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Info

The GP book: Rasmussen and Williams, 2006

Basic GP (Matlab) code available:

http://www.gaussianprocess.org/gpml/
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Gaussian process history

Prediction with GPs:

• Time series: Wiener, Kolmogorov 1940’s

• Geostatistics: kriging 1970’s — naturally only two or three

dimensional input spaces

• Spatial statistics in general: see Cressie [1993] for overview

• General regression: O’Hagan [1978]

• Computer experiments (noise free): Sacks et al. [1989]

• Machine learning: Williams and Rasmussen [1996], Neal [1996]
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Nonlinear regression

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data D = {X,y}

x

y

A Gaussian process is a prior over functions p(f) which can be used

for Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)
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What is a Gaussian process?

• Continuous stochastic process — random functions — a set of

random variables indexed by a continuous variable: f(x)

• Set of ‘inputs’ X = {x1, x2, . . . , xN}; corresponding set of random

function variables f = {f1, f2, . . . , fN}

• GP: Any set of function variables {fn}N
n=1 has joint (zero mean)

Gaussian distribution:

p(f |X) = N (0,K)

• Conditional model - density of inputs not modeled

• Consistency: p(f1) =
∫
df2 p(f1, f2)
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Covariances

Where does the covariance matrix K come from?

• Covariance matrix constructed from covariance function:

Kij = K(xi, xj)

• Covariance function characterizes correlations between different

points in the process:

K(x, x′) = E [f(x)f(x′)]

• Must produce positive semidefinite covariance matrices v>Kv ≥ 0

• Ensures consistency
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Squared exponential (SE) covariance

K(x, x′) = σ0
2 exp

[
−1

2

(
x− x′

λ

)2
]

• Intuition: function variables close in input space are highly

correlated, whilst those far away are uncorrelated

• λ, σ0 — hyperparameters. λ: lengthscale, σ0: amplitude

• Stationary: K(x, x′) = K(x− x′) — invariant to translations

• Very smooth sample functions — infinitely differentiable
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Matérn class of covariances

K(x, x′) =
21−ν

Γ(ν)

(√
2ν|x− x′|

λ

)ν

Kν

(√
2ν|x− x′|

λ

)
where Kν is a modified Bessel function.

• Stationary, isotropic

• ν →∞: SE covariance

• Finite ν: much rougher sample functions

• ν = 1/2: K(x, x′) = exp(−|x − x′|/λ), OU process, very rough

sample functions
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Nonstationary covariances

• Linear covariance: K(x, x′) = σ2
0 + xx′

• Brownian motion (Wiener process): K(x, x′) = min(x, x′)

• Periodic covariance: K(x, x′) = exp
(
−2 sin2

(
x−x′

2

)
λ2

)
• Neural network covariance
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Constructing new covariances from old

There are several ways to combine covariances:

• Sum: K(x, x′) = K1(x, x′) +K2(x, x′)
addition of independent processes

• Product: K(x, x′) = K1(x, x′)K2(x, x′)
product of independent processes

• Convolution: K(x, x′) =
∫
dz dz′ h(x, z)K(z, z′)h(x′, z′)

blurring of process with kernel h
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Prediction with GPs

• We have seen examples of GPs with certain covariance functions

• General properties of covariances controlled by small number of

hyperparameters

• Task: prediction from noisy data

• Use GP as a Bayesian prior expressing beliefs about underlying

function we are modeling

• Link to data via noise model or likelihood
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GP regression with Gaussian noise

Data generated with Gaussian white noise around the function f

y = f + ε E [ε(x)ε(x′)] = σ2δ(x− x′)

Equivalently, the noise model, or likelihood is:

p(y|f) = N (f , σ2I)

Integrating over the function variables gives the marginal likelihood :

p(y) =
∫

df p(y|f)p(f)

= N (0,K + σ2I)
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Prediction

N training input and output pairs (X,y), and T test inputs XT

Consider joint training and test marginal likelihood:

p(y,yT) = N (0,KN+T + σ2I) , KN+T =
[
KN KNT

KTN KT

]
,

Condition on training outputs: p(yT |y) = N (µT ,ΣT)

µT = KTN[KN + σ2I]−1y

ΣT = KT −KTN[KN + σ2I]−1KNT + σ2I

Gives correlated predictions. Defines a predictive Gaussian process
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Prediction

• Often only marginal variances (diag ΣT) are required — sufficient

to consider a single test input x∗:

µ∗ = K∗N[KN + σ2I]−1y

σ2
∗ = K∗ −K∗N[KN + σ2I]−1KN∗ + σ2 .

• Mean predictor is a linear predictor: µ∗ = K∗Nα

• Inversion of KN + σ2I costs O(N3)

• Prediction cost per test case is O(N) for the mean and O(N2) for

the variance
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Determination of hyperparameters

• Advantage of the probabilistic GP framework — ability to choose

hyperparameters and covariances directly from the training data

• Other models, e.g. SVMs, splines etc. require cross validation

• GP: minimize negative log marginal likelihood L(θ) wrt

hyperparameters and noise level θ:

L = − log p(y|θ) =
1
2

log detC(θ) +
1
2
y>C−1(θ)y +

N

2
log(2π)

where C = K + σ2I

• Uncertainty in the function variables f is taken into account
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Gradient based optimization

• Minimization of L(θ) is a non-convex optimization task

• Standard gradient based techniques, such as CG or quasi-Newton

• Gradients:

∂L
∂θi

=
1
2

trC−1∂C
∂θi

− 1
2
y>C−1∂C

∂θi
C−1y

• Local minima, but usually not much of a problem with few

hyperparameters

• Use weighted sums of covariances and let ML choose
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Automatic relevance determination1

The ARD SE covariance function for multi-dimensional inputs:

K(x,x′) = σ2
0 exp

[
−1

2

D∑
d=1

(
xd − x′d
λd

)2
]

• Learn an individual lengthscale hyperparameter λd for each input

dimension xd

• λd determines the relevancy of input feature d to the regression

• If λd very large, then the feature is irrelevant

1Neal, 1996. MacKay, 1998.
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Relationship to generalized linear regression

• Weighted sum of fixed finite set of M basis functions:

f(x) =
M∑

m=1

wmφm(x) = w>φ(x)

• Place Gaussian prior on weights: p(w) = N (0,Σw)

• Defines GP with finite rank M (degenerate) covariance function:

K(x, x′) = E [f(x)f(x′)] = φ>(x)Σwφ(x′)

• Function space vs. weight space interpretations
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Relationship to generalized linear regression

• General GP — can specify covariance function directly rather than

via set of basis functions

• Mercer’s theorem: can always decompose covariance function into

eigenfunctions and eigenvalues:

K(x, x′) =
∞∑

i=1

λiψi(x)ψi(x′)

• If sum finite, back to linear regression. Often sum infinite, and no

analytical expressions for eigenfunctions

• Power of kernel methods in general (e.g. GPs, SVMs etc.) —

project x 7→ ψ(x) into high or infinite dimensional feature space

and still handle computations tractably
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Relationship to neural networks

Neural net with one hidden layer of NH units:

f(x) = b+
NH∑
j=1

vjh(x;uj)

h — bounded hidden layer transfer function

(e.g. h(x;u) = erf(u>x))

• If v’s and b zero mean independent, and weights uj iid, then CLT

implies NN → GP as NH →∞ [Neal, 1996]

• NN covariance function depends on transfer function h, but is in

general non-stationary
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Relationship to spline models

Univariate cubic spline has cost functional:

N∑
n=1

(f(xn)− yn)2 + λ

∫ 1

0

f ′′(x)2dx

• Can give probabilistic GP interpretation by considering RH term

as an (improper) GP prior

• Make proper by weak penalty on zeroth and first derivatives

• Can derive a spline covariance function, and full GP machinery can

be applied to spline regression (uncertainties, ML hyperparameters)

• Penalties on derivatives — equivalent to specifying the inverse

covariance function — no natural marginalization
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Relationship to support vector regression

f y

−
lo

g 
p(

y|
f)

GP regression

e f e y

−
lo

g 
p(

y|
f)

SV regression

• ε-insensitive error function can be considered as a non-Gaussian

likelihood or noise model. Integrating over f becomes intractable

• SV regression can be considered as MAP solution fMAP to GP with

ε-insensitive error likelihood

• Advantages of SVR: naturally sparse solution by QP, robust to

outliers. Disadvantages: uncertainties not taken into account, no

predictive variances, or learning of hyperparameters by ML
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Logistic and probit regression

• Binary classification task: y = ±1

• GLM likelihood: p(y = +1|x,w) = π(x) = σ(x>w)

• σ(z) — sigmoid function such as the logistic or cumulative normal.

• Weight space viewpoint: prior p(w) = N (0,Σw)

• Function space viewpoint: let f(x) = w>x, then likelihood π(x) =
σ(f(x)), Gaussian prior on f
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GP classification

1. Place a GP prior directly on f(x)

2. Use a sigmoidal likelihood: p(y = +1|f) = σ(f)

Just as for SVR, non-Gaussian likelihood makes integrating over f
intractable:

p(f∗|y) =
∫

df p(f∗|f)p(f |y)

where the posterior p(f |y) ∝ p(y|f)p(f)

Make tractable by using a Gaussian approximation to posterior.

Then prediction:

p(y∗ = +1|y) =
∫
df∗ σ(f∗)p(f∗|y)
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GP classification

Two common ways to make Gaussian approximation to posterior:

1. Laplace approximation. Second order Taylor approximation about

mode of posterior

2. Expectation propagation (EP)2. EP can be thought of as

approximately minimizing KL[p(f |y)||q(f |y)] by an iterative

procedure.

• Kuss and Rasmussen [2005] evaluate both methods experimentally

and find EP to be significantly superior

• Classification accuracy on digits data sets comparable to SVMs.

Advantages: probabilistic predictions, hyperparameters by ML

2Minka, 2001
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GP latent variable model (GPLVM)3

• Probabilistic model for dimensionality reduction: data is set of

high dimensional vectors: y1,y2, . . . ,yN

• Model each dimension (k) of y as an independent GP with

unknown low dimensional latent inputs: x1,x2, . . . ,xN

p({yn}|{xn}) ∝
∏
k

exp
[
−1

2
w2

kY
>
k K−1Yk

]

• Maximize likelihood to find latent projections {xn} (not a true

density model for y because cannot tractably integrate over x).

• Smooth mapping from x to y with uncertainties

3Lawrence, 2004
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Application: GPLVMs for human pose modeling4

• High dimensional data points are feature vectors derived from pose

information from mo-cap data.

• Features: joint angles, vertical orientation, velocity and

accelerations

• GPLVM used to learn low-dimensional trajectories of e.g. base-ball

pitch, basketball jump shot

• GPLVM predictive distribution used to make cost function for

finding new poses with constraints

4Grochow, Martin, Hertzmann, Popovic, 2004. Style-based inverse kinematics. Demos available

from http://grail.cs.washington.edu/projects/styleik/
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Sparse GP approximations

• Problem for large data sets: training GP O(N3), prediction O(N2)
per test case

• Recent years — many approximations developed — reduce cost to

O(NM2) training and O(M2) prediction per test case

• Based around a low rank (M) covariance approximation

• See Quiñonero Candela and Rasmussen [2005] for a review of

regression approximations

• Classification more complicated, so simpler approximations such

as IVM5 may be more suitable

5Lawrence et al., 2003
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Two stage generative model

X̄

x

f
pseudo-input prior

p(f̄ |X̄) = N (0,KM)

1. Choose any set of M (pseudo-) inputs X̄

2. Draw corresponding function values f̄ from prior
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Two stage generative model

X̄

x

f

3. Draw f conditioned on f̄

conditional

p(f |f̄) = N (µ,Σ)

µ = KNMK−1
M f̄

Σ = KN −KNMK−1
M KMN

Σ

• This two stage procedure defines exactly the same GP prior

• We have not gained anything yet, but it inspires a sparse

approximation ...
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Factorized approximation

X̄

x

f

single point conditional

p(fn|f̄) = N (µn, λn)

µn = KnMK−1
M f̄

λn = Knn −KnMK−1
M KMn

Λ

Approximate: p(f |f̄) ≈
∏
n

p(fn|f̄) = N (µ,Λ) , Λ = diag(λ)

Minimum KL: min
qn

KL
[
p(f |f̄) ‖

∏
n

qn(fn)
]
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Sparse pseudo-input Gaussian processes (SPGP)6

Integrate out f̄ to obtain SPGP prior: p(f) =
∫

df̄
∏

n p(fn|f̄) p(f̄)

GP prior

N (0,KN) ≈
SPGP/FITC prior

p(f) = N (0,KNMK−1
M KMN + Λ)

≈ = +

• SPGP/FITC covariance inverted inO(M2N). Predictive mean and

variance computed in O(M) and O(M2) per test case respectively

• SPGP = GP with non-stationary covariance parameterized by X̄
6Snelson and Ghahramani, 2005
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1D demo

amplitudeamplitudeamplitude

x

y

X̄

amplitude lengthscale noise

Initialize adversarially: amplitude and lengthscale too big
noise too small
pseudo-inputs bunched up
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1D demo

amplitudeamplitudeamplitude

x

y

X̄

amplitude lengthscale noise

Pseudo-inputs and hyperparameters optimized
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Future GP directions

• Design of covariance functions to encorporate more specific prior

knowledge

• Beyond vectorial input data: structure in the input domain

• Further improvements to sparse GP approximations to scale GPs

up for very large data sets

• Beyond regression and classification, e.g. applications of latent

variable models such as GPLVM
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