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Abstract

Interpretability of representations in both deep
generative and discriminative models is highly
desirable. Current methods jointly optimize an
objective combining accuracy and interpretabil-
ity. However, this may reduce accuracy, and is
not applicable to already trained models. We
propose two interpretability frameworks. First,
we provide an interpretable lens for an existing
model. We use a generative model which takes
as input the representation in an existing (genera-
tive or discriminative) model, weakly supervised
by limited side information. Applying a flexible
and invertible transformation to the input leads
to an interpretable representation with no loss
in accuracy. We extend the approach using an
active learning strategy to choose the most use-
ful side information to obtain, allowing a human
to guide what “interpretable” means. Our sec-
ond framework relies on joint optimization for
a representation which is both maximally infor-
mative about the side information and maximally
compressive about the non-interpretable data fac-
tors. This leads to a novel perspective on the re-
lationship between compression and regulariza-
tion. We also propose a new interpretability eval-
uation metric based on our framework. Empiri-
cally, we achieve state-of-the-art results on three
datasets using the two proposed algorithms.

1. Introduction

Learning interpretable data representations is becoming
ever more important as machine learning models grow in
size and complexity, and as applications reach critical so-
cial, economic and public health domains. In addition to
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understanding the model and gaining insights about the
corresponding application, learning interpretable data rep-
resentations can improve the model’s generalization power.
As such, representations that can efficiently be used across
a variety of tasks are those comprising disentangled latent
variables such that each variable corresponds to a salient
or meaningful data attribute (Bengio et al., 2013; Bengio,
2009).

Generative modeling constitutes one of the most influential
approaches to representation learning. Generative models
seek to infer the data-generating latent space, which im-
plies capturing to some extent the salient characteristics of
such data. This motivates the current consensus in the field
that generative models can potentially provide interpretable
and disentangled data representations (Kingma et al., 2014;
Chen et al., 2016; Desjardins et al., 2012; Higgins et al.,
2017; Kulkarni et al., 2015). Deep generative models grant
further flexibility to the learning and inference procedures
via utilizing neural networks for parameter estimation.

Variational autoencoders (VAEs, Kingma & Welling, 2014;
Kingma et al., 2014) and generative adversarial networks
(GANSs, Goodfellow et al., 2014; Goodfellow, 2016) are
considered two important models. The original versions of
these two algorithms solely optimize for data reconstruc-
tion fidelity. Several works that followed (Kulkarni et al.,
2015; Hsu et al., 2017; Chen et al., 2016; Siddharth et al.,
2017; Higgins et al., 2017) instead jointly optimize the la-
tent representation for both reconstruction fidelity and in-
terpretability. Further elaboration on related works is pro-
vided in Section 9 of the Appendix.

Optimizing for interpretability can be costly. It is evident
that a latent representation optimized solely for reconstruc-
tion fidelity can typically be better at fitting the data than
one optimized for both data reconstruction fidelity and in-
terpretability. We propose an algorithm that aims at provid-
ing an interpretable representation without losing ground
on reconstruction fidelity. The first introduced algorithm
can be seen as a generalization of variational autoencoders
that can be applied as an interpretable lens on top of an ex-
isting model of many types. Such an existing model is the
input to the algorithm, along with a limited amount of side
information denoting salient data attributes. The resulting
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latent space is assumed to generate both the input represen-
tation and the side information (Figure 1). The dependence
between the resulting and input representations is modeled
by a flexible and invertible transformation. Since we can
always recover the input representation, reconstruction fi-
delity is not at risk of being sacrificed. We define inter-
pretability in this work as a simple relationship to some-
thing we can understand. Consequently, the dependence
between the latent representation and the side information
is optimized to be simple and linear, i.e. interpretable.

Having humans in the interpretability loop is crucial for its
success. Thus, we propose an active learning strategy that
defines a mutual information based criterion upon which
side information of chosen data points is obtained. We also
propose a metric to evaluate the degree of interpretability of
a representation. Even though there are numerous works in
the literature aiming at inferring interpretable latent spaces
(Chen et al., 2016; Higgins et al., 2017; Kulkarni et al.,
2015; Siddharth et al., 2017), there is a striking shortage
of relevant metrics. As opposed to our more widely appli-
cable metric, the one provided in Higgins et al. (2017) can
only be applied when it is feasible to generate artificial data
samples from controlled interpretable factors.

Consistent with the current trend in deep interpretable gen-
erative models, our second proposed interpretability frame-
work is based on joint optimization for data reconstruc-
tion and interpretability. Through this method, we pro-
vide a novel perspective linking the notions of compression
and regularization. We prove that a model which is max-
imally compressive about non-interpretable data factors,
and which aims at fitting the data, is equivalent to a model
fitting the data with further regularization constraints. We
subsequently analyze the performance of both algorithms.

We make the following contributions: 1) We propose an
interpretability framework that can be applied as a lens
on an existing model of many types. To the best of our
knowledge, the flexibility provided by explaining an exist-
ing model without having to redo the data fitting and with-
out affecting accuracy represents a new direction in inter-
pretable models (Section 2); 2) We propose an active learn-
ing methodology which bases the acquisition function on
having high mutual information with interpretable data at-
tributes (Section 3); 3) We propose a quantitative metric to
evaluate the degree of interpretability of an inferred latent
representation (Section 4); 4) We propose another inter-
pretability framework jointly optimized for reconstruction
and interpretability (Section 5). A novel analogy between
data compression and regularization is derived under this
framework; 5) Our qualitative and quantitative state-of-the-
art results on three datasets demonstrate the effectiveness of
the two proposed methods (Section 6).

Newly learnt
rep.

Interpretable side
information, provided
by humans in just a

few cases

Qriginal
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Figure 1. The proposed interpretable lens variable model (ILVM).
The latent space z has been inferred (and optimized for data re-
construction) via a VAE prior to this procedure. The goal of
ILVM is to provide an interpretable lens on top of z. The latent
space z" is the space optimized for interpretability. Normalizing
flows, which are a series of invertible transformations, are used to
transform the density of z, whereas z* is also optimized for in-
terpretability via having a simple linear, i.e. interpretable, depen-
dence with s. The generative parameters are 6 and 1, whereas ¢
are the parameters of the recognition model.

2. An Interpretable Lens on
an Existing Model

An important goal of deep generative models is to fit the
data with high fidelity. Our principal aim in this proposed
generative model is to learn an interpretable representation
without degrading the reconstruction fidelity. We refer to
it as the Interpretable Lens Variable Model (ILVM). A di-
agram of the model is displayed in Figure 1. Separating
the reconstruction fidelity and interpretability optimization
procedures permits the latter to improve the interpretabil-
ity of different types of existing models, e.g. another latent
representation already optimized for reconstruction fidelity,
a hidden layer of a neural network optimized for classifica-
tion, etc. Moreover, since the transformation from the input
representation z to the resulting representation z* is invert-
ible, we can recover z.

We assume that the input representation z has been in-
ferred prior to the ILVM procedure, and that a standard
VAE (Kingma & Welling, 2014) has been used to infer z.
Up to this point we have not lost any ground on data recon-
struction, but we have also not gained anything yet in terms
of interpretability. Transforming z into z* via a powerful
(nonlinear) and invertible transformation, so that z* is in-
terpretable, can get the best of both worlds. Thus, the main
aims of the remaining steps are to ensure that: i) the latent
space z* is optimized for interpretability. This is achieved
via a flexible transformation from z to z* that can capture
the nonlinear dependencies among the factors of z; ii) the
transformation is invertible.

A major issue is how to algorithmically optimize z* for
interpretability. We assume the existence of limited side
information in the form of salient attributes observed for
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a small subset of the data instances. A linear, i.e. simple,
relationship between z* and the side information s signifies
an acceptable degree of interpretability of z*.

In order to transform the density of z into z*, we use nor-
malizing flows (Tabak & Turner, 2013; Tabak & Vanden-
Eijnden, 2010; Rezende & Mohamed, 2015; Kingma et al.,
2016), which are powerful and invertible transformations
used to construct flexible posterior distributions through a
series of mappings. A normalizing flow (NF) transforma-
tion applies a chain of invertible parameterized transfor-
mations, fy, t = 1,...,T, to its input (z in this case)
such that the outcome of the last iteration, z* = zT has
a more flexible distribution that in our algorithm is opti-
mized for interpretability. The transformation from z to z*
goes through T steps, where each step is indexed by t and
where zg is an initial random variable with density qo(zo)
that is successively transformed, along with the old repre-
sentation z, through a chain of transformations fy, ..., fr
(Rezende & Mohamed, 2015):

z ~ q(z]x), (D
zy = fi(z2¢—1,2) Vt=1...T, z*=2z1. (2

The probability density function of the final latent repre-
sentation, z* = zr, can be computed provided that the
determinant of the Jacobian of each of the transforma-
tions, det(f;), can be computed. Assuming that q refers
to the estimated approximation of a ground truth distribu-
tion (where the approximation is via normalizing flows ex-
cept for z ~ q(z|x) for which a standard VAE is used), the
probability density of q(z*|z) can be expressed as follows:

Z log det

zZ =Zt. (3)

dZt
dzy_1

log g1 (zT|2) = logqo(z0|z) —

)

Several types of normalizing flows can be utilized; we opt
for planar flows. We empirically tried radial flows but they
did not improve the results. Planar flows have the form:

fi(z¢—1) = z¢—1 +uh(wTz_1 +b), €]

where u and w are vectors, b is a scalar, wT refers to the
transpose of w, and h is a nonlinearity. Each map from z
to z* has the form given in (4). Thus:

Z*:fTOfT_lo...Ofl(Z). (5)

For the proposed framework, there is a generative model
with parameters @ and i) where z* is assumed to gener-
ate both s and z. We also estimate the variational param-
eters ¢ of the distributions of the recognition (inference)
model approximating the true posterior, e.g. q¢(z*|2,s).
We follow the standard variational principle and derive the

evidence lower bound (ELBO) of the proposed variational
objective for the model in Figure 1. For data points which
have observed side information s, the marginal likelihood
of a point according to the proposed model is as follows:

log pe(z,s) = log/ peo(z,s,z") dz*

x " 96(z7|z,8) .
=lo / P(z")pe(z|z” )py (s|z dz
5 | pletpolie pu(sla ) 52

= log Eq, (2 2,5) [P(27)Po (22" )Py (s]27) /ag (272, )]
> Eqy(z+|zs)[10g P(2") + log pe(z]z”) + log py (s|z”)

—logqe(z”|2z,s))]. (6)

Using (3), properties of the normalizing flows and the fact
that q4(z*|z,s) = qr(z7|2,s), then from (6) we obtain:

log pe(z,8) > Eqy(2)[log P(zT) + log Pe(z|zT) (7

]

dzy
dzy_1

T
+1og py(s|zr) — qo(2olz,s) + Y _ log det
t=1

For data points without observed side information s, s is
treated as a latent variable. The corresponding ELBO is:

log pe(z) = log/ po(z,s,z")dsdz"

= log Eq¢(s,z* |z) [P(Z*)PG(Z\Z*)Pw (S|Z*)/q¢ (87 z" |Z)]
> Eqy(s.2t|2) [l0g P(z7) + log Po(z]z”) + log py (s[z”)
—log qe (s, z*|z)]. (8)

The inequality in (6) and (8) is due to Jensen’s inequality.
We restrict the probability distribution py,(s|z*) to express
a simple linear, i.e. interpretable, relationship between s
and z*. For a k-dimensional z*, the distribution py,(s|z*)
depends on Zle ¥jzi + tbo. Hence, the parameters ¢
include ¥g, Y1, ..., Yk.

Similar to several recent frameworks, the inference cost can
be amortised via the parameters of a recognition network
(Kingma & Welling, 2014; Rezende et al., 2014) instead of
repeating the E-step for each data point, as in the variational
EM algorithm. The recognition network is used to build a
mapping from the model input z (and s) to the parameters
of the initial density qo and all the other parameters of the
normalizing flow, up until q4 = qr. The key steps of the
algorithm are shown in Algorithm 1 in the Appendix.

2.1. An Interpretable Lens for Existing Deep Models

The model input z in Figure 1 need not be an output of
another deep generative model. It can as well be a hidden
layer of a discriminative neural network. Interpretable in-
sights into a hidden layer during classification is a potential
gain. Only (1) changes whereas all the equations from (2)
to (8) remain the same. We show an example of prelimi-
nary results in Figure 7 and Section 6.1.3.
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3. Interactive Interpretability via
Active Learning

In this section, we address an issue that we believe is impor-
tant for the success of interpretable models, which is how
to improve interpretability via an interactive procedure in-
volving humans. Interpretability in machine learning refers
to the ability to explain learnt information in understand-
able terms to humans. Hence, the participation of humans
in evaluating and enhancing interpretability is fundamental.

We aim at enhancing interpretability through an active
learning approach. Out of the pool of data points with hid-
den side information s, a data point is chosen and its side
information is revealed by an expert. We propose a mu-
tual information based objective for choosing the next most
useful data point. Our method is similar to Bayesian Active
Learning by Disagreement (BALD) (Houlsby et al., 2011).

We propose an active learning methodology for the TLVM
model. The proposed acquisition function notes that the
most suitable data point to choose as the point whose hid-
den side information should be obtained, is the point with
index j that maximizes the following:

j = argmax; I(sj, ) = H(sj) — Eq, (s |s)[H(sy|2])]

- _/p(sJ-)logp(Sj)dS

+ Eqyzels) [/ Pw(sj|z*)10gpw(sj|z*)d5} )
Since p(sj) = [ py(sj|z*)p(z*) dz*, from (9) we obtain:
j= argmax; I(s;, 1)
:—//pw(sﬂz*)p(z*)dz* 1og(/p¢(sj|z*)p(z*)dz*) ds

+Eayeiol [ Polslz)logpu(siiz)ds.  (10)
The reasoning behind the proposed active learning method-
ology is to choose the point possessing side informa-
tion about which the model is most uncertain (maxi-
mized H(s;)) but in which the individual settings of
the founding latent space z* are confident (minimized
Eqq(z+|s)[H(sj|2])]). This can be seen as if we choose the
point whose side information values are being disagreed
about the most by the individual values of the latent space
z*. The outcome of this procedure is a tractable estimator
of j, the index of the next data point for which obtaining the
side information s; maximally enhances interpretability.

4. Evaluation of Interpretable
Latent Variable Models

Despite the growing number of works on interpretability,
there is no consensus on a good evaluation metric. To the

best of our knowledge, the relevant metric that can be used
in evaluating interpretable latent models is the one pro-
posed in Higgins et al. (2017). However, it is conditioned
on the availability of artificial samples generated by a sim-
ulator and on the ability to generate these samples from
controlled interpretable factors. Moreover, the controlled
factors cannot be discovered nor measured in cases when
they are not statistically independent. We propose a metric
that follows naturally from our modeling assumptions and
that does not suffer from the aforementioned issues.

The gist of the proposed metric is based on the earlier no-
tion that interpretability refers to a simple relationship to
something we understand. In this sense, a latent space is
(more) interpretable if it manages to explain the relation-
ship to salient attributes (more) simply. The proposed met-
ric evaluates the interpretability degree of a latent space
based on a test sample x¢ containing observed side infor-
mation. Assuming that the resulting z* consists of k di-
mensions, our metric consists of two straightforward steps
for each dimension j of the side information:

(i) Out of the k latent dimensions, select the dimension
z; which is maximally informative about the j™ side
information factor, s;, i.e. select z{ such that: i =
argmax; I(s;, zf|x¢).

(ii) Evaluate how interpretable z; is with respect to s; by
measuring p(s;|z}) where p is a simple, i.e. linear,
probabilistic relationship. By summing the logarithms
of the resulting probabilities corresponding to every
test sample point for a dimension j of the side infor-
mation, we get an interpretability score of the exam-
ined latent space with respect to a salient attribute.

Finally by aggregating the scores over all the dimensions of
the side information s, we obtain the interpretability score.

5. Joint Optimization of the
Latent Variable Model

We propose another method where the two objectives, in-
terpretability and reconstruction fidelity, are jointly opti-
mized in the procedure of learning a latent variable model.
We refer to this model as the Jointly Learnt Variable Model
(JLVM). The method is based on the information bottleneck
concept (Tishby et al., 1999). The intuition is that the latent
representation z* can be jointly optimized for both recon-
struction fidelity and interpretability if the objective is to
make z* maximally expressive about the side information
s while being maximally compressive about the data x. We
prove that being maximally compressive about the input for
the sake of interpretability is analogous to further regular-
izing the data fitting procedure.
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In contrast with the approach proposed in Section 2, where
the latter concentrates on not losing reconstruction fidelity,
the algorithm proposed in this section trades off inter-
pretability and data reconstruction. On the one hand, there
is a risk that this might lead to some loss in terms of re-
construction fidelity. On the other hand, z* has more free-
dom to learn an interpretable representation from the whole
data x without being confined by optimizing interpretabil-
ity only through z.

With a parameter [ regulating the tradeoff between com-
pression of x and expressiveness about s, the notion of in-
formation bottleneck among x, s and z* can be defined as
follows:

IB(z*,x,s) = I(z*,s) — fI(z", x). (11)

We therefore consider maximizing (11) to be a proxy for
having an interpretable z*. First, assume that x is gener-
ated by z* and that z* is dependent on s, i.e. p(x,s,z*) =
p(s)p(z*|s)p(x|z*). Recall that z* should as well fit the
data and for that we use a VAE consisting of a recognition
model and a generative model. Let’s refer to the parame-
ters of the generative and recognition models as w and ¢,
respectively. Also, note that an interpretable model will op-
timize the dependence between the latent space z* and the
side information s to express a simple, i.e. linear, relation-
ship. In addition to the interpretability objective in (11) and
for the sake of data fitting, the latent space z* is also con-
strained by the variational objective described as follows:

log pu,(x) = log/ Pw(x,2") dz*

z*

> Eq,, (2*x) 108 Pw (X, 2") — log qu (2" |x)] (12)

= Eqa (z+ 1) [10g P (%[27)] = KIL(qa (2" [%)[|Pw (27))-

From (11) and (12) through a proof provided (along with
other details) in Section 11 of the Appendix, the overall
objective of the JLVM model can be lower bounded by:

N
1 *
maxw’aﬁ g Eqa(z*|x)[10gpw(x|z )l
1

N
— ¢ DKL (a5 ) s (7)) + BRI (s ) ()]

+/p(s)/pw(z*|s) log qe(s|2°) ds dz* (13)

The second KL-divergence originates from the compres-
sion of x (second term in (11)) and adds up further regu-
larization to the data fitting process (described by the first
line of (13) and first KL-divergence). This comes in line
with the established intuition supported by works showing
that the two objectives (compression and regularization) are
almost perfectly aligned. This includes early works like
Nowlan & Hinton (1992); Hinton & Camp (1993) as well
as recent works like Ullrich et al. (2017).

6. Experiments

We qualitatively and quantitatively evaluate the proposed
frameworks on three datasets: MNIST, SVHN and Chairs.
Details of the datasets and experiments are provided in Sec-
tions 10 and 12 of the Appendix, respectively. We begin
with a qualitative assessment.

6.1. Qualitative Evaluation
6.1.1. LATENT VARIABLE MANIPULATION

In this section, and for the sake of simplicity and clarity,
we perform experiments using a single dimension per side
information attribute. However, it is important to note that
the method allows for more than one latent dimension to
map to the same side information. In Figures 2 and 3,
we display the results of performing both ILVM and JLVM
on MNIST. We have got two side information attributes,
one representing the digit identity and another representing
thickness. In every row of Figures 2 and 3, the leftmost
image represents an example image from MNIST belong-
ing to a certain thickness level and with a certain identity
(digit label). The latent dimension of z* maximally in-
formative about thickness is kept fixed whereas the latent
dimension maximally informative about the digit identity
is varied to produce the rest of the images throughout the
same row. Images resulting from the latent dimension rep-
resenting the digit identity are originally unordered but we
order them for visualization purposes. For each row, the
same process is repeated with an original MNIST image of
a different thickness level. As can be seen, the generated
images in each row cover all digit identities. The change
in the digit identities keeps the thickness level per row al-
most the same (a sign of a good degree of disentanglement)
with ILVM. The same happens with JLVM but the thickness
level is less clearly kept. For example, the digits 2° and ‘3’
in the third row of Figure 2 are more expressive of their
thickness level than the corresponding images in Figure 3.

nOODBA0OEAAEA
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Figure 2. Results of ILVM on the MNIST dataset. The leftmost
image represents an example from MNIST with certain thickness
and with a certain digit label. To generate the remaining images of
each row, the latent dimension maximally informative about the
digit label is traversed while the one maximally informative about
thickness is fixed. Row Images are reordered for visualization
purposes. The latent space manages to cover and generate all the
labels with similar thickness throughout each row.
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Figure 3. Results of JLVM on the MNIST dataset. Settings are
equivalent to Figure 2. Results are also rather similar to those ob-
tained by ILVM in Figure 2. However, ILVM is better at keeping
the thickness degree almost fixed per row. For example, the digits
2’ and ‘3’ in the third row of Figure 2 are more representative of
their thickness degree than the corresponding digit images here.

o Healthy

(a) A 2D latent space of a varia- (b) A 2D latent space of the
tional autoencoder (VAE). ILVM model.
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(¢) A 2D latent space of the
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Figure 4. 2D latent spaces inferred via a standard VAE frame-
work, ILVM and JLVM. The latent spaces from ILVM and JLVM
learn to better disentangle the points of different classes.

Similar experiments are performed on the Street View
House Numbers (SVHN) data. For each row, an image
from SVHN is chosen first, and then its latent space is tra-
versed to produce the other images of the row. Such latent
space is estimated by the two proposed algorithms, ILVM
and JLVM, compared to two state-of-the-art algorithms, In-
foGAN and (-VAE. In every row, one latent dimension
is varied at a time while keeping all the other dimensions
fixed. In Figure 5, the varied dimension denotes the light-
ing conditions of the image, whereas the varied dimension
in Figure 1 in the Appendix denotes the saturation level.
The spectra of lighting and saturation values generated by
JLVM are considerably higher and clearer than those gen-
erated by InfoGAN and §-VAE, and slightly higher than
those generated by ILVM. This demonstrates the ability of

JLVM to adapt to challenging data conditions since SVHN
is noisier than MNIST, does not have many variations of
the same object and contains numerous images of lower
resolution levels.

We also apply the proposed ILVM and JLVM models to
the images of the 3D Chairs dataset (Aubry et al., 2014).
Similar to the experiments on SVHN, an image is chosen
from images of the 3D chairs, and then the corresponding
latent space estimated via TLVM, JLVM, InfoGAN and (-
VAE is traversed. The dimensions to be traversed one at a
time (while keeping all the others fixed) in this case refer
to azimuth and width level in Figures 6 here and 2 in the
Appendix, respectively. Similar to the results on SVHN,
the JL.VM model manages to better understand and vary the
azimuth and width features of the 3D Chairs. The ILVM
model provides the second most interpretable latent repre-
sentation with respect to the azimuth and width attributes.

6.1.2. A 2D LATENT VISUALIZATION

We perform an illustrative experiment based on data points
from a small dataset with three labels (classes) (Adel et al.,
2013). The three labels refer to diagnosis outcomes, which
are: healthy, myopathic or neurogenic. The labels are given
as the side information. In Figure 4, we plot and compare
how a 2D latent space looks like when inferred via a stan-
dard VAE, ILVM and JLVM. The latent spaces resulting
from ILVM and JLVM are more interpretable since they
learn to better disentangle the points of different classes.
The Myopathic and Healthy classes are even more disen-
tangled with JLVM in Figure 4(c).

6.1.3. INTERPRETABLE LENS ON A HIDDEN LAYER
OF A NEURAL NETWORK

For the ILVM framework, an experiment is performed
where the input z is a hidden layer of a neural network,
instead of being a latent space inferred from a VAE. The
dataset used is a variation of MNIST referred to as MNIST-
rot (Larochelle et al., 2007) containing various images of
rotated MNIST digits. We inspect the impact of learning
the latent space z* in Figure 7. The side information in
this case is the orientation. We compare how a certain hid-
den layer looks like before and after applying ILVM. The
first row shows three different images where the second and
third images have a similar orientation, different from the
first. In the second row, a certain hidden layer of the neural
network is plotted after training. There are hardly any vi-
sual similarities reflecting the orientation analogy between
the second and third plots in the second row. However,
in the third row after performing ILVM, similarities be-
tween the second and third plots can be noticed, indicating
that the interpretable orientation information is now taken
into account. This preliminary result is a beginning of a
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Figure 5. A comparison between the proposed frameworks ILVM and JLVM vs. InfoGAN and 8-VAE applied to SVHN. Each row
represents an experiment where the lighting condition of an input SVHN image is varied while the other latent dimensions are kept
fixed. White margins separate the results of ILVM, JLVM, InfoGAN and 3-VAE (from left to right). The spectra of lighting values
generated by JLVM are higher than those generated by InfoGAN and -VAE. Better viewed in color.
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Figure 6. A comparison between ILVM, JLVM, InfoGAN and 3-VAE on the 3D Chairs dataset. Each row represents an experiment where
only the latent dimension maximally informative about the azimuth level of an SVHN image is varied. This is equivalent to rotating the
chair in the original image. The JLVM model manages to disentangle and represent the chair’s interpretable azimuth information better
than the other models, as can be seen by the wide range of orientations covered by JLVM. The I1.VM model comes second.

more comprehensive set of experiments applying ILVM to
a broader range of deep models.

6.2. Quantitative Evaluation
6.2.1. THE INTERPRETABILITY METRIC

We compare ILVM and JLVM to the state-of-the-art algo-
rithm referred to as InfoGAN (Chen et al., 2016). In order
to apply the metric to the latter, the InfoGAN style variables
are treated as the variables denoting the side information s.
The interpretability metric is not applicable to 3-VAE (Hig-
gins et al., 2017) since computing the joint likelihood of
the latent space and the (dependent and independent) fac-
tors of variation is not feasible in their model. Results of
the proposed metric on MNIST, SVHN and the 3D Chairs
data are displayed in Table 1. JLVM outperforms the oth-
ers on SVHN and Chairs. The conditions are favorable for
JLVM when there are not enough variations of each object.
When this is not the case, i.e. when the input latent space
is representative enough, ILVM outperforms the competi-
tors (on MNIST). A bold entry denotes that an algorithm
is significantly better than its competitors. Significant re-
sults are identified using a paired t-test with p = 0.05. Side
information used with a few of the MNIST images are the

digit labels and thickness. Side information for SVHN is
the lighting condition and saturation degree, and it comes
in the form of azimuth and width for the 3D Chairs data.

Table 1. Results of the interpretability metric for 3 datasets,
MNIST, SVHN and the 3D Chairs datasets. JLVM outperforms
the others on SVHN and the Chairs data. In cases when there are
not enough variations of each object, e.g. SVHN, JLVM performs
better. When the input latent space is representative, the simple
and fully generative ILVM outperforms the competitors (MNIST).

MNIST SVHN Chairs
ILVM 952+13% | 85.7+09% | 874+ 1.0%
JLVM 89.8+09% | 90.1+11% | 89.8+15%
InfoGAN | 833+ 1.8% | 839+ 13% | 852+14%

6.2.2. ACTIVE LEARNING

Based on the active learning strategy introduced in Sec-
tion 3, the following experiments are performed on MNIST
and SVHN using ILVM. We compare the introduced strat-
egy to two other strategies. The first is random acquisi-
tion where each data point (whose side information is to
be obtained) is drawn from a uniform distribution (Gal
et al.,, 2017). The second strategy is to choose the data
points which maximize the predictive entropy (Max En-
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Figure 7. Application of ILVM as an interpretable lens on a hid-
den layer of a neural network. A comparison of how a certain
hidden layer looks like before and after performing ILVM. The
first row shows three different images where the second and third
have a similar orientation, different from the first. In the second
row, a certain hidden layer of the neural network is plotted after
training. There are hardly any visual similarities reflecting the ori-
entation analogy between the second and third plots. In the third
row, plots of the corresponding z* after performing TLVM show
similarities between the second and third plots, indicating that the
interpretable orientation information has been taken into account.

tropy) (Shannon, 1948):

j= argmax; H(s;) = —/p(sj)log p(sj)ds (14)
— [ [putsla")p(a )iz 1os( [ (sl p(a)da s

where py,(s;j|z*) is computed from the generative model
and p(z*) is the prior. Results are displayed in Figure 8.
All the values shown in the figure are tested on the same
test set. The x-axis represents the training size. Along each
curve, every new point represents the interpretability met-
ric resulting from adding the side information of extra 50
training data points to the training data.

7. Conclusion

We have introduced two interpretability frameworks and
a corresponding evaluation metric. The first framework
opens a new direction since it can be applied to models
of different types, including deep generative and discrim-
inative models. In addition, it does not conflict with their
original objective, be it reconstruction fidelity or classifica-
tion accuracy. We have also introduced a strategy to bring
human subjectivity into interpretability to yield interactive
‘human-in-the-loop’ interpretability. We believe this ap-
proach will be a fruitful line for future work.
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Figure 8. Results of applying the proposed active learning strat-
egy (ILVM-AL) vs. Random acquisition and Max Entropy.

The second proposed interpretability framework is consis-
tent with the current trend of joint optimization for inter-
pretability and reconstruction fidelity, but it sheds light on
a newly derived relationship between compression and reg-
ularization. The introduced frameworks achieve state-of-
the-art results on three datasets.

The prospect that other existing deep models, such as those
related to reinforcement learning, do not have to be re-
trained to achieve interpretability suggests much interest-
ing potential for future work.

There is also potential for imminent future work to further
bridge the gap between our introduced joint optimization
for reconstruction and interpretability, and posterior con-
strained Bayesian inference. Some prior works on the latter
focus on imposing explicit hard constraints or expectation
constraints like RegBayes (Zhu et al., 2014). Our contribu-
tion is to focus on the link between compression and regu-
larization, and on relating this to interpretability.
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8. Main steps of the ILVM Algorithm

Algorithm 1 Interpretable Lens Variable Model (ILVM)

Parameters: generative: 0 and 1), variational: ¢.
J(z) : the lower bound.
repeat

z < a random minibatch.

Zo < qo(Zo|z, s)

z* < frofy_10...0f1(2)

Compute J(z)

A0 x —Vgl(z)
AY x =V, J(z)
A¢p x —Vgl(z)

until 0,1, ¢ do not change

9. Related Work

Along with the interpretability algorithms cited in the main document, we briefly point out some of the relevant state-
of-the-art algorithms. One of the most notable interpretability frameworks at the moment is an extension of generative
adversarial networks (GANSs) (Goodfellow et al., 2014) referred to as InfoGAN (Chen et al., 2016). In Chen et al. (2016),
a recognition network covering a subset of the variables is established in a GAN such that the mutual information between
the recognition network and a set of prespecified variables representing salient attributes is maximized. The claim that
InfoGAN is unsupervised is not fully precise due to the required knowledge of such variables. Performance of InfoGAN
is also affected by the instability of GANs. Another issue directly stemming from the reliance on a GAN framework is the
lack of a comprehensive inference network like those guaranteed in VAE-based frameworks.

Another recently proposed framework is a modification to variational auto-encoders (VAESs), referred to as 5-VAE (Higgins
et al., 2017), which makes fewer assumptions about the data than InfoGAN. The main idea of 5-VAE is to augment the
standard VAE formulation with a hyperparameter that emphasizes on learning statistically independent latent factors. The
(B-VAE is an interesting step in a promising direction but it relies on rather strong assumptions like the assumption that
the interpretable factors are always statistically independent, and the hypothesis that higher values of the hyperparameter
should encourage learning a disentangled and therefore interpretable representation. Also, as mentioned in the paper, the
impact of optimizing the parameter for interpretability on the reconstruction fidelity can be negative since having a more
disentangled representation sometimes comes at the expense of blurrier reconstructions (Higgins et al., 2017).

There are several other recent algorithms in the literature including Kulkarni et al. (2015); Desjardins et al. (2012); Hsu
et al. (2017); Siddharth et al. (2017); Mathieu et al. (2016); Vedantam et al. (2018); Donahue et al. (2018), but we believe
the two aforementioned frameworks are the most related to ours. Other methods such as LIME (Ribeiro et al., 2016) have a
similar motivation to ILVM in that they can be used to explain an existing model that has been optimized for performance.
Others, such as generalized additive models (GAM) (Larsen, 2015), instead restrict the model learned in order to improve
interpretability, which is a similar theme to JLVM.
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10. Datasets
10.1. MNIST

MNIST (standing for Mixed National Institute of Standards and Technology) is a 28 x 28 pixel image dataset. The MNIST
dataset (LeCun et al., 1998) is a handwritten digit database consisting of a training set of 60,000 instances and a test set of
10,000 instances.

10.2. SVHN

The Street View House Numbers (SVHN) (Netzer et al., 2011) dataset is a digit classification dataset consisting of 32 x 32
color (32 x 32 x 3) images where each instance consists of one, two or three digits. The SVHN dataset contains 73,257
training digits (instances) and 26,032 test digits. Each image is 64 x 64.

10.3. Chairs

The 3D Chairs dataset (Aubry et al., 2014) contains renderings of 1,393 chair models. Each model is rendered from 62
viewpoints: 31 azimuth angles (with a step of 11°) and 2 elevation angles (20° and 30°), with a fixed distance to the chair
(Dosovitskiy et al., 2017).

11. Derivation of the JL.VM Lower Bound

In order to be compressive of x and expressive about s, the notion of information bottleneck among x, s and z* can be
defined as follows:

IB(z*,x,s) = I(z",s) — fI(z",x) (1

We therefore consider maximizing (1) to be a proxy for having an interpretable z*. First, assume that x is generated by z*
and that z* is dependent on s, i.e. p(x, s, z*) = p(s)p(z*|s)p(x|z*). Recall that z* should as well fit the data and for that
we use a VAE consisting of a recognition model and a generative model. Let’s refer to the parameters of the generative and
recognition models as w and «, respectively. Also, note that an interpretable model will have the probability distribution
of the latent space z* given the side information, s, as a simple (e.g. linear) distribution. The objective in (1) is the first out
of two objectives that this framework needs to satisfy. In addition to the interpretability objective in (1) and for the sake of
data fitting, the latent space z* is also constrained by the variational objective described as follows:

Ao (2*]%)
log pu,(x) =1o / Po(x,2%)dz* =lo / Po(x,2")——=~ dz*
g P (x) = log g (x,2z7) g ( )qa(z*‘x)

Z Eqa(z*\x) [IOg Pw (X7Z*) - lOg Ja (Z*|X)] (2)
= Eq., (2 %) 108 P (x[2")] — KL(qa(2"[x)([pw(z))
Note that the objective in (2) is based on the marginal likelihood of an individual data point. The variational lower bound

objective over N data points is therefore obtained by composing a sum over the marginal likelihoods of the individual data
points:

N
1 .
log pu(x', -+ ,xN) = N > logpu(x') > 3)
i=1

N
o o o 08 P (x115)] — KL(qa (5 ) [pos (7))
i=1

Maximizing (3) satisfies the data fitting objective. Now we additionally need to technically inspect how to optimize the
objective in (1). Let’s begin with analyzing the first term in (1), I(z*,s). Let q(s|z*) be the estimated approximation to
the ground truth p(s|z*). The KL-divergence between both is:

KL[pw(s|z") [|qa(s]z")] > 0 )

/pw(s\z*)logpw(s|z*)ds > /pw(s\z*)logqa(s|z*)ds
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Therefore:

//pw (s,2")logqa(s|z”) ds dz* —/p(S) log p(s)

= /p(s)/pw(z*|s) log qu/(s|z™) ds dz* + H(s) (5)

Note that the entropy term H(s) in (5) does not affect our optimization objective. Let’s now move on to the second term

in (1), I(z*, x):
I(z*,x) //pwleog()( ())d dz*

//pwxz 1ng"-’(( |))d dz* (6)

= //[pw(x,Z*)logpw(Z*IX) — Pw(x,2")log p,(z*)] dx dz*
Again, since:

KL{p (2) | g (")] > 0 @
/ Pu(2”) log Pu(2°)dz* > / Pur(z*) log qa (z*)dz*

Therefore:
[ [ putoxz) 08 pu(a) ixas = ®)
/pw(Z*)Ingu(z*)dz* > /pw(z*)logqa(z*)dz*
Using (8) back into (6):
I(z",x) <
// Puw(x,27)1log pw(z*|X) — Pw(x,z") logqa(z")] dx dz* =
[ [ p0)ipeax) o b (s 1x)  pos(a” ) 0 ()] dx
~ [ PRI KLIpu (2" 9 (") dx ©

From (5) and (9) into (1):

1B(s'x.5) > [ p(s) [ pule’ls) logaa(slz’) ds da’
— 5/ X) KL[pw (z*|%)]|qa(z*)] dx (10)
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We can now aggregate the expressions denoting both objectives by concatenating the lower bounds in (3) and (10):
N
1 X * *
Mazwang D Fautsrpo 108 o (x]7°)] — KL(da (2 [x) [Po (7))
1

+/ (s )/pw( *|s)10g qu (s|z*) ds dz*
_B/ KL pw |X)an(z*)] dx (11)

The original objective of the VAE in the first line of (11) aims at a high reconstruction fidelity, i.e. at being able to fit and
reproduce x with high fidelity. Meanwhile the second term in (1), i.e. the last line of (11), aims at providing a highly
interpretable representation by compressing the non-interpretable factors in x. Therefore, these two terms are expected to
potentially be in discord. Aggregation of the different terms of the proposed JLVM model provides further clarification of
that. Note that the integration over x in the last line of (11) will ultimately be approximated by samples from the observed
data. Therefore, we can replace it with a summation over the IN data points. The overall objective of the JLVM model can
therefore be lower bounded by:

N N

MAT o0 3G ZE a(er o l0g Pu(x]2%)] = Y KL(qa (2*[x)||pw (27)))

1

/ (s )/ w(2z%]8) log qu (s|z*) ds dz*

B N
N le (2 )| qa(z")] (12)

1 «
= Matw,aqg Z Eqo(zx) 108 Pu (x(2")]

N
Z [KL(qa (2" [¥)[|Pw (27)) + FKL[pw (2"[%)]|da (27)]]
1

+/p(s)/pw(z*|s) log qu(s|z*) ds dz* (13)

In order to compute the lower bound in (13), we resort to the reparameterization trick (Kingma & Welling, 2014) where
the variable z* is expressed as: z* = f,(x, €). The function f, is a deterministic function of x and the Gaussian random
variable e. Refer to the lower bound as I, and assume a Gaussian qq (z*|x) and a Gaussian log p,,(x|z*) where the
parameters (mean and standard deviation) of each are obtained via a neural network. Also assume a Gaussian prior
Pw(z*). The first KL-divergence can be analytically computed. Also, assume that the density choices of qq(z*) and of
Puw (2*]X) X pu(X]2*)pw(z*) also allow for an analytical computation of the second KL-divergence. Our assumptions
make this term tractable to compute, and are commonly used in this type of optimization. More specifically -for the second
KL-divergence in (13)-, we assume a Gaussian likelihood term p,,(x|z*), which, along with a Gaussian prior p,,(z*),
leads to a Gaussian p,,(z*|x). Then with a Gaussian q (z*) as well, this makes it possible to analytically compute the
second KL term. These assumptions are common for VAEs and it is feasible to extend beyond them in future work provided
that the corresponding approximations can be performed. The gradients can now be computed:

N
1
Viwal = N 21: Ene0,0)[Viw,a) 108 Pw(X[fa(x, €))]—

N
%V{w,a} Y KL(da(z"[x)||pw(2) + SKL[Pw (2" [x) || da (2°)]]

+ Viw,ar Eps)l / Pu(fa(x, €)[s) log qa (slfa(x€)) dz*] (14)

We use Adam (Kingma & Ba, 2015) to compute the gradients.
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Figure 1. Another experiment comparing ILVM and JLVM to InfoGAN and 3-VAE applied to SVHN. Each row represents an experiment
where the saturation level of an SVHN image is varied while the other latent dimensions are kept fixed. Results in this figure as well as
in Figure 5 of the main document demonstrate that the ranges of lighting and saturation generated by JL.VM are considerably higher and
clearer than those generated by InfoGAN and 3-VAE, and also slightly higher than those generated by ILVM. Better viewed in color.
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Figure 2. Another comparison between ILVM, JLVM, InfoGAN and 8-VAE on 3D Chairs. Each row represents an experiment where
the width level of an SVHN image is varied. This is equivalent to a trial to widen (or narrow) the chair. The JLVM, and to a lesser extent
ILVM, models manage to efficiently represent a wider range of chair widths.

12. Other Details about the Experiments

We display two more figures (Figures 1 and 2) related to the experiments on SVHN and the 3D Chairs data in Section 6.1.1
of the main document.

In order to compute the metric, values of the side information s are categorized in groups and a linear classifier is used to
express the dependence between s and z*. A linear SVM with a hard margin is used on top of which Platt scaling (Platt,
1999) is used to compute the probabilities. The JL.VM parameter [ is tuned using cross-validation.

Details of the model architectures are listed in Table 1. Adam (Kingma & Ba, 2015) is the optimizer used to compute the
gradients.

Table 1. Architectures of the models in use.

Dataset Architecture

Encoder: Conv. 64 4 x 4 stride 2 ReLU, Conv. 128 4 x 4 stride 2 ReLU, FC 1024 ReLU, FC output

MNIST Decoder: Deconv. reverse of the encoder. ReLU.

SVHN Encoder: Conv. 64 4 x 4 stride 2 ReLU, Conv. 128 4 X 4 stride 2 ReLU, Conv. 256 4 x 4 stride 2 ReLU, FC output
Decoder: Deconv. reverse of the encoder. ReLU.

Decoder: Deconv. reverse of the encoder. ReLU.

3D Chairs | Encoder: Conv. 64 4 x 4 ReLU, Conv. 128 4 x 4 ReLU, Conv. 256 4 x 4 ReLU, Conv. 256 4 x 4 ReLU, Conv. 256 4 x 4 ReLU, FC 1024 ReLU, FC output

12.1. Test Log-Likelihood (Test LL)

We display the empirical test LL results of both TLVM and JLVM. Empirically, the loss in test LL resulting from the joint
optimization of JLVM is not huge. As can be seen in Table 2, the loss resulting from JLVM is higher with SVHN and
Chairs (datasets where JLVM has outperformed the other methods), and very small with MNIST.
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