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Random sampling in ML

- Approximate Bayesian inference: use Markov chain Monte
Carlo in order to sample from complex untractable
posterior.

 Reinforcement learning: Monte Carlo gradient estimation.

 Variational autoencoders: outputs generated from random
samples.

Main ideas

When faced with expensive downstream applications,
Monte Carlo samples need to be of high quality and di-
versity.
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Improve sample diversity by enforcing geometric conditions
on random samples:

« Orthogonal samples,
- Antithetic samples,

« Samples with coupled norms.

Contributions

« Formulation of optimal coupling problem as a
multi-marginal transport problem.

- Example solutions derived from those problems.

« Comparison with classical QMC low-discrepancy methods.

« Theoretical bounds on estimating gradients ot function
smoothings when coupling samples.

« Iixperimental results on learning navigation policies with
evolution strategies and ELBO estimation.
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Key results

Optimal coupling problem

Aim: Estimate Iy = Ex.,|f(X)] with Monte Carlo esti-
mator — > f(X;).

Problem: Optimal coupling when f is unknown?

Solution: Model f ~ GP(0, K), find distribution p solv-
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where marginals of u are all equal to 1. Solutions to this
problem are called a K-optimal couplings.

Link to optimal transport problem

Multi-marginal transport formulation: A joint dis-
tribution p is a K-optimal coupling if and only if it mini-
mizes

EXLmN/L Z K(Xiv Xj) :
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Repulsive costs: Unlike many optimal transport prob-
lems in machine learning, here the cost is repulsive, en-

couraging diversity of samples.

Example solutions

- Antithetic norm coupling. When the marginal n is

radially symmetric and K is a RBF kernel
K(z,y) = ®(||x — y||) with & decreasing and convex, then
the optimal transport problem with m = 2 is solved when

X
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or in other words

Ey(1X01) + B[ Xal]) = 1.

- Orthogonal directions coupling. When the marginal

n is radially symmetric and K is a RBF kernel

K(z,y) = ®(||lx — y|*)

with @ decreasing and convex, then the optimal transport
problem is solved when (Xj;, X;) = 0. This supports the
experimental results shown in [1].

Discrepancy of GCMC samples

Discrepancy: D;(S) = sup,ep ] |u ’{i:i(é?“}’ where

S={Xi..., Xg}

l.1.d. ort. RQMC
no norm coupling
antithetic, equal norm
antithetic, inv. cdf.
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Discrepancy

Experimentally, the discrepancy is lower for antitheti-
cally coupled samples. Naturally, randomized quasi-Monte
Carlo sampling also achieves low discrepancy.

This leads to a concentration of the error towards 0 thanks
to the Koksma-Hlawka inequality:

< Vux(f)D;(5).

Application to ELBO estimation

In training VAESs, one estimates the ELBO and its gradient
by passing random samples through the network. We use
coupled samples and observe:

 improved training speed,
e best performance when combining antithetic and
orthogonal samples.

Application to gradient estimation
of function smoothings

Aim: estimate the gradient of a function smoothing

through sampling.

Observation: using orthogonal samples leads to a sub-
Gaussian estimator which is more concentrated than the
one using i.i.d. samples.
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Application to policy learning

» Aim: maximize J(0) = Ex non)F'(X)] with respect to
6 where F'is only available through function evalutions.

- Strategy: use coupled samples to estimate V.J(6) by
_L S F(0 + oe;)e;, e.g. antithetic and orthogonal
samples or samples of fixed lengths.

« Allows to learn walkable policies for simulated and real
robots.

Conclusion

« Orthogonal and antithetic sampling can be motivated by a
multi-marginal transport problem.

« The observed increase in performance can be explained by a
lower discrepancy of the samples.

« Orthogonal samples can be applied in a wide range of
domains where diversity of samples matters.
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