
Junction Tree, BP and Variational Methods

Adrian Weller

MLSALT4 Lecture
Feb 21, 2018

With thanks to David Sontag (MIT) and Tony Jebara (Columbia)
for use of many slides and illustrations

For more information, see
http://mlg.eng.cam.ac.uk/adrian/

1 / 32

High level overview of our 3 lectures

1. Directed and undirected graphical models (last Wed)

2. LP relaxations for MAP inference (last Friday)

3. Junction tree algorithm for exact inference, belief propagation,
variational methods for approximate inference (today)

Further reading / viewing:

Murphy, Machine Learning: a Probabilistic Perspective

Barber, Bayesian Reasoning and Machine Learning

Bishop, Pattern Recognition and Machine Learning

Koller and Friedman, Probabilistic Graphical Models
https://www.coursera.org/course/pgm

Wainwright and Jordan, Graphical Models, Exponential Families,
and Variational Inference

2 / 32

https://www.coursera.org/course/pgm

Review: directed graphical models = Bayesian networks

A Bayesian network is specified by a directed acyclic graph

DAG= (V , ~E) with:
1 One node i ∈ V for each random variable Xi

2 One conditional probability distribution (CPD) per node,
p(xi | xPa(i)), specifying the variable’s probability conditioned on its
parents’ values

The DAG corresponds 1-1 with a particular factorization of the
joint distribution:

p(x1, . . . xn) =
∏

i∈V
p(xi | xPa(i))

3 / 32

Review: undirected graphical models = MRFs

As for directed models, we have one node for each random variable

Rather than CPDs, we specify (non-negative) potential functions over
sets of variables associated with (maximal) cliques C of the graph,

p(x1, . . . , xn) =
1

Z

∏

c∈C

φc(xc)

Z is the partition function and normalizes the distribution:

Z =
∑

x̂1,...,x̂n

∏

c∈C

φc(x̂c)

Like a CPD, φc(xc) can be represented as a table, but it is not
normalized

For both directed and undirected models, the joint probability is the
product of sub-functions of (small) subsets of variables

4 / 32

Directed and undirected models are different

With <3 edges,

p(x , y , z) = p(x)p(z)p(y |x , z) =: φc(x , y , z), c = {x , y , z}
p(x1, . . . , xn) = 1

Z

∏
c∈C φc(xc) What if we double φc?

5 / 32

Directed and undirected models are different

With <3 edges,

p(x , y , z) = p(x)p(z)p(y |x , z)

=: φc(x , y , z), c = {x , y , z}
p(x1, . . . , xn) = 1

Z

∏
c∈C φc(xc) What if we double φc?

5 / 32

Directed and undirected models are different

With <3 edges,

p(x , y , z) = p(x)p(z)p(y |x , z) =: φc(x , y , z), c = {x , y , z}
p(x1, . . . , xn) = 1

Z

∏
c∈C φc(xc)

What if we double φc?

5 / 32

Directed and undirected models are different

With <3 edges,

p(x , y , z) = p(x)p(z)p(y |x , z) =: φc(x , y , z), c = {x , y , z}
p(x1, . . . , xn) = 1

Z

∏
c∈C φc(xc) What if we double φc?

5 / 32

Undirected graphical models / factor graphs

p(x1, . . . , xn) =
1

Z

∏

c∈C

φc(xc), Z =
∑

x̂1,...,x̂n

∏

c∈C

φc(x̂c)

Simple example (each edge potential function encourages its variables to take
the same value):

B

A C

10 1

1 10
A

B
0 1

0

1

φA,B(a, b) =

10 1

1 10
B

C
0 1

0

1

φB,C(b, c) = φA,C(a, c) =

10 1

1 10
A

C
0 1

0

1

p(a, b, c) =
1

Z
φA,B(a, b) · φB,C (b, c) · φA,C (a, c), where

Z =
∑

â,b̂,ĉ∈{0,1}3

φA,B(â, b̂) · φB,C (b̂, ĉ) · φA,C (â, ĉ) = 2 · 1000 + 6 · 10 = 2060.

6 / 32

Undirected graphical models / factor graphs

p(x1, . . . , xn) =
1

Z

∏

c∈C

φc(xc), Z =
∑

x̂1,...,x̂n

∏

c∈C

φc(x̂c)

Simple example (each edge potential function encourages its variables to take
the same value):

B

A C

10 1

1 10
A

B
0 1

0

1

φA,B(a, b) =

10 1

1 10
B

C
0 1

0

1

φB,C(b, c) = φA,C(a, c) =

10 1

1 10
A

C
0 1

0

1

p(a, b, c) =
1

Z
φA,B(a, b) · φB,C (b, c) · φA,C (a, c), where

With the max clique convention, this graph does not imply pairwise
factorization: without further information, we must assume

p(a, b, c) = 1
Z φA,B,C (a, b, c)

6 / 32

When is inference (relatively) easy?

Tree

7 / 32

Basic idea: marginal inference for a chain

Suppose we have a simple chain A→ B → C → D, and we want
to compute p(D), a set of values, {p(D = d), d ∈ Val(D)}

The joint distribution factorizes as

p(A,B,C ,D) = p(A)p(B | A)p(C | B)p(D | C)

In order to compute p(D), we have to marginalize over A,B,C :

p(D) =
∑

a,b,c

p(A = a,B = b,C = c,D)

8 / 32

How can we perform the sum efficiently?

Our goal is to compute

p(D) =
∑

a,b,c

p(a, b, c ,D) =
∑

a,b,c

p(a)p(b | a)p(c | b)p(D | c)

=
∑

c

∑

b

∑

a

p(D | c)p(c | b)p(b | a)p(a)

We can push the summations inside to obtain:

p(D) =
∑

c

p(D | c)
∑

b

p(c | b)
∑

a

p(b | a)p(a)︸ ︷︷ ︸
ψ1(a,b)︸ ︷︷ ︸

τ1(b) ‘message about b′

Let’s call ψ1(A,B) = P(A)P(B|A). Then, τ1(B) =
∑

aψ1(a,B)

Similarly, let ψ2(B,C) = τ1(B)P(C |B). Then, τ2(C) =
∑

bψ2(b,C)

This procedure is dynamic programming: efficient ‘inside out’
computation instead of ‘outside in’

9 / 32

Marginal inference in a chain

Generalizing the previous example, suppose we have a chain
X1 → X2 → · · · → Xn, where each variable has k states

For i = 1 up to n − 1, compute (and cache)

p(Xi+1) =
∑

xi

p(Xi+1 | xi)p(xi)

Each update takes O(k2) time

The total running time is O(nk2)

In comparison, naively marginalizing over all latent variables has time
complexity O(kn)

Great! We performed marginal inference over the joint distribution
without ever explicitly constructing it

10 / 32

How far can we extend the chain approach?

Can we extend the chain idea to do something similar for:

More complex graphs with many branches?

Can we get marginals of all variables efficiently?

With cycles?

The junction tree algorithm does all these

But it’s not magic: in the worst case, the problem is NP-hard
(even to approximate)

Junction tree achieves time linear in the number of bags =
maximal cliques, exponential in the treewidth ← key point

11 / 32

How far can we extend the chain approach?

Can we extend the chain idea to do something similar for:

More complex graphs with many branches?

Can we get marginals of all variables efficiently?

With cycles?

The junction tree algorithm does all these

But it’s not magic: in the worst case, the problem is NP-hard
(even to approximate)

Junction tree achieves time linear in the number of bags =
maximal cliques, exponential in the treewidth ← key point

11 / 32

Idea: a junction tree, treewidth

Figure from Wikipedia: Treewidth

8 nodes, all |maximal clique| = 3

Form a tree where each maximal
clique or bag becomes a ‘super-node’

Key properties:

Each edge of the original graph is in
some bag
Each node of the original graph
features in contiguous bags:
running intersection property
Loosely, this will ensure that local
consistency ⇒ global consistency

This is called a tree decomposition
(graph theory) or junction tree (ML)

It has treewidth = max | bag size | − 1
(so a tree has treewidth = 1)

How can we build a junction tree?
12 / 32

Recipe guaranteed to build a junction tree

1 Moralize (if directed)

2 Triangulate

3 Identify maximal cliques

4 Build a max weight spanning tree

Then we can propagate probabilities: junction tree algorithm

13 / 32

Moralize

Each ψ is different based on its arguments, don’t get confused
Ok to put the p(x1) term into either ψ12(x1, x2) or ψ13(x1, x3)

14 / 32

Triangulate

We want to build a tree of maximal cliques = bags
Notation here: an oval is a maximal clique,
a rectangle is a separator

Actually, often we enforce a tree, in which case triangulation and other
steps ⇒ running intersection property

15 / 32

Triangulate

16 / 32

Triangulation examples

17 / 32

Identify maximal cliques, build a max weight spanning tree

For edge weights, use |separator |
For max weight spanning tree, several algorithms e.g. Kruskal’s

18 / 32

We now have a valid junction tree!

We had p(x1, . . . , xn) = 1
Z

∏
c ψc(xc)

Think of our junction tree as composed of maximal cliques c =
bags with ψc(xc) terms

And separators s with φs(xs) terms, initialize all φs(xs) = 1

Write p(x1, . . . , xn) = 1
Z

∏
c ψc (xc)∏
s φs(xs)

Now let the message passing begin!

At every step, we update some ψ′
c(xc) and φ′s(xs) functions but

we always preserve p(x1, . . . , xn) = 1
Z

∏
c ψ

′
c (xc)∏

s φ
′
s(xs)

This is called Hugin propagation, can interpret updates as
reparameterizations ‘moving score around between functions’
(may be used as a theoretical proof technique)

19 / 32

Message passing for just 2 maximal cliques (Hugin)

20 / 32

Message passing for a general junction tree

1. Collect 2. Distribute

Then done!
(may need to normalize)

21 / 32

A different idea: belief propagation (Pearl)

If the initial graph is a tree, inference is simple

If there are cycles, we can form a junction tree of maximal cliques
‘super-nodes’...

Or just pretend the graph is a tree! Pass messages until
convergence (we hope)

This is loopy belief propagation (LBP), an approximate method

Perhaps surprisingly, it is often very accurate (e.g. error correcting
codes, see McEliece, MacKay and Cheng, 1998, Turbo Decoding
as an Instance of Pearl’s “Belief Propagation” Algorithm)

Prompted much work to try to understand why

First we need some background on variational inference
(you should know: almost all approximate marginal inference
approaches are either variational or sampling methods)

22 / 32

Variational approach for marginal inference

We want to find the true distribution p but this is hard

Idea: Approximate p by q for which computation is easy, with q
‘close’ to p

How should we measure ‘closeness’ of probability distributions?

A very common approach: Kullback-Leibler (KL) divergence

The ‘qp’ KL-divergence between two probability distributions q
and p is defined as

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)

(measures the expected number of extra bits required to describe
samples from q(x) using a code based on p instead of q)

D(q ‖ p) ≥ 0 for all q, p, with equality iff q = p (a.e.)

KL-divergence is not symmetric

23 / 32

Variational approach for marginal inference

We want to find the true distribution p but this is hard

Idea: Approximate p by q for which computation is easy, with q
‘close’ to p

How should we measure ‘closeness’ of probability distributions?

A very common approach: Kullback-Leibler (KL) divergence

The ‘qp’ KL-divergence between two probability distributions q
and p is defined as

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)

(measures the expected number of extra bits required to describe
samples from q(x) using a code based on p instead of q)

D(q ‖ p) ≥ 0 for all q, p, with equality iff q = p (a.e.)

KL-divergence is not symmetric

23 / 32

Variational approach for marginal inference

Suppose that we have an arbitrary graphical model:

p(x; θ) =
1

Z (θ)

∏

c∈C

ψc(xc) = exp
(∑

c∈C

θc(xc)− logZ (θ)
)

Rewrite the KL-divergence as follows:

D(q‖p) =
∑

x

q(x) log
q(x)

p(x)

= −
∑

x

q(x) log p(x)−
∑

x

q(x) log
1

q(x)

= −
∑

x

q(x)
(∑

c∈C

θc(xc)− logZ (θ)
)
− H(q(x))

= −
∑

c∈C

∑

x

q(x)θc(xc) +
∑

x

q(x) logZ (θ)− H(q(x))

= −
∑

c∈C

Eq[θc(xc)]

︸ ︷︷ ︸
expected score

+ logZ (θ)− H(q(x))︸ ︷︷ ︸
entropy

24 / 32

The log-partition function log Z

Since D(q‖p) ≥ 0, we have

−
∑

c∈C
Eq[θc(xc)] + logZ (θ)− H(q(x)) ≥ 0,

which implies that

logZ (θ) ≥
∑

c∈C
Eq[θc(xc)] + H(q(x))

Thus, any approximating distribution q(x) gives a lower bound on
the log-partition function (for a Bayesian network, this is the
probability of the evidence)

Recall that D(q‖p) = 0 iff q = p. Thus, if we optimize over all
distributions, we have:

logZ (θ) = max
q

∑

c∈C
Eq[θc(xc)] + H(q(x))

25 / 32

Variational inference: Naive Mean Field

logZ (θ) = max
q∈M

∑

c∈C
Eq[θc(xc)] + H(q(x))

︸ ︷︷ ︸
concave

← H of global distn

The space of all valid marginals for q is the marginal polytope
The naive mean field approximation restricts q to a simple
factorized distribution:

q(x) =
∏

i∈V
qi (xi)

Corresponds to optimizing over a non-convex inner bound on the
marginal polytope ⇒ global optimum hard to find5.4 Nonconvexity of Mean Field 141

Fig. 5.3 Cartoon illustration of the set MF (G) of mean parameters that arise from tractable
distributions is a nonconvex inner bound on M(G). Illustrated here is the case of discrete
random variables where M(G) is a polytope. The circles correspond to mean parameters
that arise from delta distributions, and belong to both M(G) and MF (G).

a finite convex hull3

M(G) = conv{φ(e), e ∈ X m} (5.24)

in d-dimensional space, with extreme points of the form µe := φ(e) for

some e ∈ X m. Figure 5.3 provides a highly idealized illustration of this

polytope, and its relation to the mean field inner bound MF (G).

We now claim that MF (G) — assuming that it is a strict subset

of M(G) — must be a nonconvex set. To establish this claim, we first

observe that MF (G) contains all of the extreme points µx = φ(x) of

the polytope M(G). Indeed, the extreme point µx is realized by the

distribution that places all its mass on x, and such a distribution is

Markov with respect to any graph. Therefore, if MF (G) were a con-

vex set, then it would have to contain any convex combination of such

extreme points. But from the representation (5.24), taking convex com-

binations of all such extreme points generates the full polytope M(G).

Therefore, whenever MF (G) is a proper subset of M(G), it cannot be

a convex set.

Consequently, nonconvexity is an intrinsic property of mean field

approximations. As suggested by Example 5.4, this nonconvexity

3 For instance, in the discrete case when the sufficient statistics φ are defined by indicator
functions in the standard overcomplete basis (3.34), we referred to M(G) as a marginal
polytope.

Figure from Martin Wainwright

Hence, always attains a lower bound on logZ
26 / 32

Background: the marginal polytope M (all valid marginals)

Marginal polytope!
1!
0!
0!
1!
1!
0!
1"
0"
0"
0"
0!
1!
0!
0!
0!
0!
1!
0"

�µ =

= 0!

= 1! = 0!X2!

X1!

X3 !

0!
1!
0!
1!
1!
0!
0"
0"
1"
0"
0!
0!
0!
1!
0!
0!
1!
0"

�µ� =

= 1!

= 1! = 0!X2!

X1!

X3 !

1

2

�
�µ� + �µ

�

valid marginal probabilities!

(Wainwright & Jordan, ’03)!

Edge assignment for"
!

Edge assignment for"
X1X2!

Edge assignment for"
X2X3!

Assignment for X1 "

Assignment for X2 "

Assignment for X3!

Figure 2-1: Illustration of the marginal polytope for a Markov random field with three nodes
that have states in {0, 1}. The vertices correspond one-to-one with global assignments to
the variables in the MRF. The marginal polytope is alternatively defined as the convex hull
of these vertices, where each vertex is obtained by stacking the node indicator vectors and
the edge indicator vectors for the corresponding assignment.

2.2 The Marginal Polytope

At the core of our approach is an equivalent formulation of inference problems in terms of
an optimization over the marginal polytope. The marginal polytope is the set of realizable
mean vectors µ that can arise from some joint distribution on the graphical model:

M(G) =
{
µ ∈ Rd | ∃ θ ∈ Rd s.t. µ = EPr(x;θ)[φ(x)]

}
(2.7)

Said another way, the marginal polytope is the convex hull of the φ(x) vectors, one for each
assignment x ∈ χn to the variables of the Markov random field. The dimension d of φ(x) is
a function of the particular graphical model. In pairwise MRFs where each variable has k
states, each variable assignment contributes k coordinates to φ(x) and each edge assignment
contributes k2 coordinates to φ(x). Thus, φ(x) will be of dimension k|V |+ k2|E|.

We illustrate the marginal polytope in Figure 2-1 for a binary-valued Markov random
field on three nodes. In this case, φ(x) is of dimension 2 · 3 + 22 · 3 = 18. The figure shows
two vertices corresponding to the assignments x = (1, 1, 0) and x′ = (0, 1, 0). The vector
φ(x) is obtained by stacking the node indicator vectors for each of the three nodes, and then
the edge indicator vectors for each of the three edges. φ(x′) is analogous. There should be
a total of 9 vertices (the 2-dimensional sketch is inaccurate in this respect), one for each
assignment to the MRF.

Any point inside the marginal polytope corresponds to the vector of node and edge
marginals for some graphical model with the same sufficient statistics. By construction, the

17

X1X3

Entropy?
27 / 32

Variational inference: Tree-reweighted (TRW)

logZ (θ) = max
q∈M

∑

c∈C
Eq[θc(xc)] + H(q(x))

TRW makes 2 pairwise approximations:
Relaxes marginal polytope M to local polytope L, convex outer
bound
Uses a tree-reweighted upper bound HT (q(x)) ≥ H(q(x))
The exact entropy on any spanning tree is easily computed from
single and pairwise marginals, and yields an upper bound on the
true entropy, then HT takes a convex combination

logZT (θ) = max
q∈L

∑

c∈C
Eq[θc(xc)] + HT (q(x))

︸ ︷︷ ︸
concave

Hence, always attains an upper bound on logZ

ZMF ≤ Z ≤ ZT

28 / 32

The local polytope L has extra fractional vertices

The local polytope is a convex outer bound on the marginal polytope

fractional vertex

marginal polytope
global consistency

integer vertex

local polytope
pairwise consistency

29 / 32

Variational inference: Bethe

logZ (θ) = max
q∈M

∑

c∈C
Eq[θc(xc)] + H(q(x))

Bethe makes 2 pairwise approximations:
Relaxes marginal polytope M to local polytope L
Uses the Bethe entropy approximation HB(q(x)) ≈ H(q(x))
The Bethe entropy is exact for a tree. Loosely, it calculates an
approximation pretending the model is a tree.

logZB(θ) = max
q∈L

∑

c∈C
Eq[θc(xc)] + HB(q(x))

︸ ︷︷ ︸
not concave in general

In general, is neither an upper nor a lower bound on logZ , though
is often very accurate (bounds are known for some cases)

There is a neat relationship between the approximate methods

ZMF ≤ ZB ≤ ZT

30 / 32

Variational inference: Bethe

logZ (θ) = max
q∈M

∑

c∈C
Eq[θc(xc)] + H(q(x))

Bethe makes 2 pairwise approximations:

Relaxes marginal polytope M to local polytope L
Uses the Bethe entropy approximation HB(q(x)) ≈ H(q(x))
The Bethe entropy is exact for a tree. Loosely, it calculates an
approximation pretending the model is a tree.

logZB(θ) = max
q∈L

∑

c∈C
Eq[θc(xc)] + HB(q(x))

︸ ︷︷ ︸
not concave in general

In general, is neither an upper nor a lower bound on logZ , though
is often very accurate (bounds are known for some cases)

Does this remind you of anything?

30 / 32

Variational inference: Bethe a remarkable connection

logZ (θ) = max
q∈M

∑

c∈C
Eq[θc(xc)] + H(q(x))

Bethe makes 2 pairwise approximations:
Relaxes marginal polytope M to local polytope L
Uses the Bethe entropy approximation HB(q(x)) ≈ H(q(x))
The Bethe entropy is exact for a tree. Loosely, it calculates an
approximation pretending the model is a tree.

logZB(θ) = max
q∈L

∑

c∈C
Eq[θc(xc)] + HB(q(x))

︸ ︷︷ ︸
stationary points correspond
1-1 with fixed points of LBP!

Hence, LBP may be considered a heuristic to optimize the Bethe
approximation

This connection was revealed by Yedidia, Freeman and Weiss,
NIPS 2000, Generalized Belief Propagation

31 / 32

Software packages

1 libDAI

http://www.libdai.org

Mean-field, loopy sum-product BP, tree-reweighted BP, double-loop
GBP

2 Infer.NET

http://research.microsoft.com/en-us/um/cambridge/

projects/infernet/

Mean-field, loopy sum-product BP
Also handles continuous variables

32 / 32

http://www.libdai.org
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/

Supplementary material

Extra slides for questions or further explanation

33 / 32

ML learning in Bayesian networks

Maximum likelihood learning: maxθ `(θ;D), where

`(θ;D) = log p(D; θ) =
∑

x∈D
log p(x; θ)

=
∑

i

∑

x̂pa(i)

∑

x∈D:
xpa(i)=x̂pa(i)

log p(xi | x̂pa(i))

In Bayesian networks, we have the closed form ML solution:

θML
xi |xpa(i)

=
Nxi ,xpa(i)∑
x̂i
Nx̂i ,xpa(i)

where Nxi ,xpa(i)
is the number of times that the (partial) assignment

xi , xpa(i) is observed in the training data

We can estimate each CPD independently because the objective
decomposes by variable and parent assignment

34 / 32

Parameter learning in Markov networks

How do we learn the parameters of an Ising model?

= +1

= -1

p(x1, · · · , xn) =
1

Z
exp

(∑

i<j

wi,jxixj +
∑

i

θixi
)

35 / 32

Bad news for Markov networks

The global normalization constant Z (θ) kills decomposability:

θML = arg max
θ

log
∏

x∈D
p(x; θ)

= arg max
θ

∑

x∈D

(∑

c

log φc(xc ; θ)− logZ (θ)

)

= arg max
θ

(∑

x∈D

∑

c

log φc(xc ; θ)

)
− |D| logZ (θ)

The log-partition function prevents us from decomposing the
objective into a sum over terms for each potential

Solving for the parameters becomes much more complicated

36 / 32

