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Abstract
Many machine learning methods making use of
Monte Carlo sampling in vector spaces have been
shown to be improved by conditioning samples
to be mutually orthogonal. Exact orthogonal cou-
pling of samples is computationally intensive,
hence approximate methods have been of great
interest. In this paper, we present a unifying per-
spective of many approximate methods by con-
sidering Givens transformations, propose new ap-
proximate methods based on this framework, and
demonstrate the first statistical guarantees for fam-
ilies of approximate methods in kernel approxima-
tion. We provide extensive empirical evaluations
with guidance for practitioners.

1. Introduction
Monte Carlo methods are used to approximate integrals in
many applications across statistics and machine learning.
Back at least as far as (Metropolis & Ulam, 1949), the study
of variance reduction or other ways to improve statistical
efficiency has been a key area of research. Popular ap-
proaches include control variates, antithetic sampling, and
randomized quasi-Monte Carlo (Dick & Pillichshammer,
2010).

When sampling from a multi-dimensional probability distri-
bution, a variety of recent theoretical and empirical results
have shown that coupling samples to be orthogonal to one
another, rather than being i.i.d., can significantly improve
statistical efficiency. We highlight applications in linear di-
mensionality reduction (Choromanski et al., 2017), locality-
sensitive hashing (Andoni et al., 2015), random feature ap-
proximations to kernel methods such as Gaussian processes
(Choromanski et al., 2018a) and support vector machines
(Yu et al., 2016), and black-box optimization (Choromanski
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et al., 2018b). We refer to the class of methods using such
orthogonal couplings as orthogonal Monte Carlo (OMC).

The improved statistical efficiency of OMC methods bears
the cost of additional computational overhead. To reduce
this cost significantly, several popular Markov chain Monte
Carlo (MCMC) schemes sample from an approximate dis-
tribution. We refer to such schemes as approximate orthogo-
nal Monte Carlo (AOMC). Much remains to be understood
about AOMC methods, including which methods are best to
use in practical settings. In this paper, we present a unifying
account of AOMC methods and their associated statistical
and computational considerations. In doing so, we pro-
pose several new families of AOMC methods, and provide
theoretical and empirical analysis of their performance.

Our approaches are orthogonal to, and we believe could
be combined with, methods in recent papers which focus
on control variates (rather than couplings) for variance re-
duction of gradients of deep models with discrete variables
(Tucker et al., 2017; Grathwohl et al., 2018).

We highlight the following novel contributions:

1. We draw together earlier approaches to scalable orthogo-
nal Monte Carlo, and cast them in a unifying framework
using the language of random Givens transformations;
see Sections 2 and 3.

2. Using this framework, we introduce several new variants
of approximate orthogonal Monte Carlo, which empir-
ically have advantages over existing approaches; see
Sections 3 and 4.

3. We provide a theoretical analysis of Kac’s random walk,
a particular AOMC method. We show that several previ-
ous theoretical guarantees for the performance of exact
OMC can be extended to approximate OMC via Kac’s
random walk; see Section 5. In particular, to our knowl-
edge we give the first theoretical guarantees showing that
some classes of AOMCs provide gains not only in com-
putational and space complexity, but also in accuracy, in
non-linear domains (RBF kernel approximation).

4. We evaluate empirically AOMC approaches, noting rela-
tive strengths and weaknesses; see Section 6. We include
an extensive analysis of the efficiency of AOMC meth-
ods in reinforcement learning evolutionary strategies,
showing they can successfully replace exact OMC.
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2. Orthogonal Monte Carlo
Consider an expectation of the form

EX∼µ [f(X)] ,

with µ ∈P(Rd) an isotropic probability distribution, and
f : Rd → R a measurable, µ-integrable function. A stan-
dard Monte Carlo estimator is given by

1

N

N∑
i=1

f(Xi) , where (Xi)
N
i=1

i.i.d.∼ µ .

Suppose for now that N ≤ d. In contrast to the i.i.d. es-
timator above, orthogonal Monte Carlo (OMC) alters the
joint distribution of the samples (Xi)

N
i=1 so that they are

mutually orthogonal (〈Xi, Xj〉 = 0 for all i 6= j) almost-
surely, whilst maintaining marginal distributions Xi ∼ µ
for all i ∈ [N ]. As mentioned in Section 1, there are many
scenarios where estimation based on OMC yields great sta-
tistical benefits over i.i.d. Monte Carlo. WhenN > d, OMC
methods are extended by taking independent collections of
d samples which are mutually orthogonal.

We note that for an isotropic measure µ ∈P(Rd), in gen-
eral there exist many different joint distributions for (Xi)

N
i=1

that induce an orthogonal coupling.

Example 2.1. Let µ ∈P(Rd) be an isotropic distribution,
and let ρµ be the corresponding distribution of the norm
of a vector with distribution µ. Let v1, . . . ,vd be the rows
of a random orthogonal matrix drawn from Haar measure
on O(d) (the group of orthogonal matrices in Rd×d) and

let R1, . . . , Rd
i.i.d.∼ ρ. Then both (Rivi)

d
i=1 and (R1vi)

d
i=1

form OMC sequences for µ. More advanced schemes may
incorporate non-trivial couplings between the (Ri)

d
i=1.

Example 2.1 illustrates that although a variety of OMC
couplings exist for any given target distribution, all such al-
gorithms have in common the task of sampling an exchange-
able collection of mutually orthogonal vectors v1, . . . ,vd
such that each vector marginally has uniform distribution
over the sphere Sd−1. We state this in an equivalent form
below.

Problem 2.2. Sample a matrix M from Haar measure on
O(d), the group of orthogonal matrices in Rd×d.

Several methods are known for solving this problem exactly
(Genz, 1998; Mezzadri, 2007), involving Gram-Schmidt
orthogonalisation, QR decompositions, and products of
Householder and Givens rotations. Computationally, these
methods incur high costs:
(i) Computational cost of sampling. All OMC methods
require O(d3) time to sample a matrix vs. O(d2) for i.i.d.
Monte Carlo.
(ii) Computational cost of computing matrix-vector

products. If the matrix M is only required in order to
compute matrix-vector products, then the Givens and House-
holder methods yield such products in O(d2) time, without
needing to construct the full matrix M. The Gram-Schmidt
method does not offer this advantage.
(iii) Space requirements. All methods require the storage
of O(d2) floating-point numbers.

Approximate OMC methods are motivated by the desire to
reduce the computational overheads of exact OMC, whilst
still maintaining statistical advantages that arise from or-
thogonality. Additionally, it turns out in many cases that
it is simultaneously possible to improve on (ii) and (iii) in
the list above, via the use of structured matrices. Indeed,
we will see that good quality AOMC methods can achieve
O(d2 log d) sampling complexity, O(d log d) matrix-vector
product complexity, and O(d) space requirements.

3. Approximate Orthogonal Monte Carlo
In Section 2, we saw that the sampling problem in OMC is
reducible to sampling random matrices from O(d) accord-
ing to Haar measure, and that the best known complexity for
performing this task exactly is O(d3). For background de-
tails on approximating Haar measure on O(d), see reviews
by Genz (1998); Mezzadri (2007). Here, we review several
approximate methods for this task, including Hadamard-
Rademacher random matrices, which have proven popular
recently, and cast them in a unifying framework. We begin
by recalling the notion of a Givens rotation (Givens, 1958).

Definition 3.1. A d-dimensional Givens rotation is an or-
thogonal matrix specified by two distinct indices i, j ∈ [d],
and an angle θ ∈ [0, 2π). The Givens rotation is then given
by the matrix G[i, j, θ] satisfying

G[i, j, θ]k,l =



cos(θ) if k = l ∈ {i, j}
− sin(θ) if k = i, l = j

sin(θ) if k = j, l = i

1 if k = l 6∈ {i, j}
0 otherwise .

Thus, the Givens rotation G[i, j, θ] fixes all coordinates of
Rd except i and j, and in the two-dimensional subspace
spanned by the corresponding basis vectors, it performs a
rotation of angle θ. A Givens rotation G[i, j, θ] composed
on the right with a reflection in the j coordinate will be
termed a Givens reflection and written G̃[i, j, θ]. Givens
rotations and reflections will be generically referred to as
Givens transformations.

We now review several popular methods for AOMC, and
show that they may be understood in terms of Givens trans-
formations.1

1We briefly note that some methods always return matrices
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3.1. Kac’s Random Walk

Kac’s random walk composes together a series of random
Givens rotations to obtain a random orthogonal matrix. It
may thus be interpreted as a random walk over the special
orthogonal group S O(d). Formally, it is defined as follows.

Definition 3.2 (Kac’s random walk). Kac’s random walk on
S O(d) is defined to be the Markov chain (KT )∞T=1, given
by

KT =

T∏
t=1

G[It, Jt, θt] ,

where for each t ∈ N, the random variables (It, Jt) ∼
Unif([d](2)) and θt ∼ Unif([0, 2π)) are independent.

Here and in the sequel, the product notation
∏T
t=1 Mt al-

ways denotes the product MT · · ·M1, with the highest-
index matrix appearing on the left. It is well known that
Kac’s random walk is ergodic, and has Haar measure on
S O(d), the special orthogonal group, as its unique invari-
ant measure. More recently, finite-time analysis of Kac’s
random walk has established its mixing time as O(d2 log d)
(Oliveira, 2009). Further, considering a fixed vector v ∈
Sd−1, the sequence of random variables (Ktv)∞t=1 can be
interpreted as a Markov chain on Sd−1, and it is known
to converge to the uniform distribution on the sphere, with
mixing time O(d log d) (Pillai & Smith, 2017). Thus, an
approximation to Haar measure on O(d) may be achieved
by simulating Kac’s random walk for a certain number of
steps; the mixing times described above give a guide as to
the number of steps required for a close approximation.

3.2. Hadamard-Rademacher Matrices

Another popular mechanism for approximating Haar mea-
sure are Hadamard-Rademacher random matrices. These
involve taking products between random diagonal matrices,
and certain structured deterministic Hadamard matrices.

Definition 3.3 (Hadamard-Rademacher chain). The
Hadamard-Rademacher chain on O(2L) is defined to be
the following Markov chain (XT )∞T=1, given by

XT =

T∏
t=1

HDt , (1)

where (Dt)
∞
t=1 are independent random diagonal matrices,

with each diagonal element a Rademacher (Unif({±1}))
random variable, and H is the normalised Hadamard ma-

with determinant 1 (i.e. taking values in the special orthogonal
group S O(d)); such methods are easily adjusted to yield matrices
across the full orthogonal group O(d) by composing with diagonal
matrix with Unif({±1}) entries. We will not mention this in the
sequel.

trix, defined as the following Kronecker product

H =

(
1√
2

1√
2

1√
2

−1√
2

)
⊗ · · · ⊗

(
1√
2

1√
2

1√
2

−1√
2

)
︸ ︷︷ ︸

L times

.

These matrices XT (typically with T ∈ {1, 2, 3}) have
been used recently in the context of dimensionality reduc-
tion (Choromanski et al., 2017) (see also (Ailon & Chazelle,
2009)), kernel approximation (Yu et al., 2016), and locality-
sensitive hashing (Andoni et al., 2015). Ailon & Chazelle
(2009) give an interpretation of such matrices as randomised
discrete Fourier transforms; here, we show that they can be
thought of as products of random Givens rotations with
more structure than in Kac’s random walk, giving a unifying
perspective on the two methods. To do this, we first require
some notation. It is a classical result that the Hadamard ma-
trix H ∈ R2L×2L can be understood as the discrete Fourier
transform over the additive Abelian group FL2 , by identify-
ing {1, . . . , 2L} with FL2 in the following manner. We asso-
ciate the element λ = (λ1, . . . , λL) ∈ FL2 with the element
x ∈ {1, . . . , 2L}with the property that x−1 expressed in bi-
nary is λL . . . λ1. With this correspondence understood, we
will write expressions such as G̃[λ,λ′, θ] for λ,λ′ ∈ FL2
without further comment. Denoting the canonical basis of
FL2 by e1, . . . , eL, define, for j ∈ {1, . . . , L},

F̃j,L =
∏
λ∈FL2
λj=0

G̃[λ,λ + ej , π/4] ∈ O(2L) . (2)

Then the normalised Hadamard matrix HL ∈ O(2L) can
be written

HL =

L∏
i=1

F̃i,L . (3)

Thus, HL is naturally described as the product of Givens
reflections as above, and indeed it is this decomposition
which exactly describes the operations constituting the fast
Hadamard transform. These relationships are illustrated in
Figure 1, with further illustration in Appendix Section D.

Thus, we may give a new interpretation of the Hadamard-
Rademacher random matrix HDt appearing in Expression
(1), by writing

HDt =

(
L−1∏
i=1

F̃i,L

)
(F̃L,LDt) .

In this expression, we may interpret F̃L,LDt as a product of
random Givens transformations with a deterministic, struc-
tured choice of rotation axes, and rotation angle chosen
uniformly from {π/4,−3π/4}, and chosen uniformly at
random to be a rotation or reflection. This perspective will
allow us to generalise this popular class of AOMC methods
in Section 4.
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Figure 1. Top: the matrix F̃2,3 expressed as a commuting product
of Givens reflections, as in Expression (2). Bottom: the normalised
Hadamard matrix H3 written as a product of F̃1,3, F̃2,3 and F̃3,3.
Matrix elements are coloured white/black to represent 0/1 ele-
ments, and grey/blue to represent elements in (0, 1) and (−1, 0).

3.3. Butterfly Matrices

Butterfly matrices generalise Hadamard-Rademacher ran-
dom matrices and are a well known means of approximately
sampling from Haar measure. They have found recent appli-
cation in random feature sampling for kernel approximation
(Munkhoeva et al., 2018). A butterfly matrix is given by
defining transform matrices of the form

Fj,L[(θj,µ)µ∈FL−j2
]=
∏

λ∈FL2
λj=0

G[λ,λ + ej , θj,λj+1:L
]∈O(2L) .

Then the butterfly matrix BL is the random matrix taking
values in the special orthogonal group S O(2L) as below,
where ((θi,µ)µ∈FL−i2

)Li=1
i.i.d.∼ Unif([0, 2π)):

BL =

L∏
i=1

Fi,L[(θi,µ)µ∈FL−i2
] . (4)

Thus butterfly matrices and Hadamard-Rademacher matri-
ces may both be viewed as ‘versions’ of Kac’s random walk
that introduce statistical dependence between various ran-
dom variables.

4. New AOMC Methods
Having developed a unifying perspective of existing AOMC
methods in terms of Givens rotations, we now introduce two
new families of AOMC methods that extend this framework.

4.1. Structured Givens Products

We highlight the work of Mathieu & LeCun (2014), who pro-
pose to (approximately) parametrise O(2L) as a structured
product of Givens rotations, for the purposes of learning ap-
proximate factorised Hessian matrices. This construction is
straightforward to randomise, and yields a new method for
AOMC, generalising both Hadamard-Rademacher random
matrices and butterfly random matrices, defined precisely

as:

L∏
j=1

 ∏
λ∈FL2
λj=0

G[λ,λ + ej , θi,λ]

 ,

where (θi,λ)λ∈FL2 ,i∈[L]
i.i.d.∼ Unif([0, 2π)). This can be un-

derstood as generalising random butterfly matrices by giving
each constituent Givens rotation an independent rotation an-
gle, whereas in Expression (4), some Givens rotations share
the same random rotation angles.

4.2. Hadamard-MultiRademacher matrices

Given the representation of Hadamard-Rademacher matri-
ces in Expression (1), a natural generalisation of these matri-
ces is given by the notion of a Hadamard-MultiRademacher
random matrix, defined below.

Definition 4.1. The Hadamard-MultiRademacher random
matrix on O(2L) is defined by the product

L∏
i=1

(
F̃i,LDi

)
, (5)

where (F̃i,L)Li=1 are the structured products of determinis-
tic Givens reflections of Expression (2), and (Di)

L
i=1 are

independent random diagonal matrices, with each diagonal
element having independent Rademacher distribution.

5. Approximation Theory
Having described various AOMC methods and their compu-
tational advantages, we now turn to statistical properties. We
consider theoretical guarantees first when AOMC methods
are used for linear dimensionality reduction, and then for
non-linear applications. Analysis of Hadamard-Rademacher
matrices for linear dimensionality reduction was undertaken
by Choromanski et al. (2017); in Section 5.1 we contribute
similar analysis for Hadamard-MultiRademacher random
matrices and Kac’s random walk. In contrast, extending
theoretical guarantees in non-linear applications (such as
random feature kernel approximation) from exact OMC
methods to AOMC methods has not yet been possible, to
the best of our knowledge. In Section 5.2, we give the first
guarantees that the statistical benefits in kernel approxima-
tion that OMC methods yield are also available when using
AOMC methods based on Kac’s random walk. All proofs
are in the Appendix.

5.1. Linear Dimensionality Reduction Analysis

Consider the linear (dot-product) kernel defined as:
K(x,y) = 〈x,y〉, for all x,y ∈ Rd. In the dimensionality
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reduction setting the goal is to find a mapping Ψ : Rd →
Rm such that m < d and 〈Ψ(xi),Ψ(xj)〉 ≈ K(xi,xj)
for all i, j ∈ [N ], for some dataset {xi}Ni=1 ⊆ Rd. The
random projections approach to this problem defines a ran-
dom linear map Ψm(x) =

√
d√
m
Mx (for all x ∈ Rd), with

M a random matrix taking values in Rm×d. A commonly
used random projection is given by taking M to have i.i.d.
N(0, 1/d) entries. This yields the unstructured Johnson-
Lindenstrauss transform (Johnson & Lindenstrauss, 1984,
JLT), with corresponding dot-product estimator given by
K̂base
m (x,y) = d

m (Mx)>(My). Several improvements on
the JLT have been proposed, yielding computational ben-
efits (Ailon & Chazelle, 2009; Dasgupta et al., 2010). In
the context of AOMC methods, Choromanski et al. (2017)
demonstrated that by replacing the Gaussian matrix in the
Johnson-Lindenstrauss transform with a general Hadamard-
Rademacher matrix composed with a random coordinate
projection matrix P uniformly selectingm coordinates with-
out replacement, it is possible to simultaneously improve on
the standard JLT in terms of: (i) estimator MSE, (ii) cost of
computing embeddings, (iii) storage space for the random
projection, and (iv) cost of sampling the random projection.

We show new results that similar improvements are
available for random projections based on Hadamard-
MultiRademacher random matrices and Kac’s random walk
– specifically, projections of the form

ΨHMD
m ,ΨKAC

k,m : x 7→
√
d√
m
PMx , ∀x ∈ Rd , (6)

where M is either a Hadamard-MultiRademacher random
matrix (Definition 4.1), or a Kac’s random walk matrix
with k Givens rotations (Definition 3.2). We denote the
corresponding dot-product estimators by K̂HMD

m (x,y) and
K̂KAC
k,m (x,y), respectively.

Theorem 5.1. The Hadamard-MultiRademacher dot-
product estimator has MSE given by:

MSE(K̂HMD
m (x,y)) =

1

m

(
d−m
d− 1

)‖x‖22‖y‖22 + 〈x,y〉2 − 2
∑
λ∈FL2

x2
λy

2
λ

 .

Comparing with the known formula for MSE(K̂base
m (x,y))

in (Choromanski et al., 2017), the MSE associated with the
Hadamard-MultiRademacher embedding is strictly lower.
Theorem 5.2. The dot-product estimator based on Kac’s
random walk with k steps has MSE given by

MSE(K̂KAC
k,m (x,y)) =

d

m

(
d−m
d− 1

)(
−〈x,y〉

2

d
+ χ

)
,

where χ = Θk
∑d
i=1 x

2
i y

2
i + 1−Θk

2(1−Θ)d(d−1) (2〈x,y〉2 +

‖x‖22‖y‖22) and Θ = (d−2)(2d+1)
2d(d−1) . In particular, there ex-

ists a universal constant C > 0 such that for k = Cd log(d)
the following holds:

MSE(K̂KAC
k,m (x,y)) < MSE(K̂base

m (x,y)).

As we see, estimators using onlyO(d log d) Givens random
rotations are more accurate than unstructured baselines and
they also provide computational gains.

5.2. Non-linear Kernel Approximation Analysis

Kernel methods such as Gaussian processes and support
vector machines are widely used in machine learning. Given
a stationary isotropic continuous kernel K : Rd × Rd → R,
with K(x,y) = φ(‖x − y‖) for some positive definite
function φ : R → R, the celebrated Bochner’s theorem
states that there exists a probability measure µφ ∈P(Rd)
such that:

Kφ(x,y) = Re

∫
Rd

exp(iw>(x− y))µφ(dw) . (7)

Rahimi & Recht (2007) proposed to use a Monte Carlo ap-
proximation, yielding a random feature map Ψm,d : Rd →
R2m given by

Ψm,d(x) =

(
1√
m

cos(w>i x),
1√
m

sin(w>i x)

)m
i=1

,

with (wi)
m
i=1

i.i.d.∼ µφ. Inner products of these features:

K̂φ,m
base(x,y) = 〈Ψm,d(x),Ψm,d(y)〉 (8)

are then standard Monte Carlo estimators of Expression (7),
allowing computationally fast linear methods to be used in
approximation non-linear kernel methods. Yu et al. (2016)
proposed to couple the directions of the (wi)

m
i=1 to be or-

thogonal almost surely, whilst keeping their lengths indepen-
dent. Empirically this leads to substantial empirical variance
reduction, but in order for the method to be practical, an
AOMC method is required to simulate the orthogonal direc-
tions; Yu et al. (2016) used Hadamard-Rademacher random
matrices. However, theoretical improvements were only
proven for exact OMC methods (Yu et al., 2016; Choro-
manski et al., 2018a); thus, the empirical success of AOMC
methods in this domain were unaccounted for.

Here, we close this gap, showing that using AOMC simula-
tion of the directions of (wi)

m
i=1 using Kac’s random walk

leads to provably lower-variance estimates of kernel values
in Expression (7) than for the i.i.d. approach. Before stating
this result formally, we introduce some notation.

Definition 5.3. We denote by GRRkd a distribution over
the orthogonal group O(d) corresponding to Kac’s random
walk with k Givens rotations.
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Definition 5.4. For a 1D-distribution Φ, we denote by
GRRΦ,k

d the distribution over matrices in Rd×d given by
the distribution of the product DA, where A ∼ GRRkd and
independently, D is a diagonal matrix with diagonal entries
sampled independently from Φ.

We denote the kernel estimator using random vectors
(wi)

m
i=1 drawn from GRRΦ,k

d (rather than i.i.d. samples
from µφ) by K̂φ,m,k

kac (x,y). We also denote by S(ε) a ball
of radius ε and centered at 0. We now state our main result.
Theorem 5.5 (Kac’s random walk estimators of RBF ker-
nels). Let Kd : Rd × Rd → R be the Gaussian kernel and
let ε > 0. Let B be a set satisfying diam(B) ≤ B for some
universal constant B that does not depend on d (B might
be for instance a unit sphere). Then there exists a constant
C = C(B, ε) > 0 such that for every x,y ∈ B\S(ε) and d
large enough we have:

MSE(K̂φ,m,k
kac (x,y)) < MSE(K̂φ,m

base(x,y)),

where k = C · d log d and m = ld for some l ∈ N.

Let us comment first on the condition x,y ∈ B\S(ε). This
is needed to avoid degenerate cases, such as x = y =
0, where both MSEs are trivially the same. Separation
from zero and boundedness are mild conditions and hold
in most practical applications. Whilst the result is stated
in terms of the Gaussian kernel, it holds more generally;
results are given in the Appendix. We emphasise that, to
our knowledge, this is the first result showing that AOMC
methods can be applied in non-linear estimation tasks and
achieve improved statistical performance to i.i.d. methods,
whilst simultaneously incurring a lower computational cost,
due to requiring only O(d log d) Givens rotations.

We want to emphasize that we did not aim to obtain optimal
constants in the above theorems. In the experimental section
we show that in practice we can choose small values for
them. In particular, for all experiments using Kac’s random
walk matrices we use C = 2.

6. Experiments
We illustrate the theory of Section 5 with a variety of ex-
periments, and provide additional comparisons between the
AOMC methods described in Sections 3 and 4. In all ex-
periments, we used Cd log(d) rotations with C = 2 for the
KAC mechanism. We note that there is a line of work on
learning some of these structured contructions (Jing et al.,
2017), but in this paper we focus on randomized transfor-
mations.

6.1. MMD Comparisons

We directly compare the distribution of M obtained from
AOMC algorithms with Haar measure on O(d) via max-

imum mean discrepancy (MMD) (Gretton et al., 2012).
Given a set X , MMD is a distance on P(X ), specified
by choosing a kernel K : X × X → R, which encodes sim-
ilarities between pairs of points in X . The squared MMD
between two distributions η, µ ∈P(X ) is then defined by

MMD(η, µ)2 = EX,X′ [K(X,X ′)] (9)
− 2EX,Y [K(X,Y )] + EY,Y ′ [K(Y, Y ′)] ,

where X,X ′ i.i.d.∼ η, and independently, Y, Y ′ i.i.d.∼ µ. Many
metrics can be used to compare probability distributions.
MMD is a natural candidate for these experiments for sev-
eral reasons: (i) it straightforward to compute unbiased
estimators of the MMD given samples from the distribu-
tions concerned, unlike e.g. Wasserstein distance; (ii) MMD
takes into account geometric information about the space
X , unlike e.g. total variation; and (iii) in some cases, it
is possible to deal with uniform distributions analytically,
rather than requiring approximation through samples.

The comparison we make is the following. For fixed vec-
tors v ∈ Sd−1, we compare the distribution of Mv against
uniform measure on the sphere Sd−1, for cases where M is
drawn from an AOMC method. In order to facilitate com-
parison of various AOMC methods, we compare number
of floating-point operations (FLOPs) required to evaluate
matrix-vector products vs. MMD squared between the two
distributions on the sphere described above; we use FLOPs
to facilitate straightforward comparison between methods
without needing to consider specific implementation details
and hardware optimisation, but observe that in practice, such
considerations may also warrant attention.

To use the MMD metric defined in Equation (9), we re-
quire a kernel K : Sd−1 × Sd−1 → R. We propose
the exponentiated-angular kernel, defined by Kλ(x,y) =
exp(−λθ(x,y)) for λ > 0, where θ(x,y) is the angle be-
tween x and y. With this kernel, we can analytically inte-
grate out the terms in Equation (9) concerning the uniform
distribution on the sphere (see Appendix for details). Re-
sults for comparing FLOPs against MMD are displayed in
Figure 2. Several interesting observations can be made.

First, whilst a single Hadamard-Rademacher matrix incurs
a low number of FLOPs relative to other methods (by virtue
of the restriction on the angles appearing in their Givens
rotation factorisations; see Section 3), this comes at a cost
of significantly higher squared MMD relative to compet-
ing methods. Pleasingly, the Hadamard-MultiRademacher
random matrix achieves a much more competitive squared
MMD without incurring any additional FLOPs, making this
newly-proposed method a strong contender as judged by
an MMD vs. FLOPs trade-off. Secondly, butterfly and
structured Givens product matrices incur higher numbers of
FLOPs due to the lack of restrictions placed on the random
angles in their Givens factorisations, but achieve extremely
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Figure 2. MMD squared vs. floating-point operations required for
matrix-vector products, dimensionality 16.

small squared MMD. Finally, we observe the dramatic sav-
ings in FLOPs that can be made, even in modest dimensions,
by passing from exact OMC methods to AOMC methods.

6.2. Kernel Approximation

We present experiments on four datasets: boston, cpu,
wine, parkinson (more datasets studied in the Appendix).

Pointwise kernel approximation: We computed empiri-
cal mean squared error (MSE) for several estimators of a
Gaussian kernel and dot-product kernel considered in this
paper for several datasets (see Appendix). We tested the fol-
lowing estimators: baseline using Gaussian unstructured ma-
trices (IID), exact OMC using Gaussian orthogonal matrices
and producing orthogonal random features (ORF), AOMC
methods using Hadamard-Rademacher matrices (HD) with
three HD blocks, Hadamard-MultiRademacher matrices
(HMD), Kac’s random walk matrices (KAC), structured
Givens products (SGP), and butterfly matrices (BFLY).
Results for the Gaussian kernel are presented in Fig. 3, 4.

Approximating kernel matrices: We test the relative er-
ror of kernel matrix estimation for the above estimators for
the Gaussian kernel (following the setting of Choromanski
& Sindhwani, 2016). Results are presented in Figure 5.

(a) boston (b) cpu

(c) wine (d) parkinson

Figure 3. Empirical MSE (mean squared error) for the pointwise
evaluation of the Gaussian kernel for different MC estimators.

(a) boston (b) cpu

(c) wine (d) parkinson

Figure 4. Number of FLOPs required to reach particular empirical
MSE levels for the pointwise evaluation of the Gaussian kernel for
different MC estimators.

6.3. Policy Search

We consider here applying proposed classes of structured
matrices to construct AOMCs for the gradients of Gaussian
smoothings of blackbox functions that can be used for black-
box optimization. The Gaussian smoothing (Nesterov &
Spokoiny, 2017) of a blackbox function F is given as:

Fσ(θ) = Eg∼N (0,Id)[F (θ + σg)] (10)
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(a) boston, Gaussian (b) cpu, Gaussian

(c) wine, Gaussian (d) parkinson, Gaussian

Figure 5. Normalized Frobenius norm error for the gaussian kernel
matrix approximation. We compare the same estimators as for
pointwise kernel approximation experiments.

for a smoothing parameter σ > 0. The gradient of the
Gaussian smoothing of F is given by the formula:

∇Fσ(θ) =
1

σ
Eg∈N (0,Id)[F (θ + σg)g]. (11)

The above formula leads to several MC estimators of
∇Fσ(θ) using as vectors g the rows of matrices sampled
from certain distributions (Conn et al., 2009; Salimans et al.,
2017). In particular, it was recently shown that exact OMCs
provide in that setting more accurate estimators of∇Fσ(θ)
that in turn lead to more efficient blackbox optimization
algorithms applying gradient-based methods with the esti-
mated gradients used to find maxima/minima of blackbox
functions. In the reinforcement learning (RL) setting the
blackbox function F takes as input the parameters θ of a
policy πθ : S → A (mapping states to actions that should
be applied in that state), usually encoded by feedforward
neural networks, and outputs the total reward obtained by
an agent applying that policy π in the given environment.
We conduct two sets of RL experiments.

OpenAI Gym tasks: We compare different MC estima-
tors on the task of learning a RL policy for the Swimmer
task from OpenAI Gym. The policy is encoded by a neural
network with two hidden layers of size 41 each and using
Toeplitz matrices. The gradient vector is 253-dimensional
and we use k = 253 samples for each experiment. We com-
pare different MC estimators, including our new construc-
tions. The results are presented in Fig. 6. GORT stands for
the exact OMC (using Gaussian orthogonal directions).

Figure 6. Comparing learning curves for RL policy training for
algorithms using different MC estimators to approximate the gra-
dient of the blackbox function on the example of Swimmer task.

Quadruped locomotion with Minitaur platform: We
apply Kac’s random walk matrices to learn RL walking
policies on the simulator of the Minitaur robot. We learn lin-
ear policies of 96 parameters. We demonstrate that AOMCs
based on Kac’s random walk matrices can easily learn good
quality walking behaviours (see Appendix for details and
full result). We attach a video library showing how these
learned walking policies work in practice.

Comments on results: Across Figures 3-5, all
OMC/AOMC methods beat IID significantly, con-
firming earlier observations. Our new HMD approach does
particularly well on Frobenius norm, which suggests it
may be more effective for downstream tasks. We aim to
study this phenomenon in future work. The KAC method
performs very well, indeed best in 3 of the 4 datasets in
Fig. 3. This is encouraging given our theoretical guarantees
in Theorem 5.5, showing KAC works well in practice
for small values of the constant C. Another advantage
of KAC is that one can use any dimensionality without
zero-padding, drastically reducing the number of rollouts
required in policy search tasks. In the Swimmer RL task
shown in Fig. 6, both HMD and KAC provide excellent
performance, rapidly reaching high reward.

7. Conclusion
We have given a unifying account of several approaches
for approximately uniform orthogonal matrix generation.
Through this unifying perspective, we introduced a new
random matrix distribution, Hadamard-MultiRademacher.
We also gave the first guarantees that approximate methods
for OMC can yield statistical improvements relative to base-
lines, by harnessing recent developments in Kac’s random
walk theory and conducted extensive empirical evaluation.
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Appendix
We briefly summarise the contents of the appendix below:

• In Section A, we give proofs for the linear approximation results stated in Section 5.1.

• In Section B, we give a proof of the main non-linear approximation result stated in Section 5.2.

• In Section C, we give additional experimental results, and further explanation of experiment details.

• In Section D, we give additional visualisations of the factorisation of Hadamard matrices into Givens transformations.

A. Linear Approximation Theory Proofs
A.1. Hadamard-MultiRademacher theory

In this section, we present a proof of Theorem 5.1. We begin with the following proposition regarding the MSE of the
estimator K̂HMD

m (x,y) = 〈ΨHMD
m (x),ΨHMD

m (y)〉.

Proposition A.1. We have the following decomposition of the MSE associated with 〈ΨHMD
m (x),ΨHMD

m (y)〉:

MSE(〈ΨHMD
m (x),ΨHMD

m (y)〉) = E
[
〈ΨHMD

m (x),ΨHMD
m (y)〉2

]
− 〈x,y〉2 . (12)

The first term on the right-hand side can be further decomposed:

E
[
〈ΨHMD

m (x),ΨHMD
m (y)〉2

]
=

d2

m2
E


 m∑
j=1

(
L∏
i=1

(F̃iDi)x

)
λj

(
L∏
i=1

(F̃iDi)y

)
λj

2
 (13)

=
d2

m2

[
mE

( L∏
i=1

(F̃iDi)x

)2

λ

(
L∏
i=1

(F̃iDi)y

)2

λ

+

m(m− 1)E

( L∏
i=1

(F̃iDi)x

)
λ

(
L∏
i=1

(F̃iDi)y

)
λ

(
L∏
i=1

(F̃iDi)x

)
µ

(
L∏
i=1

(F̃iDi)y

)
µ

] .
where λ1, . . . ,λm are drawn uniformly without replacement from the index set FL2 , and λ,µ are drawn uniformly without
replacement from FL2 .

Proof. Expression (12) follows from a straightforward calculation showing that 〈Φm(x),Φm(y)〉 is unbiased for 〈x,y〉.
Expression (13) then follows simply by substituting the definition of Φm from Expression (6) into Expression (12).

We now prove a sequence of intermediate lemmas and propositions, that show how the expectations concerning the quantities
in Expression (13) can be calculated. With these in hand, we will then be in a position to prove Theorem .

Lemma A.2. Let λ,µ be drawn uniformly without replacement from FL2 , and let i ∈ {1, . . . , L}. Let x̃, ỹ be random
variables taking values in R2L , independent of λ and µ, and let D be a random diagonal Rademacher matrix, independent
of all other random variables. Then we have:

E
[
(F̃i,LDx̃)λ(F̃i,LDỹ)λ(F̃i,LDx̃)µ(F̃i,LDỹ)µ

]
(14)

=
1

2
E [x̃λỹλx̃µỹµ] +

1

2
E [x̃µỹµx̃λ+ei ỹλ+ei ]−

1

2(d− 1)
E
[
x̃λỹλx̃λ+ei ỹλ+ei + x̃2

λỹ
2
λ+ei

]
.
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Proof. We calculate directly:

E
[
(F̃i,LDx̃)λ(F̃i,LDỹ)λ(F̃i,LDx̃)µ(F̃i,LDỹ)µ

]
=

1

4
E
[
(dλ+ei x̃λ+ei + (−1)λidλx̃λ)(dλ+ei ỹλ+ei + (−1)λidλỹλ)×

(dµ+ei x̃µ+ei + (−1)µidµx̃µ)(dµ+ei ỹµ+ei + (−1)µidµỹµ)

]
, (15)

where dz = (D)zz . The brackets within the expectation can be expanded to yield 16 terms. Taking expectations over the
Rademacher variables leads to 8 of these terms vanishing. For a further 4 terms, the only non-vanishing contribution comes
from the event {λ = µ + ei}, which happens with probability 1/(d− 1), leading to the denominator in the third term on
the right-hand side of Equation (14). Collecting the remaining like terms together yields the statement of the lemma.

Lemma A.3. Let λ be drawn uniformly from FL2 , and let λ′ ∈ FL2 be given by λ+ v, for some deterministic vector v ∈ FL2 ,
with the property that v ∈ 〈ei+1, . . . , eL〉 \ {0}. Let x̃, ỹ be random variables taking values in R2L , independent of λ and
µ, and let D be a random diagonal Rademacher matrix, independent of all other random variables. Then we have:

E
[
(F̃i,LDx̃)2

λ(F̃i,LDỹ)2
λ′

]
=

1

4
E
[
x̃2
λỹ

2
λ′ + x̃2

λ+ei ỹ
2
λ′ + x̃2

λỹ
2
λ′+ei

+ x̃2
λ+ei ỹ

2
λ′+ei

]
. (16)

Proof. We calculate directly:

E
[
(F̃i,LDx̃)2

λ(F̃i,LDỹ)2
λ′

]
=

1

4
E
[
(dλ+ei x̃λ+ei + (−1)λidλx̃λ)2(dλ′+ei x̃λ′+ei + (−1)λ

′
idλ′ x̃λ′)

2
]
. (17)

By taking expectations over the Rademacher random variables, all but 4 terms vanish. Collecting these together yields the
stated result.

Lemma A.4. Let λ be drawn uniformly from FL2 , and let λ′ ∈ FL2 be given by λ+ v, for some deterministic vector v ∈ FL2 ,
with the property that v ∈ 〈ei+1, . . . , eL〉 \ {0}. Let x̃, ỹ be random variables taking values in R2L , independent of λ and
µ, and let D be a random diagonal Rademacher matrix, independent of all other random variables. Then we have:

E
[
(F̃i,LDx̃)λ(F̃i,LDỹ)λ(F̃i,LDx̃)λ′(F̃

i,LDỹ)λ′
]

=
1

4
E [x̃λỹλx̃λ′ ỹλ′ + x̃λỹλx̃λ′+ei ỹλ′+ei + x̃λ+ei ỹλ+ei x̃λ′ ỹλ′ + x̃λ+ei ỹλ+ei x̃λ′+ei ỹλ′+ei ] (18)

Proof. We calculate directly:

E
[
(F̃i,LDx̃)λ(F̃i,LDỹ)λ(F̃i,LDx̃)λ′(F̃

i,LDỹ)λ′
]

=

1

4
E
[
(dλ+ei x̃λ+ei + (−1)λidλx̃λ)(dλ+ei ỹλ+ei + (−1)λidλỹλ)×

(dλ′+ei x̃λ′+ei + (−1)λ
′
idλ′ x̃λ′)(dλ′+ei ỹλ′+ei + (−1)λ

′
idλ′ ỹλ′)

]
. (19)

Taking expectations over the Rademacher random variables, all but 4 terms vanish. Collecting these terms together yields
the stated result.

Lemma A.5. Let λ,µ be drawn uniformly without replacement from FL2 , and let i ∈ {1, . . . , L}. Let v ∈ 〈ei+1, . . . , eL〉 \
{0}. Let x̃, ỹ be random variables taking values in R2L , independent of λ and µ, and let D be a random diagonal
Rademacher matrix, independent of all other random variables. Then we have:

E
[
(F̃i,LDix̃)λ(F̃i,LDiỹ)λ(F̃i,LDix̃)µ+v(F̃i,LDiỹ)µ+v

]
= (20)

1

4
E [x̃λỹλx̃µ+vỹµ+v + x̃λỹλx̃µ+v+ei ỹµ+v+ei + x̃λ+ei ỹλ+ei x̃µ+vỹµ+v + x̃λ+ei ỹλ+ei x̃µ+v+ei ỹµ+v+ei ] . (21)
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Proof. Again, calculating directly:

E
[
(F̃i,LDix̃)λ(F̃i,LDiỹ)λ(F̃i,LDix̃)µ+v(F̃i,LDiỹ)µ+v

]
= (22)

1

4
E
[
(dλ+ei x̃λ+ei + (−1)λidλx̃λ)(dλ+ei ỹλ+ei + (−1)λidλỹλ)×

(dµ+v+ei x̃µ+v+ei + (−1)µi+vidµ+vx̃µ+v)(dµ+v+ei ỹµ+v+ei + (−1)µi+vidµ+vỹµ+v)

]
. (23)

Taking expectations over the Rademacher random variables, 8 terms vanish. Taking expectations over µ, another 4 terms
vanish. Collecting the remaining terms yields the result.

With Lemmas A.2-A.5 established, the following proposition now follows straightforwardly by induction; Lemma A.2
establishes the base case, whilst Lemmas A.3-A.5 are used for the inductive step.
Proposition A.6. Let λ,µ be drawn uniformly without replacement from FL2 , and let i ∈ {1, . . . , L}. Let x̃, ỹ be random
variables taking values in R2L , independent of λ and µ, and let (Di)

L
i=1 be random independent diagonal Rademacher

matrices, independent of all other random variables. Then we have:

E

( L∏
i=l+1

(F̃i,LDi)x̃

)
λ

(
L∏

i=l+1

(F̃i,LDi)ỹ

)
λ

(
L∏

i=l+1

(F̃i,LDi)x̃

)
µ

(
L∏

i=l+1

(F̃i,LDi)ỹ

)
µ


=

1

2L−l

 ∑
v∈〈el+1,...,eL〉

E [x̃λỹλx̃µ+vỹµ+v]



− 1

2L−l(d− 1)

 ∑
v∈〈el+1,...,eL〉

v 6=0

E
[
x̃λỹλx̃λ+vỹλ+v + x̃2

λỹ
2
λ+v

] (24)

We next show the following.

Lemma A.7. Let λ be drawn uniformly from FL2 . Let x̃, ỹ be random variables taking values in R2L , independent of λ and
µ, and let D be a random diagonal Rademacher matrix, independent of all other random variables. Then we have:

E
[
(F̃i,LDx̃)2

λ(F̃i,LDỹ)2
λ

]
=

1

2
E
[
x̃2
λỹ

2
λ

]
+

1

2
E
[
x̃2
λỹ

2
λ+ei

]
+ E [x̃λx̃λ+ei ỹλỹλ+ei ] . (25)

Proof. We calculate directly:

E
[
(F̃i,LDx̃)2

λ(F̃i,LDỹ)2
λ

]
= E

[
(dλ+ei x̃λ+ei + (−1)λidλx̃λ)2(dλ+ei ỹλ+ei + (−1)λidλỹλ)2

]
. (26)

Of the 16 terms that result when the brackets are expanded, 8 vanish when expectations are taken over the Rademacher
random variables. By collecting together the remaining terms, the statement of the lemma is recovered.

The following proposition now follows by induction, using Lemma A.7 for the base case, and Lemmas A.3 and A.4 for the
inductive step.

Proposition A.8. Let λ be drawn uniformly from FL2 . Let x̃, ỹ be random variables taking values in R2L , independent of λ
and µ, and let (Di)

L
i=1 be random independent diagonal Rademacher matrices, independent of all other random variables.

Then we have:

E

( L∏
i=l+1

(F̃i,LDi)x̃

)2

λ

(
L∏

i=l+1

(F̃i,LDi)ỹ

)2

λ



=
1

2L−l

 ∑
v∈〈el+1,...,eL〉

E
[
x̃2
λỹ

2
λ+v

]+
1

2L−l−1
E

 ∑
v∈〈el+1,...,eL〉

v 6=0

x̃λỹλx̃λ+vỹλ+v

 (27)



Unifying Orthogonal Monte Carlo Methods

We are now in a position to bring these lemmas and propositions together, and give a proof of Theorem 5.1. We begin by
observing that special cases of Propositions A.6 and A.8 in the case l = 0 give the following expressions:

E

( L∏
i=1

(F̃i,LDi)x

)
λ

(
L∏
i=1

(F̃i,LDi)y

)
λ

(
L∏
i=1

(F̃i,LDi)x

)
µ

(
L∏
i=1

(F̃i,LDi)y

)
µ



=
1

2L

∑
v∈FL2

E [xλyλxµ+vyµ+v]

− 1

2L(d− 1)

∑
v∈FL2
v 6=0

E
[
xλyλxλ+vyλ+v + x2

λy
2
λ+v

] , (28)

E

( L∏
i=1

(F̃i,LDi)x

)2

λ

(
L∏
i=1

(F̃i,LDi)y

)2

λ

 =
1

2L

∑
v∈FL2

E
[
x2
λy

2
λ+v

]+
1

2L−1
E

∑
v∈FL2
v 6=0

xλyλxλ+vyλ+v

 (29)

By interpreting the summations over v as an unnormalised expectation over the uniform distribution on FL2 , we may recast
these sums as expectations, yielding the following expressions (here, µ′ is uniform and independent of λ):

E

( L∏
i=1

(F̃i,LDi)x

)
λ

(
L∏
i=1

(F̃i,LDi)y

)
λ

(
L∏
i=1

(F̃i,LDi)x

)
µ

(
L∏
i=1

(F̃i,LDi)y

)
µ


=E [xλyλxµ′yµ′ ]−

1

(d− 1)

[
E
[
xλyλxµ′yµ′ + x2

λy
2
µ′
]
− 2

2L
E
[
x2
λy

2
λ

]]
=E [xλyλ]E [xµ′yµ′ ]−

1

(d− 1)

[
E [xλyλ]E [xµ′yµ′ ] + E

[
x2
λ

]
E
[
y2
µ′
]
− 2

2L
E
[
x2
λy

2
λ

]]

=
〈x,y〉2

d2
− 1

(d− 1)

 〈x,y〉2
d2

+
‖x‖22‖y‖22

d2
− 2

d2

∑
λ∈FL2

x2
λy

2
λ

 , (30)

E

( L∏
i=1

(F̃i,LDi)x

)2

λ

(
L∏
i=1

(F̃i,LDi)y

)2

λ

 =
1

2L

∑
v∈FL2

E
[
x2
λy

2
λ+v

]+
1

2L−1
E

∑
v∈FL2
v 6=0

xλyλxλ+vyλ+v

 (31)

= E
[
x2
λy

2
µ′
]

+ 2E [xλyλxµ′yµ′ ]−
2

2L
E
[
x2
λy

2
λ

]
(32)

=
‖x‖22‖y‖22

d2
+ 2
〈x,y〉2

d2
− 2

d2

∑
λ∈FL2

x2
λy

2
λ . (33)

Now substituting these expressions into Expression (13) yields the statement of the theorem.

A.2. Kac’s Random Walk Theory

In this section, we present a proof of Theorem 5.2. We begin with the following recursive formula for the MSE of the
estimator KKAC

k,m (x,y).

Lemma A.9. Let x,y ∈ Rd. Let gk,m(x,y) = MSE(KKAC
k,m (x,y)). Then we have

g0,m(x,y) =
d

m

(
d−m
d− 1

)( d∑
i=1

x2
i y

2
i − 〈x,y〉2/d

)
, gk+1,m(x,y) = E [gk,m(Gx,Gy)] ∀k ≥ 1 .

where G represents a random Givens rotation G[I, J, θ], as described in Definition 3.2.
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Proof. Letting S be the random subset of m subsampled indices and calculating directly, we have

g0,m(x,y) = E

( d

m

∑
i∈S

xiyi

)2
− 〈x,y〉2

=
d2

m2
E

∑
i∈S

x2
i y

2
i +

∑
i,j∈S
i 6=j

xixjyiyj

− 〈x,y〉2

=
d2

m2

m
d

d∑
i=1

x2
i y

2
i +

m(m− 1)

d(d− 1)

d∑
i 6=j

xixjyiyj

− 〈x,y〉2 .
Rearranging now gives the first statement. For the recursive statement, note that we have

gk+1,m(x,y) = Var

(
d

m
〈PKk+1x,PKk+1y〉

)
= Var

(
d

m
〈PKkGx,PKkGy〉

)
= Var

(
E
[
d

m
〈PKkGx,PKkGy〉

∣∣G])+ E
[
Var

(
d

m
〈PKkGx,PKkGy〉

∣∣G)]
(a)
= E

[
Var

(
d

m
〈PKkGx,PKkGy〉

∣∣G)]
= E [gk,m(Gx,Gy)] ,

as required, where (a) follows since the conditional expectation in the line above is equal to 〈Gx,Gy〉, which is constant
(equal to 〈x,y〉) almost surely, since G is orthogonal almost surely; the variance of this conditional expectation is therefore
0.

To solve the recursion derived in Lemma A.9, we require an auxiliary lemma.

Lemma A.10. We have

E

[
d∑
i=1

(Gx)2
i (Gy)2

i

]
=

(2d+ 1)(d− 2)

2d(d− 1)

d∑
i=1

x2
i y

2
i +

1

2d(d− 1)
‖x‖2‖y‖2 +

1

d(d− 1)
〈x,y〉2 .

Proof. By linearity and symmetry, it is sufficient to compute E
[
(Gx)2

i (Gy)2
i

]
, for an arbitrary index i ∈ {1, . . . , d}. First,

by conditioning on which two coordinates are involved in the Givens rotation, and writing θ for the random angle of the
rotation, we have

E
[
(Gx)2

i (Gy)2
i

]
=
d− 2

d
x2
i y

2
i +

1

2
(
d
2

) ∑
j 6=i

E
[
(cos(θ)xi − sin(θ)xj)

2(cos(θ)yi − sin(θ)yj)
2
]

+
1

2
(
d
2

) ∑
j 6=i

E
[
(sin(θ)xi + cos(θ)xj)

2(sin(θ)yi + cos(θ)yj)
2
]

=
d− 2

d
x2
i y

2
i +

1(
d
2

) ∑
j 6=i

E
[
(cos(θ)xi − sin(θ)xj)

2(cos(θ)yi − sin(θ)yj)
2
]

=
d− 2

d
x2
i y

2
i +

2

d(d− 1)

∑
j 6=i

E
[
cos4(θ)x2

i y
2
i + sin4(θ)x2

jy
2
j + cos2(θ) sin2(θ)(x2

i y
2
j + x2

jy
2
i )
]

=
d− 2

d
x2
i y

2
i +

2

d(d− 1)

∑
j 6=i

(
3

8
x2
i y

2
i +

3

8
x2
jy

2
j +

1

8
(x2
i y

2
j + x2

jy
2
i ) +

1

2
xixjyiyj

)
.
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Summing over i now yields

E

[
d∑
i=1

(Gx)2
i (Gy)2

i

]
=

2d− 1

2d

d∑
i=1

x2
i y

2
i +

1

2d(d− 1)

d∑
i 6=j

x2
i y

2
j +

1

d(d− 1)

d∑
i 6=j

xixjyiyj .

Finally, rearranging yields the statement of the lemma.

We are now ready to prove Theorem 5.2 by induction, using Lemmas A.9 & A.10. We claim that

gk,m(x,y) =
d

m

(
d−m
m− 1

)(
Θk

d∑
i=1

x2
i y

2
i +

(
1−Θk

1−Θ

)
1

2d(d− 1)
‖x‖2‖y‖2 +

(
1−Θk

1−Θ

)
1

d(d− 1)
〈x,y〉2 − 〈x,y〉

2

d

)
,

for all k ≥ 0, 0 ≤ m ≤ d, x,y ∈ Rd, where Θ = (2d+1)(d−2)
2d(d−1) . We induct on k. The base case is given by Lemma A.9. For

the inductive step, we suppose that for some k ≥ 0:

gk,m(x,y) =
d

m

(
d−m
m− 1

)(
Θk

d∑
i=1

x2
i y

2
i +

(
1−Θk

1−Θ

)
1

2d(d− 1)
‖x‖2‖y‖2 +

(
1−Θk

1−Θ

)
1

d(d− 1)
〈x,y〉2 − 〈x,y〉

2

d

)
.

We now use the recursion of Lemma A.9, and the formula of Lemma A.10 to calculate:

gk+1,m(x,y) =E [gk,m(Gx,Gy)]

=
d

m

(
d−m
m− 1

)(
ΘkE

[
d∑
i=1

(Gx)2
i (Gy)2

i

]
+

(
1−Θk

1−Θ

)
1

2d(d− 1)
E
[
‖Gx‖2‖Gy‖2

]
+

(
1−Θk

1−Θ

)
1

d(d− 1)
E
[
〈Gx,Gy〉2

]
− E

[
〈Gx,Gy〉2

d

])

=
d

m

(
d−m
m− 1

)(
ΘkE

[
d∑
i=1

(Gx)2
i (Gy)2

i

]
+

(
1−Θk

1−Θ

)
1

2d(d− 1)
‖x‖2‖y‖2+

(
1−Θk

1−Θ

)
1

d(d− 1)
〈x,y〉2 − 〈x,y〉

2

d

)

=
d

m

(
d−m
m− 1

)(
Θk+1E

[
d∑
i=1

(Gx)2
i (Gy)2

i

]
+

(
1−Θk+1

1−Θ

)
1

2d(d− 1)
‖x‖2‖y‖2+

(
1−Θk+1

1−Θ

)
1

d(d− 1)
〈x,y〉2 − 〈x,y〉

2

d

)
,

as required. The comparison between the MSE associated with the base and Kac’s random walk estimators follows
straightforwardly from the MSE expression for the base estimator in Choromanski et al. (2017).

B. Non-linear Approximation Theory Proofs
B.1. The Proof of Theorem 5.5

From now on we will assume that ‖x‖, ‖y‖ are positive constants, independent from the dimensionality d. We can do this
since we know that x,y ∈ B\S(ε). It is easy to notice that it suffices to prove the theorem for m = d (i.e. l=1). This is the
case since different d-row blocks defining a matrix used to construct a random feature map are independent and thus the
difficulty reduces to showing that a single block reduces the variance. The reduction to a single block was also discussed in
detail in (Yu et al., 2016; Choromanski et al., 2018a; 2017) so we refer the reader there for more details. From now on we
will take m = d. We will need the following technical results.
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Theorem B.1. Let K be an RBF-kernel (e.g. Gaussian kernel). Take x,y ∈ Rd and consider two estimators of K(x,y):
estimator K̂ort(x,y) based on matrices sampled from OΦ

d (where Φ is as in the statement of the theorem) and an estimator
K̂k

kac(x,y) based on matrices sampled from GRRΦ,k
d . Then there exist universal constants C,D > 0 such that for

k = Cd log(d) the following holds:

‖µK̂ort(x,y) − µK̂k
kac(x,y)‖TV ≤

D

d
3
2

, (34)

where µX stands for the probabilistic measure corresponding to the random variable X .

The following is also true:

Theorem B.2. Let K be an RBF-kernel and let x,y ∈ B ⊆ Rd be taken from some bounded set B. Then there exist
universal constants C,P > 0 such that for k = Cd log(d) the following holds:

|MSE(K̂ort(x,y))−MSE(K̂k
kac(x,y))| ≤ P

d
3
2

. (35)

Theorem B.2 follows immediately from Theorem B.1 and the following lemma:

Lemma B.3. Let {Xs}, {Ys} for s ∈ S be two families of 1-d random variables such that sups∈S,ω∈Ω |Xs(ω)| ≤ τ <∞,
sups∈S,ω∈Ω |Ys(ω)| ≤ τ <∞. Assume that for every s ∈ S, Xs and Ys are estimators of some deterministic ρs ∈ R and
sups∈S |ρs| ≤ Λ <∞. Then the following is true:

sup
s∈S
|MSE(Xs)−MSE(Ys)| ≤ (Λ + τ)2 sup

s∈S
‖µXs − µYs‖TV, (36)

where MSE(Xs) = E[(Xs − ρs)2] and MSE(Ys) = E[(Ys − ρs)2].

To see how Theorem B.2 follows from Theorem B.1 and Lemma B.3, notice that one can take as S the family of all
unordered sets {x,y} ⊆ B and define X{x,y} = K̂ort(x,y), Y{x,y} = K̂k

kac(x,y). Now, since B is bounded, there exists a
universal constant Λ < ∞. Furthermore, we can take τ = 1 since considered estimators are obtained by averaging over
cosine values of dot-products of random n-dimensional vectors with a vector z = x− y. Lemma B.3 then follows.

Theorem B.2 leads to the result we want to prove there and showing that not only do constructions based on Givens random
rotations outperform unstructured baselines for RBF kernel approximation in terms of space and time complexity (d log(d)
time complexity and d log(d) space complexity vs d2 time complexity and d2 space complexity per block), but they also
lead to asymptotically more accurate (in terms of the mean squared error) estimators of RBF kernels. For the convenience of
the reader, we restate the theorem we will prove here below:

Theorem B.4. Assume that an RBF kernel satisfies conditions from Theorem 3.3 from (Choromanski et al., 2018a) (e.g.
Gaussian kernel). Then the following holds for n large enough:

MSE(K̂k
kac(x,y)) < MSE(K̂base(x,y)), (37)

where K̂base(x,y) stands for the baseline unstructured RFM-based estimator.

Proof. We have:

MSE(K̂base(x,y))−MSE(K̂k
kac(x,y)) =

(MSE(K̂base(x,y))−MSE(K̂ort(x,y))) + (MSE(K̂ort(x,y))−MSE(K̂kac(x,y))) ≥

MSE(K̂base(x,y))−MSE(K̂ort(x,y))− |MSE(K̂ort(x,y))−MSE(K̂k
kac(x,y))| ≥
A

d
− B

d
3
2

> 0

(38)

for some universal constants A,B > 0 and d large enough, where the existence of A follows from Theorem 3.3 in
(Choromanski et al., 2018a) and the existence of B follows from Theorem B.2. That completes the proof.



Unifying Orthogonal Monte Carlo Methods

The above results show that in practice RBF-kernel estimators using matrices sampled from GRRΦ,k
d can successfully

replace baselines using unstructured random matrices as well as recent constructions based on structured orthogonal
matrices. Furthermore, matrices sampled from GRRΦ,k

d provide construction of random feature maps in time O(d log(d))
which matches time complexity of the fastest known constructions based on Hadamard matrices for which such accurate
performance guarantees are not known. Finally, to the best of our knowledge, Theorem B.4 is the first result showing that
structured transforms providing sub-linear space and time complexity can replace in MC estimators unstructured baselines
and provide more accurate (in terms of the mean squared error) estimators in the nonlinear case (previously it was known
only for constructions based on random Hadamard matrices and only for linear kernel approximation, see: (Choromanski
et al., 2017)).

Below we prove the technical results that lead to the main theorem.

B.1.1. PROOF OF THEOREM B.1

Proof. Take some measurable set A ⊆ R. It is enough to show that

|µK̂ort(x,y)(A)− µK̂d
kac(x,y)(A)| ≤ D

d
. (39)

We have: µK̂ort(x,y)(A) = P[K̂ort(x,y) ∈ A] and similarly µK̂d
kac(x,y)(A) = P[K̂d

kac(x,y) ∈ A].

We have the following:

K̂ort(x,y) =
1

d
cos(Gz)>e, (40)

where z = x− y, G ∼ OΦ
d and e = (1, ..., 1)> (all-ones vector).

Similarly,

K̂d
kac(x,y) =

1

d
cos(Wz)>e, (41)

where W ∼ GRRΦ,k
d . Therefore we have

µK̂ort(x,y)(A) = P[
1

d
cos(Gz)>e ∈ A]. (42)

Similarly,

µK̂d
kac(x,y)(A) = P[

1

d
cos(Wz)>e ∈ A]. (43)

Notice that lengths of the rows of G and W are chosen independently from their directions. Thus we can condition on
the lengths of the chosen rows. We will prove the statement for the fixed lengths. To prove the general version, it suffices
to integrate over these lengths with factorized (due to independence) density functions (the factorization is into two parts:
the one corresponding to the density regarding lengths and the one regarding directions of vectors). We can also assume
that corresponding rows of matrices G and W are the same, since we use the same distribution to sample them. The
assumption that distributions corresponding to G and W are the same is correct since we can assume that both G and W
are created from the same underlying process that constructs independent Gaussian vectors. The only difference is that one
of the matrices is then orthogonalized. The assumption about the same underlying process is valid since our statement is
about two distributions and both can be explicitly constructed using that process. Thus we can think about measures in
Inequality 39 that we want to prove as measures corresponding to distributions of directions of the rows of matrices G
and W or equivalently, as measures corresponding to distributions of directions of the rows of Gnorm and Wnorm, where
Gnorm ∼ OΦ1

d , Wnorm ∼ GRRkd and Φ1 ≡ 1 (since the latter ones are just L2-normalized versions of the former ones).
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Therefore it suffices to prove Inequality 39 for these measures, i.e. that for any measurable set A and ẑ = z
‖z‖ the following

holds:

|P[Gnormẑ ∈ A]− P[Wnormẑ ∈ A]| ≤ D

d
3
2

(44)

for some universal constant D > 0,

But now notice that the measure related to the distribution of Gnormẑ is exactly the Haar measure since, Gnorm is a
matrix of a random rotation in Rn. Furthermore, Wnormẑ is an n-dimensional vector obtained by performing standard
Kac’s random walk using k Givens random rotations. Thus we can use the result of (Pillai & Smith, 2017) (proof of
Theorem 1 in that paper) where it is shown that for every a, b, ε > 0 there exists a constant C(b) > 0 such that if
k > max(C(b)d log(d), (5a+ 6 + 1

2 + 2ε)d log(d)) then:

‖µHAAR − µKAC‖TV ≤ d2a+2(1− 1

2d
)(5a+5)d log(d) +

1

d4(a+1)
+

2

dε
+ 6000d2− 2(a−1)

5 + d6− b3 , (45)

where µHAAR stands for the Haar measure on the sphere and µKAC is a measure on the sphere induced by Kac’s random
walk that starts in some (arbitrary) point on the sphere. We should emphasize that the straightforward application of the proof
of Theorem 1 from (Pillai & Smith, 2017) would lead to the bound, where term 5a+ 5 on the RHS is replaced by a term
4a+ 5 (and corresponding smaller k, where term 5a is replaced by 4a). We can instead use term 5a+ 5, by exploiting the
proof of Theorem 1 a little bit more carefully and noticing that in that proof the authors need only: T ′2(d) ≥ (4a+ 5)d log(d)
for a = 47 (see: p.13), thus in particular it is safe to take T ′2(d) ≥ (5a+ 5)d log(d). For such a choice the Inequality 45
will be achieved after more steps of the Kac’s random walk process (see: (Pillai & Smith, 2017) for details), i.e. for larger k
than the one obtained in the paper (where term 4a from the paper is replaced by 5a as in our lower bound for k), but for k

that is still of order O(d log(d)) (as we see in our lower bound on k). To get term 2
dε in Inequality 45 instead of de−

T ′2(d)

d , as
in the original statement (and trivially bounded by the authors by 1

d ), only a small refinement of authors’ original argument
is required. It suffices to notice that one can take T ′2(d) ≥ max(5a+ 5, C(b))d log(d) (same analysis as above). Then we

obtain: de−
T ′2(d)

d < 2
dε for C(b) > ε+ 1 and thus we can use term 2

dε in the RHS of Inequality 45.

Taking a, b, ε to be large enough constants, we conclude that

‖µHAAR − µKAC‖TV = O(
1

d
3
2

) (46)

for k ≥ V d log(d), where V > 0 is some universal constant.

Thus, using our previous observations, we conclude that in particular:

|P[Gnormẑ ∈ A]− P[Wnormẑ ∈ A]| = O(
1

d
3
2

) (47)

for k ≥ V d log(d). That completes the proof.

B.1.2. PROOF OF THEOREM B.2

Fix some s ∈ S.

Proof. We have:

MSE(Xs) = E[(Xs − ρs)2] =

∫ ∞
0

P[(Xs − ρs)2 > t]dt. (48)

Similarly,

MSE(Ys) = E[(Ys − ρs)2] =

∫ ∞
0

P[(Ys − ρs])2 > t]dt. (49)
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Thus we get:

|MSE(Xs)−MSE(Ys)| = |
∫ ∞

0

P[(Xs − ρs)2 > t]dt−
∫ ∞

0

P[(Ys − ρs)2 > t]dt|. (50)

Therefore we obtain:

|MSE(Xs)−MSE(Ys)| ≤
∫ ∞

0

|P[(Xs − ρs)2 > t]− P[(Ys − ρs)2 > t]|dt (51)

Now notice that:
P[(Xs − ρs)2 > (Λ + τ)2] ≤ P[(|Xs|+ |ρs|])2 > (Λ + τ)2] = 0, (52)

where the last equality follows from the definition of τ and Λ.

Similarly,
P[(Ys − ρs)2 > (Λ + τ)2] = 0 (53)

Therefore we conclude that:

|MSE(Xs)−MSE(Ys)| ≤
∫ (Λ+τ)2

0

|P[(Xs − ρs)2 > t]− P[(Ys − ρs)2 > t]|dt. (54)

Notice that
|P[(Xs − ρs > t]− P[(Ys − ρs)2 > t]| ≤ sup

s∈S
‖µXs − µYs‖TV (55)

The above is true since: P[(Xs − ρs)2 > t] = µXs(Ct), where Ct = {Xs < ρs −
√
t} ∪ {Xs > ρs +

√
t}.

Therefore we have:

|MSE(Xs)−MSE(Ys)| ≤ (Λ + τ)2 sup
s∈S
‖µXs − µYs‖TV (56)

Since s ∈ S was chosen arbitrarily, the proof is completed.

C. Further Experimental Details and Results
C.1. Integrating out contributions from uniform distributions in MMD

As mentioned in the main paper, one of the advantages of working with MMD is that it is often possible to deal with terms
concerning uniform distributions analytically, rather than having to resort to samples and introducing further approximation
error.

We begin by recalling the form of the MMD estimator in Equation (9):

MMD(η, µ)2 = EX,X′ [K(X,X ′)]− 2EX,Y [K(X,Y )] + EY,Y ′ [K(Y, Y ′)] , (57)

where X,X ′, Y, Y ′ are all independent, and X,X ′ ∼ η, Y, Y ′ ∼ µ. Recall that in the context of Section 6, we are
interested in the case where µ is given by uniform measure on the sphere. We show that in this case, the two terms in
Equation (57) involving random variables with distribution µ may be dealt with analytically. To this end, let Y be distributed
according to uniform measure on Sd−1, and let Z be any other random variable on Sd−1 independent of Y . Now consider
the term EY,Z [K(Y,Z)]. We first rewrite this as a conditional expectation EZ [EY [K(Y,Z)|Z]]. We now consider the
inner conditional expectation EY [K(Y,Z)|Z = z] = EY [K(Y, z)], and show that the value of this term is available
analytically, and is independent of z ∈ Sd−1. Since the integrand depends only on the angle between Y and z:

EY [K(Y, z)] = EY [exp(−λθ(Y, z))] , (58)
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by invariance of the distribution of Y under action of the orthogonal group O(d), we may take z = e1, the first canonical
basis vector. By considering hyperspherical coordinates, we recognise the density of the random variable θ(Y, e1) as
sind−2(θ)/[

√
πΓ(d−1

2 )/Γ(d2 )], on the interval [0, π]. Thus, we can compute

EY [exp(−λθ(Y, z))] =
Γ(d2 )

√
πΓ(d−1

2 )

∫ π

0

exp(−λθ) sind−2(θ)dθ . (59)

We can now use integration by parts to get the following recurrence relation for l > 1:∫ π

0

exp(αx) sinl(βθ)dθ =

[
exp(αθ) sin(βθ)l−1(α sin(βθ)− βl cos(βθ))

α2 + β2l2

]π
0

+
β2(l − 1)l

α2 + β2l2

∫ π

0

exp(αθ) sinl−2(βθ)dθ

(60)

By iterating this, and applying to the integral in Equation (59), for each d we obtain an expression that may be evaluated
analytically, and thus these two terms in the MMD expression (57) need not be estimated via Monte Carlo. The only term
that remains is the first term on the right-hand side; given a set of i.i.d. samples X1, . . . ,XN from η, an unbiased estimator
for this first term is the following U-statistic

1

N(N − 1)

N∑
i=1

N∑
j 6=i

K(Xi,Xj) . (61)

C.2. Additional MMD empirical results

In addition to the results for dimension 16 presented in the main paper, we present results here for 32, 64, and 128 dimensions
in Figure 7. The qualitative behaviour of the methods is similar to the case presented in the main paper.

C.3. Additional kernel matrix approximation results

In Figure 8 we present results on kernel matrix approximation with our methods on the example of the Gaussian kernel on
more datasets.

In Figure 9 we present results of pointwise evaluation of the linear (dot-product kernel) for different AOMCs and the
unstructured baseline. As we see, AOMCs substantially outperform the unstructured baseline. In particular this is the case
for the Kac’s random walk construction for which we gave theoretical guarantees in Theorem 5.2.

C.4. Quadruped locomotion with Minitaur platform:

In that setting we apply Kac’s random walk matrices to learn RL walking policies on the simulator of the Minitaur robot. We
learn linear policies of 96 parameters using MC-based algorithms with different control variate terms (antithetic, forward FD
and vanilla, see (Choromanski et al., 2018b) for details). The results are presented on Fig. 10. We test k = 48, 96 samples
for the estimator. We see that matrices based on Kac’s random walk easily learn good walking behaviours (reward > 10) for
the forward FD and antithetic variant.
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(a) d = 32
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(b) d = 64
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(c) d = 128

Figure 7. Additional MMD results for higher dimensionalities, complementing Figure 2 in the main paper.
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(a) g50, Gaussian (b) insurance, Gaussian

Figure 8. Normalized Frobenius norm error for the gaussian kernel matrix approximation. We compare the same estimators as for
pointwise kernel approximation experiments. Experiments are run on two datasets: g50 and insurance.

(a) boston, linear (b) cpu, linear (c) wine, linear (d) parkinson, linear

Figure 9. Empirical MSE (mean squared error) for the pointwise evaluation of the linear (dot-product) kernel for different MC estimators.
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Figure 10. Learning curves for training linear walking policies for the Minitaur platform. Numbers in the legend are numbers of samples
per iteration.
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D. Further illustrations of Givens products
In Figure 11, we provide an expanded illustration of the construction of the normalised Hadamard matrix H3 displayed in
Figure 1 in the main text.

Figure 11. Row 1: the matrix F̃1,3 expressed as a commuting product of Givens reflections, as in Expression (2). Row 2: the matrix F̃2,3

expressed as a commuting product of Givens reflections. Row 3: the matrix F̃3,3 expressed as a product of commuting Givens rotations.
Row 4: the normalised Hadamard matrix H3 written as a product of F̃1,3, F̃2,3 and F̃3,3. Matrix elements are coloured white/black to
represent 0/1 elements, and grey/blue to represent elements in (0, 1) and (−1, 0).


