sphere)

This set has an unusual shape

SVM: Optimize over it

Bayes: Average over it



Performance on linear 

separation
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EP Gaussian approximation to posterior



Bayesian paradigm

• Consistent use of probability theory for 
representing unknowns (parameters, 
latent variables, missing data)
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Factor graphs

• Shows how a function of several variables 
can be factored into a product of simpler 
functions

• f(x,y,z) = (x+y)(y+z)(x+z)
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• f(x,y,z) = (x+y)(y+z)(x+z)

• Very useful for representing posteriors



Example factor graphs
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Two tasks

• Modeling
– What graph should I use for this data?

• Inference
– Given the graph and data, what is the mean 
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– Given the graph and data, what is the mean 
of x (for example)?

– Algorithms: 
• Sampling

• Variable elimination

• Message-passing (Expectation Propagation, 
Variational Bayes, …)



Division of labor

• Model construction

– Domain specific (computer vision, biology, 

text)

• Inference computation
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• Inference computation

– Generic, mechanical

– Further divided into:

• Fitting an approximate posterior

• Computing properties of the approx posterior



Benefits of the division

• Algorithmic knowledge is consolidated into 
general graph-based algorithms (like EP)

• Applied research has more freedom in 
choosing models

14

choosing models

• Algorithm research has much wider impact



Take-home message

• Applied researcher: 

– express your model as factor graph

– use graph-based inference algorithms

• Algorithm researcher:
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• Algorithm researcher:

– present your algorithm in terms of graphs



A (seemingly) intractable problem
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A (seemingly) intractable problem



Clutter problem

• Want to estimate x given multiple y’s
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Exact posterior
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Representing posterior distributions

Sampling Deterministic approximation
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Good for complex,

multi-modal distributions

Slow, but predictable accuracy

Good for simple, 

smooth distributions

Fast, but unpredictable accuracy



Deterministic approximation

Laplace’s method

• Bayesian curve fitting, neural    

networks (MacKay)

• Bayesian PCA (Minka)
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Variational bounds

• Bayesian mixture of experts (Waterhouse)

• Mixtures of PCA (Tipping, Bishop)

• Factorial/coupled Markov models 

(Ghahramani, Jordan, Williams)



Moment matching

Another way to perform

deterministic approximation

• Much higher accuracy on some 

problems
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Expectation Propagation

Assumed-density filtering

Loopy belief propagation
(1997)

(1984)

(2001)



Best Gaussian by moment 

matching

p
(x

,D
)

exact

bestGaussian
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Strategy

• Approximate each factor by a Gaussian in 
x
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Approximating a single factor
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Single factor with Gaussian context
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Gaussian multiplication formula
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Approximation with narrow context
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Approximation with medium context
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Approximation with wide context
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Two factors

x
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x

Message passing



Three factors

x
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x

Message passing



Message Passing = 

Distributed Optimization

• Messages represent a simpler distribution q(x)
that approximates p(x)
– A distributed representation

• Message passing = optimizing q to fit p
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• Message passing = optimizing q to fit p
– q stands in for p when answering queries

• Choices:
– What type of distribution to construct (approximating 

family)

– What cost to minimize (divergence measure)



• Write p as product of factors:

• Approximate factors one by one:

Distributed divergence minimization
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• Approximate factors one by one:

• Multiply to get the approximation:



Global divergence to local divergence

• Global divergence:
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• Local divergence:



Message passing

• Messages are passed between factors

• Messages are factor approximations:

• Factor a receives           

– Minimize local divergence to get        
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– Minimize local divergence to get        

– Send to other factors

– Repeat until convergence



Gaussian found by EP

p
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,D
)

ep

exact

bestGaussian
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Other methods
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Accuracy

Posterior mean:

exact    = 1.64864

ep         = 1.64514

laplace = 1.61946

vb         = 1.61834
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vb         = 1.61834

Posterior variance:

exact    = 0.359673

ep         = 0.311474

laplace = 0.234616

vb         = 0.171155



Cost vs. accuracy
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20 points 200 points

Deterministic methods improve with more data (posterior is more Gaussian)

Sampling methods do not



Time series problems
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Time series problems



Example: Tracking

Guess the position of an object given noisy measurements
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1y

4y

Object

1x
2x

3x

4x

2y

3y



Factor graph

1x 2x 3x 4x
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1y 2y
3y 4y

ttt xx += −1

noise+= tt xy

(random walk)e.g.

want distribution of x’s given y’s



Approximate factor graph

1x 2x 3x 4x
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Splitting a pairwise factor

1x 2x
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1x 2x



Splitting in context

2x 3x
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2x 3x



Sweeping through the graph

1x 2x 3x 4x
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Sweeping through the graph

1x 2x 3x 4x
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Sweeping through the graph

1x 2x 3x 4x
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Sweeping through the graph

1x 2x 3x 4x
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Example: Poisson tracking

• yt is a Poisson-distributed integer with      
mean exp(xt)
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Poisson tracking model

)01.0,(~)|( xNxxp

)100,0(~)( 1 Nxp
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Factor graph

1x 2x 3x 4x
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1y 2y
3y 4y

1x 2x 3x 4x



Approximating a measurement 

factor

1x
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1y

1x
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Posterior for the last state
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58
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EP for signal detection

• Wireless communication problem

• Transmitted signal =

• vary to encode each symbol 

• In complex numbers:

)sin( φω +ta

φi

),( φa
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• In complex numbers: φi
ae

Re

Im

φ
a



Binary symbols, Gaussian noise

• Symbols are 1 and –1 (in complex plane)

• Received signal =

• Recovered 

• Optimal detection is easy in this case          

noise)sin( ++φωta

tyaeea =+= noiseˆ
ˆ φφ
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• Optimal detection is easy in this case          

ty

0
s

1
s



Fading channel

• Channel systematically changes amplitude 
and phase:

• changes over time

noise+= sxy tt

x
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• changes over timetx

ty

0
sxt

1
sxt



Differential detection

• Use last measurement to estimate state

• Binary symbols only

• No smoothing of state = noisy
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ty

1−− ty

1−ty



Factor graph

y y y y

1s 2s 3s
4s
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1y 2y
3y 4y

1x 2x 3x
4x

Dynamics are learned from training data (all 1’s)

Symbols can also be correlated (e.g. error-correcting code)
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Splitting a transition factor
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Splitting a measurement factor
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On-line implementation

• Iterate over the last δ measurements

• Previous measurements act as prior

• Results comparable to particle filtering, but 
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• Results comparable to particle filtering, but 
much faster
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Linear separation revisited

71

Linear separation revisited



Geometry of linear separation

Separator is any vector w such that:

0>i

T
xw (class 1)

0<i

T
xw (class 2)

1=w (sphere)
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1=w (sphere)

This set has an unusual shape

SVM: Optimize over it

Bayes: Average over it



Factor graph
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Performance on linear 

separation
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EP Gaussian approximation to posterior



Time vs. accuracy

A typical run on the 3-point problem

Error = distance to true mean of w
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Billiard = Monte Carlo sampling

(Herbrich et al, 2001)

Opper&Winther’s algorithms:

MF = mean-field theory

TAP = cavity method (equiv to Gaussian EP for this problem)



Gaussian kernels

• Map data into high-dimensional space so 
that
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Bayesian model comparison

• Multiple models Mi with prior probabilities 
p(Mi)

• Posterior probabilities:
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• For equal priors, models are compared 
using model evidence:



Highest-probability kernel
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Margin-maximizing kernel

79



Bayesian feature selection

Synthetic data where 6 features are relevant (out of 20)
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Bayes picks 6 Margin picks 13



EP versus Monte Carlo

• Monte Carlo is general but expensive

– A sledgehammer

• EP exploits underlying simplicity of the 
problem (if it exists)
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problem (if it exists)

• Monte Carlo is still needed for complex 
problems (e.g. large isolated peaks)

• Trick is to know what problem you have



Further reading

• Bayes Point Machine toolbox 
http://research.microsoft.com/~minka/papers/ep/bpm/
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• EP bibliography  
http://research.microsoft.com/~minka/papers/ep/roadmap.html

• EP quick reference
http://research.microsoft.com/~minka/papers/ep/minka-ep-
quickref.pdf


