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Info

Carl Edward Rasmussen and Christopher K. 1. Williams

The GP book: Rasmussen and Williams, 2006

Basic GP (Matlab) code available:
http://www.gaussianprocess.org/gpml/



Gaussian process history

Prediction with GPs:

e [ime series: Wiener, Kolmogorov 1940's

e Geostatistics:  kriging 1970's — naturally only two or three
dimensional input spaces

e Spatial statistics in general: see Cressie [1993] for overview
e General regression: O'Hagan [1978]
e Computer experiments (noise free): Sacks et al. [1989]

e Machine learning: Williams and Rasmussen [1996], Neal [1996]



Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X, y}

A Gaussian process is a prior over functions p(f) which can be used
for Bayesian regression:

p(f)p(D|f)

p(f|D) = (D)




What is a Gaussian process?

e Continuous stochastic process — random functions — a set of
random variables indexed by a continuous variable: f(x)

e Set of ‘inputs’ X = {x1,x9,...,xN},; corresponding set of random
function variables f = { f1, fo,..., fn}

e GP: Any set of function variables {f,}._, has joint (zero mean)
Gaussian distribution:

p(f|X) = N(0,K)
e Conditional model - density of inputs not modeled

e Consistency: p(f1) = /dfz p(f1, f2)



Covariances

Where does the covariance matrix K come from?
e Covariance matrix constructed from covariance function:

Kij = K(zi, z;)

e Covariance function characterizes correlations between different
points in the process:

K(z,z') = E[f(z)f(z')]

e Must produce positive semidefinite covariance matrices v' Kv > (

e Ensures consistency



Squared exponential (SE) covariance
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e [ntuition: function variables close in input space are highly
correlated, whilst those far away are uncorrelated

e )\, 09 — hyperparameters. \: lengthscale, ogg: amplitude
e Stationary: K(x,2’') = K(x — x’) — invariant to translations

e Very smooth sample functions — infinitely differentiable



Matérn class of covariances
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where K, is a modified Bessel function.

e Stationary, isotropic

e v — 0o: SE covariance

e Finite v: much rougher sample functions

o v=1/2: K(z,2') = exp(—|x — z'|/)\), OU process, very rough
sample functions



Nonstationary covariances

Linear covariance: K(z,2') = 0§ + xx’

Brownian motion (Wiener process): K(z,z') = min(z, x')

Periodic covariance: K(x,z’) = exp(—

Neural network covariance
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Constructing new covariances from old

There are several ways to combine covariances:

e Sum: K(x,2') = Kq(x,2") + Ka(x,2)
addition of independent processes

e Product: K(x,2") = Ki(z,2")Ka(x,x')
product of independent processes

e Convolution: K(z,z') = /dz dz' h(zx,2)K(z,2"Yh(z',2")

blurring of process with kernel h



Prediction with GPs

e We have seen examples of GPs with certain covariance functions

e General properties of covariances controlled by small number of
hyperparameters

e Task: prediction from noisy data

e Use GP as a Bayesian prior expressing beliefs about underlying
function we are modeling

e Link to data via noise model or likelihood
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GP regression with Gaussian noise

Data generated with Gaussian white noise around the function f
y=f-+e¢ Ele(x)e(z)] = o%6(x — 2')
Equivalently, the noise model, or likelihood is:
p(ylf) = N (f,0"T)
Integrating over the function variables gives the marginal likelihood:

p(y) = / df p(y|f)p(f)
= N(0,K + o°1)
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Prediction

N training input and output pairs (X,y), and T test inputs X

Consider joint training and test marginal likelihood:

K K
p(Y?YT) — N(OaKN+T + 021) , Kyir= [ N NT] ;

KTN KT

Condition on training outputs: p(yr|y) = N (., 37)

. =Knw[Ky + 0’7ty
Yr=Kr — KKy + I ' Kyr + 0’1

Gives correlated predictions. Defines a predictive Gaussian process
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Prediction

e Often only marginal variances (diag 37) are required — sufficient
to consider a single test input x,:

W = K*N[KN + 021]_1}’
O'>|2< = K* — K*N[KN + O'ZI]_lKN* + 02 .

e Mean predictor is a linear predictor: u, = Ky
e Inversion of Ky + o°I costs O(N?)

e Prediction cost per test case is O(N) for the mean and O(N?) for
the variance

13



Determination of hyperparameters

e Advantage of the probabilistic GP framework — ability to choose
hyperparameters and covariances directly from the training data

e Other models, e.g. SVMs, splines etc. require cross validation

e GP: minimize negative log marginal likelihood L(0) wrt
hyperparameters and noise level 6:

1 1 N
L =—logp(yl@) = §log det C(0) + §yTC_1(0)y + Elog(Zw)

where C = K + ¢?1

e Uncertainty in the function variables f is taken into account
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Gradient based optimization

e Minimization of £(8) is a non-convex optimization task
e Standard gradient based techniques, such as CG or quasi-Newton

e Gradients:

e Local minima, but usually not much of a problem with few
hyperparameters

e Use weighted sums of covariances and let ML choose
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Automatic relevance determination?

The ARD SE covariance function for multi-dimensional inputs:

2
K(x,x') =ofexp |—= Z (xd _ xd)

e Learn an individual lengthscale hyperparameter A\, for each input

dimension x4
e )\, determines the relevancy of input feature d to the regression

o |f \; very large, then the feature is irrelevant

'Neal, 1996. MacKay, 1998.
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Relationship to generalized linear regression

o Weighted sum of fixed finite set of M basis functions:
M
f(z) =) wndm(z) =w' ()
m=1

e Place Gaussian prior on weights: p(w) = N (0,X,,)

e Defines GP with finite rank M (degenerate) covariance function:
K(z,2") = E[f(x)f(2)] = @' (2)Swep(z')

e Function space vs. weight space interpretations
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Relationship to generalized linear regression

e General GP — can specify covariance function directly rather than
via set of basis functions

e Mercer's theorem: can always decompose covariance function into
eigenfunctions and eigenvalues:

K(z,2') = Z Aithi(x)i()

o |f sum finite, back to linear regression. Often sum infinite, and no
analytical expressions for eigenfunctions

e Power of kernel methods in general (e.g. GPs, SVMs etc.) —
project x +— (x) into high or infinite dimensional feature space
and still handle computations tractably
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Relationship to neural networks

Neural net with one hidden layer of Ny units:

Ng
f(x)=b+ > wh(x;uy)
j=1

h — bounded hidden layer transfer function
(e.g. h(x;u) = erf(u'x))

o If v's and b zero mean independent, and weights u; iid, then CLT
implies NN — GP as Ny — oo [Neal, 1996]

e NN covariance function depends on transfer function h, but is in
general non-stationary
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Relationship to spline models

Univariate cubic spline has cost functional:

N

> (f(@n) —yn)® + A /O F(z)dx

n=1

e Can give probabilistic GP interpretation by considering RH term
as an (improper) GP prior

e Make proper by weak penalty on zeroth and first derivatives

e Can derive a spline covariance function, and full GP machinery can
be applied to spline regression (uncertainties, ML hyperparameters)

e Penalties on derivatives — equivalent to specifying the inverse
covariance function — no natural marginalization
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Relationship to support vector regression

GP regression SV regression

—log p(ylf)
—log p(ylf)

e c-insensitive error function can be considered as a non-Gaussian
likelihood or noise model. Integrating over f becomes intractable

e SV regression can be considered as MAP solution fyap to GP with
e-insensitive error likelihood

e Advantages of SVR: naturally sparse solution by QP, robust to
outliers. Disadvantages: uncertainties not taken into account, no
predictive variances, or learning of hyperparameters by ML
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Logistic and probit regression

e Binary classification task: y = =£1

e GLM likelihood: p(y = +1|x,w) = 7(x) = o(x'w)

e o(z) — sigmoid function such as the logistic or cumulative normal.
e Weight space viewpoint: prior p(w) = N(0,X,,)

e Function space viewpoint: let f(x) = w'x, then likelihood 7(x) =
o(f(x)), Gaussian prior on f
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GP classification

1. Place a GP prior directly on f(x)

2. Use a sigmoidal likelihood: p(y = +1|f) = o (f)

Just as for SVR, non-Gaussian likelihood makes integrating over f
Intractable:

p(F1y) = [ dEp(IDp(Ely)
where the posterior p(fly) o p(y|f)p(f)

Make tractable by using a Gaussian approximation to posterior.
Then prediction:

Py = +1]y) = / af. o (f)p(f.]y)
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GP classification

Two common ways to make Gaussian approximation to posterior:

1.

Laplace approximation. Second order Taylor approximation about
mode of posterior

Expectation propagation (EP)?. EP can be thought of as
approximately minimizing KL|p(f|ly)|l¢(fly)] by an iterative
procedure.

Kuss and Rasmussen [2005] evaluate both methods experimentally
and find EP to be significantly superior

Classification accuracy on digits data sets comparable to SVMs.
Advantages: probabilistic predictions, hyperparameters by ML

’Minka, 2001
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GP latent variable model (GPLVM)3

e Probabilistic model for dimensionality reduction: data is set of
high dimensional vectors: y1,y2,...,ynN

e Model each dimension (k) of y as an independent GP with
unknown low dimensional latent inputs: x1,X9,..., Xy

({Yn}‘{xn} X Hexp [_lkak K_lYk

e Maximize likelihood to find latent projections {x,} (not a true
density model for y because cannot tractably integrate over x).

e Smooth mapping from x to y with uncertainties

3Lawrence, 2004
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Application: GPLVMs for human pose modeling®

e High dimensional data points are feature vectors derived from pose
information from mo-cap data.

e Features:  joint angles, vertical orientation, velocity and
accelerations

e GPLVM used to learn low-dimensional trajectories of e.g. base-ball
pitch, basketball jump shot

e GPLVM predictive distribution used to make cost function for
finding new poses with constraints

*Grochow, Martin, Hertzmann, Popovic, 2004. Style-based inverse kinematics. Demos available
from http://grail.cs.washington.edu/projects/styleik/
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Sparse GP approximations

e Problem for large data sets: training GP O(N°?), prediction O(N?)
per test case

e Recent years — many approximations developed — reduce cost to
O(NM?) training and O(M?) prediction per test case

e Based around a low rank (M) covariance approximation

e See Quinonero Candela and Rasmussen [2005] for a review of
regression approximations

e Classification more complicated, so simpler approximations such
as IVM® may be more suitable

°Lawrence et al., 2003

27



Two stage generative model

X

pseudo-input prior

1. Choose any set of M (pseudo-) inputs X

2. Draw corresponding function values f from prior
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Two stage generative model

conditional
p(f|f) = N(p, %)
f M — KNMKX;f
3 = KN — KNMK]T;KMN
"
X
X .
X DK XREK
3. Draw f conditioned on f o

e This two stage procedure defines exactly the same GP prior

e \We have not gained anything yet, but it inspires a sparse
approximation ...
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Factorized approximation

single point conditional

p(fn‘f) = N(Nnv An)
f—\/. /\ /—\ )\n — Knn — KnMK]TjKMn
X A b
X RERK RO
Approximate: p(f|f) ~ Hp(fn\f) =N(u,A), A = diag()

n

Minimum KL: min KL {p(f\f) | an(fn)}

dn
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Sparse pseudo-input Gaussian processes (SPGP)°

Integrate out f to obtain SPGP prior: p(f) = [df ], p(fn|f) p(f)

GP prior SPGP/FITC prior
N(0,Ky)

Q

e SPGP/FITC covariance inverted in O(M?2N). Predictive mean and
variance computed in O(M) and O(M?) per test case respectively

e SPGP = GP with non-stationary covariance parameterized by X

°Snhelson and Ghahramani, 2005

31



1D demo

amplitude lengthscale noise

Initialize adversarially: amplitude and lengthscale too big
noise too small
pseudo-inputs bunched up
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amplitude

1D demo

lengthscale

X

XX X XK XXX X

Pseudo-inputs and hyperparameters optimized

noise
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Future GP directions

Design of covariance functions to encorporate more specific prior
knowledge
Beyond vectorial input data: structure in the input domain

Further improvements to sparse GP approximations to scale GPs

up for very large data sets

Beyond regression and classification, e.g. applications of latent

variable models such as GPLVM
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