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High level overview of our 3 lectures

1. Directed and undirected graphical models (today)

2. LP relaxations for MAP inference (Friday)

3. Junction tree algorithm for exact inference, belief propagation,
variational methods for approximate inference (next Wed)

Further reading / viewing:

Murphy, Machine Learning: a Probabilistic Perspective

Barber, Bayesian Reasoning and Machine Learning

Bishop, Pattern Recognition and Machine Learning

Koller and Friedman, Probabilistic Graphical Models
https://www.coursera.org/course/pgm

Wainwright and Jordan, Graphical Models, Exponential Families,
and Variational Inference
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Key ideas for graphical models

1 Represent the world as a collection of random variables
X1, . . . ,Xn with joint distribution p(X1, . . . ,Xn)

2 Learn the distribution from data

3 Perform inference (typically MAP or marginal)
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Challenges

1 Represent the world as a collection of random variables
X1, . . . ,Xn with joint distribution p(X1, . . . ,Xn)

How can we compactly describe this joint distribution?
Directed graphical models (Bayesian networks)
Undirected graphical models (Markov random fields, factor graphs)

2 Learn the distribution from data

Maximum likelihood estimation, other methods?
How much data do we need?
How much computation does it take?

3 Perform inference (typically MAP or marginal)

Exact inference: Junction Tree Algorithm
Approximate inference (belief propagation, variational methods...)
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How can we compactly describe the joint distribution?

Example: Medical diagnosis

Binary variable for each symptom (e.g. “fever”, “cough”, “fast
breathing”, “shaking”, “nausea”, “vomiting”)

Binary variable for each disease (e.g. “pneumonia”, “flu”,
“common cold”, “bronchitis”, “tuberculosis”)

Diagnosis is performed by inference in the model:

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

One famous model, Quick Medical Reference (QMR-DT), has 600
diseases and 4000 symptoms
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Representing the distribution

Naively, we could represent the distribution with a big table of
probabilities for every possible outcome

How many outcomes are there in QMR-DT? 24600

Learning of the distribution would require a huge amount of data

Inference of conditional probabilities, e.g.

p(pneumonia = 1 | cough = 1, fever = 1, vomiting = 0)

would require summing over exponentially many values

Moreover, gives no way to make predictions with previously unseen
observations

We need structure
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Structure through independence

If X1, . . . ,Xn are independent, then

p(x1, . . . , xn) = p(x1)p(x2) · · · p(xn)

For binary variables, probabilities for 2n outcomes can be described
by how many parameters?

n

However, this is not a very useful model – observing a variable Xi

cannot influence our predictions of Xj

Instead: if X1, . . . ,Xn are conditionally independent given Y ,
denoted as Xi ⊥ X−i | Y , then

p(y , x1, . . . , xn) = p(y)
n∏

i=1

p(xi | y)

This is a simple yet powerful model
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Example: naive Bayes for classification

Classify e-mails as spam (Y = 1) or not spam (Y = 0)
Let i ∈ {1, . . . , n} index the words in our vocabulary
Xi = 1 if word i appears in an e-mail, and 0 otherwise
E-mails are drawn according to some distribution p(Y ,X1, . . . ,Xn)

Suppose that the words are conditionally independent given Y
Then,

p(y , x1, . . . xn) = p(y)
n∏

i=1

p(xi | y)

Easy to learn the model with maximum likelihood. Predict with:

p(Y = 1 | x1, . . . xn) =
p(Y = 1)

∏n
i=1 p(xi | Y = 1)∑

y={0,1} p(Y = y)
∏n

i=1 p(xi | Y = y)

Is conditional independence a reasonable assumption?

A model may be “wrong” but still useful
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Directed graphical models = Bayesian networks

A Bayesian network is specified by a directed acyclic graph

DAG= (V , ~E ) with:
1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node,
p(xi | xPa(i)), specifying the variable’s probability conditioned on its
parents’ values

The DAG corresponds 1-1 with a particular factorization of the
joint distribution:

p(x1, . . . xn) =
∏
i∈V

p(xi | xPa(i))
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Bayesian networks are generative models

naive Bayes

Y

X1 X2 X3 Xn. . .

Features

Label

   

Evidence is denoted by shading in a node

Can interpret Bayesian network as a generative process. For
example, to generate an e-mail, we

1 Decide whether it is spam or not spam, by samping y ∼ p(Y )
2 For each word i = 1 to n, sample xi ∼ p(Xi | Y = y)
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Bayesian network structure ⇒ conditional independencies

Generalizing earlier example, can show that a variable is
independent from its non-descendants given its parents

Common parent – fixing B decouples A and C
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Cascade – knowing B decouples A and C
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This important phenomona is called explaining away
p(A,B,C ) = p(A)p(B)p(C | A,B) head to head
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D-separation (“directed separation”) in Bayesian networks

Bayes Ball Algorithm to determine whether X ⊥ Z | Y by looking
at graph d-separation

Look to see if there is active path between X and Z when
variables Y are observed:

(a)

X

Y

Z X

Y

Z

(b)

(a)

X

Y

Z

(b)

X

Y

Z
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D-separation (“directed separation”) in Bayesian networks

Bayes Ball Algorithm to determine whether X ⊥ Z | Y by looking
at graph d-separation

Look to see if there is active path between X and Z when
variables Y are observed:

X Y Z X Y Z

(a) (b)

If no such path, then X and Z are d-separated with respect to Y

d-separation reduces statistical independencies (hard) to
connectivity in graphs (easy)

Important because it allows us to quickly prune the Bayesian
network, finding just the relevant variables for answering a query
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D-separation example 1

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6
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D-separation example 2

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6
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2011 Turing Award was for Bayesian networks
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Example: hidden Markov model (HMM)

X1 X2 X3 X4 X5 X6

Y1 Y2 Y3 Y4 Y5 Y6

Frequently used for speech recognition and part-of-speech tagging

Joint distribution factors as:

p(y, x) = p(y1)p(x1 | y1)
T∏
t=2

p(yt | yt−1)p(xt | yt)

p(y1) is the initial distribution of the starting state
p(yt | yt−1) is the transition probability between hidden states
p(xt | yt) is the emission probability

What are the conditional independencies here?

Many, e.g. Y1 ⊥ {Y3, . . . ,Y6} | Y2
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Summary

A Bayesian network specifies the global distribution by a DAG
and local conditional probability distributions (CPDs) for each
node

Can interpret as a generative model, where variables are sampled
in topological order

Examples: naive Bayes, hidden Markov models (HMMs), latent
Dirichlet allocation

Conditional independence via d-separation

Compute the probability of any assignment by multiplying CPDs

Maximum likelihood learning of CPDs is easy (decomposes, can
estimate each CPD separately)
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Undirected graphical models

An alternative representation for a joint distribution is an undirected
graphical model

As for directed models, we have one node for each random variable

Rather than CPDs, we specify (non-negative) potential functions over
sets of variables associated with cliques C of the graph,

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Like a CPD, φc(xc) can be represented as a table, but it is not
normalized

Also known as Markov random fields (MRFs) or Markov networks
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Undirected graphical models

p(x1, . . . , xn) =
1

Z

∏
c∈C

φc(xc), Z =
∑

x̂1,...,x̂n

∏
c∈C

φc(x̂c)

Simple example (each edge potential function encourages its variables to take
the same value):

B

A C

10 1

1 10
A

B
0 1

0

1

φA,B(a, b) =

10 1

1 10
B

C
0 1

0

1

φB,C(b, c) = φA,C(a, c) =

10 1

1 10
A

C
0 1

0

1

p(a, b, c) =
1

Z
φA,B(a, b) · φB,C (b, c) · φA,C (a, c),

where

Z =
∑

â,b̂,ĉ∈{0,1}3
φA,B(â, b̂) · φB,C (b̂, ĉ) · φA,C (â, ĉ) = 2 · 1000 + 6 · 10 = 2060.
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Markov network structure ⇒ conditional independencies

Let G be the undirected graph where we have one edge for every
pair of variables that appear together in a potential

Conditional independence is given by graph separation

XA

XB

XC

XA ⊥ XC | XB if there is no path from a ∈ A to c ∈ C after
removing all variables in B
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Markov blanket

A set U is a Markov blanket of X if X /∈ U and if U is a minimal
set of nodes such that X ⊥ (X − {X} −U) | U

In undirected graphical models, the Markov blanket of a variable is
precisely its neighbors in the graph:

X

In other words, X is independent of the rest of the nodes in the
graph given its immediate neighbors
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Directed and undirected models are different
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Directed and undirected models are different

With <3 edges,
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Example: Ising model

Invented by the physicist Wilhelm Lenz (1920), who gave it as a problem
to his student Ernst Ising

Mathematical model of ferromagnetism in statistical mechanics

The spin of an atom is influenced by the spins of atoms nearby on the
material:

=  +1

=  -1

Each atom Xi ∈ {−1,+1}, whose value is the direction of the atom spin

If a spin at position i is +1, what is the probability that the spin at
position j is also +1?

Are there phase transitions where spins go from “disorder” to “order”?
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Example: Ising model

Each atom Xi ∈ {−1,+1}, whose value is the direction of the atom spin

The spin of an atom is influenced by the spins of atoms nearby on the
material:

=  +1

=  -1

p(x1, · · · , xn) =
1

Z
exp

1

T

(∑
i<j

wi,jxixj +
∑
i

θixi
)

When wi,j > 0, adjacent atoms encouraged to have the same spin
(attractive or ferromagnetic); wi,j < 0 encourages Xi 6= Xj

Node potentials θi encode the bias of the individual atoms

Varying the temperature T makes the distribution more or less spiky
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Supplementary material

Extra slides for questions or further explanation
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Basic idea

Suppose we have a simple chain A→ B → C → D,
we want to compute p(D)

p(D) is a set of values, {p(D = d), d ∈ Val(D)}. Algorithm
computes sets of values at a time – an entire distribution

The joint distribution factors as

p(A,B,C ,D) = p(A)p(B | A)p(C | B)p(D | C )

In order to compute p(D), we have to marginalize over A,B,C :

p(D) =
∑
a,b,c

p(A = a,B = b,C = c,D)
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How can we perform the sum efficiently?

Our goal is to compute

p(D) =
∑
a,b,c

p(a, b, c ,D) =
∑
a,b,c

p(a)p(b | a)p(c | b)p(D | c)

=
∑
c

∑
b

∑
a

p(D | c)p(c | b)p(b | a)p(a)

We can push the summations inside to obtain:

p(D) =
∑
c

p(D | c)
∑
b

p(c | b)
∑
a

p(b | a)p(a)︸ ︷︷ ︸
ψ1(a,b)︸ ︷︷ ︸
τ1(b)

Let’s call ψ1(A,B) = P(A)P(B|A). Then, τ1(B) =
∑

a ψ1(a,B)

Similarly, let ψ2(B,C ) = τ1(B)P(C |B). Then, τ2(C ) =
∑

b ψ1(b,C )

This procedure is dynamic programming: computation is inside out
instead of outside in
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Inference in a chain

Generalizing the previous example, suppose we have a chain
X1 → X2 → · · · → Xn, where each variable has k states

For i = 1 up to n − 1, compute (and cache)

p(Xi+1) =
∑
xi

p(Xi+1 | xi )p(xi )

Each update takes k2 time (why?)

The total running time is O(nk2)

In comparison, naively marginalizing over all latent variables has
complexity O(kn)

We did inference over the joint without ever explicitly constructing it!
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ML learning in Bayesian networks

Maximum likelihood learning: maxθ `(θ;D), where

`(θ;D) = log p(D; θ) =
∑
x∈D

log p(x; θ)

=
∑
i

∑
x̂pa(i)

∑
x∈D:

xpa(i)=x̂pa(i)

log p(xi | x̂pa(i))

In Bayesian networks, we have the closed form ML solution:

θML
xi |xpa(i) =

Nxi ,xpa(i)∑
x̂i
Nx̂i ,xpa(i)

where Nxi ,xpa(i) is the number of times that the (partial) assignment
xi , xpa(i) is observed in the training data

We can estimate each CPD independently because the objective
decomposes by variable and parent assignment
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Parameter learning in Markov networks

How do we learn the parameters of an Ising model?

=  +1

=  -1

p(x1, · · · , xn) =
1

Z
exp

(∑
i<j

wi,jxixj +
∑
i

θixi
)
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Bad news for Markov networks

The global normalization constant Z (θ) kills decomposability:

θML = arg max
θ

log
∏
x∈D

p(x; θ)

= arg max
θ

∑
x∈D

(∑
c

log φc(xc ; θ)− logZ (θ)

)

= arg max
θ

(∑
x∈D

∑
c

log φc(xc ; θ)

)
− |D| logZ (θ)

The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

Solving for the parameters becomes much more complicated
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