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Abstract

Monte Carlo sampling in high-dimensional, low-sample settings is important in
many machine learning tasks. We improve current methods for sampling in Eu-
clidean spaces by avoiding independence, and instead consider ways to couple
samples. We show fundamental connections to optimal transport theory, leading
to novel sampling algorithms, and providing new theoretical grounding for exist-
ing strategies. We compare our new strategies against prior methods for improving
sample efficiency, including quasi-Monte Carlo, by studying discrepancy. We ex-
plore our findings empirically, and observe benefits of our sampling schemes for
reinforcement learning and generative modelling.

1 Introduction and related work

Monte Carlo (MC) methods are popular in many areas of machine learning, including approximate
Bayesian inference (Robert and Casella, 2005; Rezende et al., 2014; Kingma and Welling, 2014;
Welling and Teh, 2011), reinforcement learning (RL) (Salimans et al., 2017; Choromanski et al.,
2018c; Mania et al., 2018), and random feature approximations for kernel methods (Rahimi and
Recht, 2007; Yu et al., 2016). Typically, Monte Carlo samples are drawn independently. In many
applications, however, there may be an imbalance between the computational cost in drawing MC
samples from the distribution of interest, and the subsequent cost incurred due to downstream com-
putation with the samples. For example, when a sample represents the configuration of weights in
a policy network for an RL problem, the cost of computing forward passes, backpropagating gradi-
ents through the network, and interacting with the environment, is much greater than drawing the
sample itself. Since a high proportion of total time is spent computing with each sample relative to
the cost of generating the sample, it may be possible to improve efficiency by replacing the default
of independent, identically distributed samples by samples with some non-trivial coupling.

Such approaches have been studied in computational statistics for decades, often under the guise of
variance reduction. Related methods such as control variates, quasi-Monte Carlo (QMC) (Halton,
1960; Aistleitner and Dick, 2015; Dick et al., 2015; Brauchart and Dick, 2012; Sloan and Wozni-
akowski, 1998; Avron et al., 2016)), herding (Chen et al., 2010; Huszar and Duvenaud, 2012) and
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antithetic sampling (Hammersley and Morton, 1956; Salimans et al., 2017) have also been explored.
Methods used in recent machine learning applications include orthogonality constraints (Yu et al.,
2016; Choromanski et al., 2018b,c, 2017, 2018a). In this paper, we investigate improvements to MC
sampling through carefully designed joint distributions, with an emphasis on the low-sample, high-
dimensional regime, which is often relevant for practical machine learning applications (Rezende
et al., 2014; Kingma and Welling, 2014; Salimans et al., 2017). We call our approach Geometrically
Coupled Monte Carlo (GCMC) since, as we will see, it is geometrically motivated. Importantly, we
focus on Monte Carlo sampling, in contrast to (pseudo-)deterministic approaches such as QMC and
herding, as unbiasedness of estimators is often an important property for stochastic approximation.
Whilst approaches such as herding and QMC are known to have superior asymptotic performance
to Monte Carlo methods in low dimensions, this may not hold in high-dimensional, low-sample
regimes, where they do not provide any theoretical improvement guarantees.

We summarize our main contributions below. Throughout the paper, we save proofs of our results
for the Appendix; where appropriate, we provide proof sketches to aid intuition.

• We frame the problem of finding an optimal coupling amongst a collection of samples as a multi-
marginal transport (MMT) problem: this generalises the notion of optimal transport, which has seen
many applications in machine learning (see for example Arjovsky et al., 2017). We show several
settings where the MMT problem can be solved analytically. We recover some existing coupling
strategies (based on orthogonal matrices), and derive novel strategies, involving coupling norms of
pairs of samples.
• To connect to QMC, we show that sets of geometrically coupled Monte Carlo samples give rise

to low discrepancy sequences. To our knowledge, we present the first explanation of the success of
structured orthogonal matrices for scalable RBF kernel approximation via discrepancy theory.
• We provide exponentially small upper bounds on failure probabilities for estimators of gradients

of Gaussian smoothings of blackbox functions based on the gradient sensing mechanism, both for
unstructured and orthogonal settings (Choromanski et al., 2018c). These methods can be used to
learn good quality policies for reinforcement learning tasks.
• We empirically measure the discrepancy of sequences produced by our method and show that

they enable us to learn good quality policies for quadruped robot navigation in low-sample, high-
dimensional regimes, where standard QMC approaches based on Halton sequences and related con-
structions fail.

2 Optimal couplings, herding, and optimal transport

Consider the problem of computing the expectation If = EX∼η[f(X)], where η ∈ P(Rd) is a
multivariate probability distribution and f : Rd → R is some measurable function in L1(η). A
standard Monte Carlo approach is to approximate If by Î iid

f = 1
m

∑m
i=1 f(Xi), where the samples

X1, . . . , Xm ∼ η are taken independently. This estimator is clearly unbiased. The main question
that we are interested in is what joint distributions (or couplings) over the ensemble of samples
(X1, . . . , Xm) lead to estimators of the expectation above which are still unbiased, but have lower
mean squared error (MSE) than the i.i.d. estimator Î iid

f , defined for a general estimator Îf by:

MSE(Îf ) = E
[(
Îf − If

)2]
. (1)

For sufficiently rich functions classes F ⊆ L2(η), a coupling of the random variables (X1, . . . , Xm)
that achieves optimal MSE simultaneously for all functions f ∈ F need not exist. We illustrate this
with examples in the Appendix Section 8.2. This motivates the approach below to define optimality
of a coupling by taking into account average performance across a function class of interest.

2.1 K-optimal couplings

We begin by defining formally the notion of coupling.
Definition 2.1. Given a probability distribution η ∈ P(Rd) and m ∈ N, we denote by Λm(η) the
set of all joint distributions of m random variables (X1, . . . , Xm), where each random variable Xi
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has the marginal distribution η. More formally,

Λm(η) = {µ ∈ P(Rd×m)|(πi)#µ = η for i = 1, . . . ,m} ,

where πi : Rd×m → Rd denotes projection onto the ith set of d coordinates, for i = 1, . . . ,m.

Note that if X1:m ∼ µ ∈ Λm(η), then because of the restriction on the marginals of X1:m, the
estimator m−1

∑m
i=1 f(Xi) is unbiased for EX∼η [f(X)], for any f ∈ L1(η).

We now define the following notion of optimality of a coupling. Similar notions have appeared in
the literature when samples are taken to be non-random, or when selecting importance distributions,
sometimes referred to as kernel quadrature (Rasmussen and Ghahramani, 2003; Briol et al., 2017).
Definition 2.2 (K-optimal coupling). Given a kernel K : Rd × Rd → R, a K-optimal coupling is
a solution to the optimisation problem

argmin
µ∈Λm(η)

Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 . (2)

That is, a K-optimal coupling is one that gives the best MSE on average when the function con-
cerned is drawn from the Gaussian process GP(0,K). For background on Gaussian processes, see
(Rasmussen and Williams, 2005).
Remark 2.3. There are measure-theoretic subtleties in making sure that the objective in Expression
(2) is well-defined. For readability, we treat these issues in the Appendix (Section 7), but remark
here that it is sufficient to restrict to kernelsK for which sample paths of the corresponding Gaussian
process are continuous, which we do for the remainder of the paper.

Our ultimate aim is to characterise K-optimal couplings under a variety of conditions algorithmi-
cally to enable practical implementation. We discuss the identification of K-optimal couplings,
along with precise statements of algorithms, in Section 2.3. First we develop the theoretical prop-
erties of K-optimal couplings, starting with the intimate connection between K-optimal couplings
and multi-marginal transport theory (Pass, 2014). This theory is a generalisation of optimal transport
theory to the case where there are more than two marginal distributions.
Theorem 2.4. The optimisation problem defining K-optimality in Equation (2) is equivalent to the
following multi-marginal transport problem:

argmin
µ∈Λm(η)

EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 .
Remark 2.5. The optimal transport problem of Theorem 2.4 has an interesting difference from most
optimal transport problems arising in machine learning: in general, its cost function is repulsive, so
it seeks a transport plan where transport paths are typically long, as opposed to the short transport
paths sought when the cost is given by e.g. a metric. Intuitively, the optimal transport cost rewards
space-filling couplings, for which it is uncommon to observe collections of samples close together.

2.2 Minimax couplings and herding

Definition 2.2 (K-optimality) considers best average-case behaviour. We could instead use a “mini-
max" definition of optimality, by examining best worst-case behaviour.
Definition 2.6 (Minimax coupling). Given a function class F ⊆ L2(η), we say that µ ∈ Λm(η) is
an F -minimax coupling if it is a solution to the following optimisation problem:

argmin
µ∈Λm(η)

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 . (3)

In general, the minimax coupling objective appearing in Equation (3) is intractable. However, there
is an elegant connection to concepts from the kernel herding literature that may be established by
taking the function class F to be the unit ball in some reproducing kernel Hilbert space (RKHS).
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Proposition 2.7. Suppose that the function class F is the unit ball in some RKHS given by a kernel
K : Rd × Rd → R. Then the component

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2


of the minimax coupling objective in Equation (3) may be upper-bounded by the following objective:

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK

 , (4)

where θK : P(Rd) → HK is the kernel mean embedding into the RKHS HK associated with K.

We note the intimate connection of the objective in Equation (4) with maximum mean discrepancy
(MMD) (Gretton et al., 2012) and herding (Chen et al., 2010; Huszar and Duvenaud, 2012). First,
the integrand appearing in Equation (4) is exactly the MMD-squared between m−1

∑m
i=1 δXi

and η
with respect to the kernelK. Second, if we instead takem−1

∑m
i=1 δXi

to be a non-random measure
of the formm−1

∑m
i=1 δxi , viewing Expression (4) as a function of the delta locations x1, . . . , xk re-

sults in exactly the herding optimisation problem. A connection between variance-reduced sampling
and herding has also been noted in the context of random permutations (Lomelí et al., 2018). As
well as these similarities, there are important differences between herding and the notion described
here. Because all samples are regarded as random variables which are constrained to be marginally
distributed according to η, a coupling maintains the usual unbiasedness guarantees of finite-sample
Monte Carlo estimators. In contrast, herding is theoretically supported by fast asymptotic rates of
convergence for a wide variety of estimators, but because samples are chosen in a deterministic way,
estimator properties based on finite numbers of herding samples are harder to describe statistically.
Often there are good reasons to eschew unbiasedness of an estimator in favour of fast convergence
rates; however, unbiasedness of gradient estimators is crucial in optimisation algorithms performing
correctly, as is well-established in the stochastic approximation literature. Bellemare et al. (2017)
provide a discussion of this phenomenon in the context of generative modelling.

Interestingly, the following result shows that solutions of Problem (4) coincide exactly with K-
optimal couplings of Definition 2.2.
Theorem 2.8. Given a probability distribution η ∈ P(Rd) and a kernel K : Rd × Rd → R, a
coupling µ ∈ Λm(η) is K-optimal iff it is solves the optimisation problem in Expression (4).

Connections similar to Theorem 2.8 have previously been established in the study of identifying
deterministic quadrature points (Paskov, 1993) – we also highlight (Kanagawa et al., 2018) as a
recent review of such connections. In contrast, here we take random quadrature points with fixed
marginal distributions.

2.3 Solving for K-optimal couplings

In this section, we study the objective defining K-optimal couplings, as given in Definition 2.2. The
problem is intractable to solve analytically in general, so we present several solutions in settings
with additional restrictions, either on the number of samples m in the problem, or on the types
of couplings considered. The theoretical statements are given in Theorems 2.9 and 2.10, with the
corresponding practical algorithms given as Algorithms 1 and 2. We emphasise that solving Problem
(2) in general remains an interesting direction for future work.
Theorem 2.9. Let η ∈ P(Rd) be isotropic, and let K : Rd × Rd → R be a stationary isotropic
kernel, such that K(x,y) is a strictly decreasing, strictly convex function of ∥x− y∥. Then the K-
optimal coupling of 2 samples (X1, X2) from η is given by first drawing X1 ∼ η, and then setting
the direction of X2 to be opposite to that of X1, and setting the norm of ∥X2∥ so that

FR(∥X2∥) + FR(∥X1∥) = 1 , (5)

where FR is the CDF associated with the norm of a random vector distributed according to η.

The proof of this theorem can be found in the Appendix Section 9 and relies on first showing that
any optimal coupling must be antithetic and second that an antithetic coupling must satisfy equation
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Algorithm 1 Antithetic inverse lengths coupling
of Theorem 2.9

for i = 1, . . . ,m do
Draw Xi ∼ η.
Set Xm+i = −Xi

F−1
R (1−FR(||Xi||))

||Xi|| .
end for
Output: X1, . . . , X2m marginally η dis-
tributed, with low MSE.

Algorithm 2 Orthogonal coupling of Theo-
rem 2.10

for i = 1, . . . ,m do
Draw Xi ∼ η conditionally orthogonal to
X1, . . . , Xi−1.
Set Xm+i = −Xi.

end for
Output: X1, . . . , X2m marginally η dis-
tributed, with low MSE.

(5) in order for the marginals to be equal to η. In the Appendix Section 8 we illustrate with a
counterexample that the convexity assumption is required. Indeed if most of the mass of η is near
the origin and the RBF kernel is larger around 0 then the classical antithetic coupling X2 = −X1

performs better.

Further extending the above situation, we restrict our attention to antithetic couplings and establish
that the optimal way to couple m antithetic pairs (Xi, Xm+i) = (Xi,−Xi) is to draw sequentially
orthogonal samples if the dimension of the space allows it and the marginal η is spherically symmet-
ric. Introduce the following notation for the set of antithetic couplings with independent lengths:

Λanti
2m(η) = {Law(X1, . . . , X2m) ∈ Λ2m(η)| ||Xi||, 1 ≤ i ≤ m are independent, Xi = −Xm+i } .

Theorem 2.10. Let η ∈ P(Rd) be isotropic and let K : Rd × Rd → R be a stationary
isotropic kernel, such that K(x,y) = Φ(||x − y||2), where Φ is a decreasing, convex function.
If Law(X1, . . . , X2m), with m ≤ d, is a solution to the constrained optimal coupling problem

argmin
µ∈Λanti

2m(η)

EX1:2m∼µ

 2m∑
i,j=1

Φ
(
||Xi −Xj ||2

) ,
then it satisfies ⟨Xi, Xj⟩ = 0 a.s. for all 1 ≤ i < j ≤ m.

The proof of this theorem can be found in the Appendix Section 9 and relies on reformulating
the objective function and showing that the exact minimum is attained thanks to convexity. This
result illustrates the advantage that orthogonal samples can have over i.i.d. samples, see (Yu et al.,
2016) for earlier such settings. Details on how to efficiently sample orthogonal samples can be
found in (Stewart, 1980); exact simulation of d orthogonal samples is possible in O(d3) time, whilst
empirically good quality samples can be obtained from approximate algorithms in O(d2 log d) time.
We emphasise that we focus on applications where these increases in sampling costs are insignificant
relative to the downstream costs of computing with the samples (such as simulating rollouts in RL
environments, as in Section 5.1). However, we note that an interesting direction for future work
would be to incorporate a notion of computational complexity into the K-optimality objective, to
trade off statistical efficiency against sampling costs.

3 Low discrepancy of geometrically coupled samples

Having described our notions of optimal couplings in the previous section and obtained several
sampling schemes, we now provide an interesting connection between our geometrically coupled
samples and low discrepancy sequences that are studied in the QMC literature. Our main interest
is in the local discrepancy function disrS : Rd → R parametrised by a given set of samples S =
{X1, ..., X|S|} and defined as follows:

disrS(u) = Vol(Ju)−
|{i : Xi ∈ Ju}|

|S|
,

where: Ju = [0, u1)× ...× [0, ud) and Vol(Ju) =
∏d
j=1 uj . Now define the star discrepancy func-

tion D∗(S) as: D∗(S) = supu∈[0,1]d |disrS(u)|. This function measures the discrepancy between
the empirical sample S from the uniform distribution on a hypercube [0, 1]d.
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Consider an expression If = EX∼λ[f(X)], where λ ∈ P(R1), and a set of samples S =
{X1, ..., X|S|} that is used in a given (Q)MC estimator to approximate If . The star discrep-

ancy function D∗
λ with respect to a distribution λ is defined on S as: D∗

λ(S)
def
= D∗(Fλ(S)) =

supu∈[0,1] |disrFλ(S)(u)|, where Fλ(S) = {Fλ(Xi)}i=1,...,|S| and Fλ stands for the cdf function
for λ. In other words, to measure the discrepancy between arbitrary distribution λ ∈ P(R1) and
a set of samples S, the set of samples is transformed to the interval [0, 1] via the cdf Fλ and the
discrepancy between the uniform distribution on [0, 1] and the transformed sequence Fλ(S) is cal-
culated.

We will focus here on distributions λ ∈ P(R1), which we call regular distributions, corresponding
to random variables X defined as X = g⊤z, where z ∈ Rd is a deterministic vector and g ∈ Rd
is taken from some isotropic distribution τ (e.g. multivariate Gaussian distribution). Regular distri-
butions play an important role in machine learning. It is easy to show that the random feature map
approximation of radial basis function (RBF) kernels such as Gaussian kernels can be rewritten as
If = EX∼λ[f(X)], where f(x) def

= cos(x) and λ is a regular distribution (Rahimi and Recht, 2007).
To sample points from λ, we will use the standard set Siid of independent samples as well as the set
of orthogonal samples Sort, where marginal distributions of different gi are λ but different gi are
conditioned to be exactly orthogonal (see Choromanski et al., 2018b, for explicit constructions).Our
main result of this section shows that local discrepancy disrFλ(S)(u) for a fixed u ∈ [0, 1]d is better
concentrated around 0 for regular distributions λ if orthogonal sets of samples S are used instead
of independent samples. Indeed, in both cases one can obtain exponentially small upper bounds on
failure probabilities but these are sharper when orthogonal samples are used.

Theorem 3.1. [Local discrepancy & regular distributions] Denote by Siid a set of independent sam-
ples, each taken from a regular distribution λ and by Sort the set of orthogonal samples for that
distribution. Let s = |Siid| = |Sort|. Then for any fixed u ∈ [0, 1] and a ∈ R+ the following holds:
P[|disrFλ(Siid)(u)| > a] ≤ 2e−

sa2

8
def
= piid(a) and for some port satisfying port < piid it holds point-

wise: P[|disrFλ(Sort)(u)| > a] ≤ port(a) . Also: V ar(disrFλ(Sort)(u)) < V ar(disrFλ(Siid)(u)).

Sharper concentration results regarding local discrepancies translate to sharper concentration results
for the star discrepancy function D∗

λ via the ϵ-net argument and thus also ultimately to sharper
results regarding approximation error of MC estimators using regular distributions via the celebrated
Koksma-Hlawka Inequality ((Avron et al., 2016); see Theorem 10.4 in the Appendix).

0.00 0.05 0.10 0.15 0.20 0.25
Discrepancy
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17.5

De
ns
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no norm coupling
antithetic, equal norm
antithetic, inv. cdf.

i.i.d. ort. RQMC

Figure 1: Histograms of the D∗ discrepancy for
different sampling methods: samples gi have i.i.d.,
orthogonal or RQMC directions with uncoupled
lengths or lengths coupled according to Algo-
rithms 1 or 2

We conclude that orthogonal samples (special
instantiations of the GCMC mechanism) lead to
strictly better guarantees regarding the approxi-
mation error of If for functions f with bounded
variation and regular distributions λ than stan-
dard MC mechanisms. This is the case in par-
ticular for random feature map based approxi-
mators of RBF kernels. The advantages of or-
thogonal samples in this setting were partially
understood before for certain classes of RBF
kernels (Choromanski et al., 2018b; Yu et al.,
2016), but to the best of our knowledge, gen-
eral non-asymptotic results and the connection
with discrepancy theory were not known.

In Figure 1 we show a kernel density
estimate of the distributions of the D∗

discrepancies of 50,000 sample sequences(
F−1
N (0,1)

(
gi

T z
||z||

))
i=1,...,40

for a range of cou-

pling algorithms to generate Gaussian samples
gi. We see that using antithetic samples with
coupled lengths as in Algorithm 1 leads to a
sequence with lower discrepancy on average.
We also observe that coupling the samples to
be orthogonal reduces the discrepancy. This
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confirms the above results. Finally this figure
shows that an algorithm designed to have a low
discrepancy (RQMC) will still reach a lower discrepancy than a classical sampling method but this
difference can be mitigated by using antithetic samples.

4 Geometric coupling for estimating gradients of function smoothings

Here we provide results on the concentration of zeroth order gradient estimators for reinforcement
learning applications, helping to explain their efficacy. This area is one of the main applications of
the GCMC methods introduced in Section 2, and we present experiments for these applications in
Section 5.1. To our knowledge, we provide the first result showing exponential concentration for the
Evolution Strategies (ES) gradient estimator (Salimans et al., 2017) in this setting. We also provide
exponential concentration bounds for orthogonal gradient estimators.

Recall that given a function F : Θ → R to be minimised, the Vanilla ES gradient estimator is
defined as:

∇̂V
NFσ(θ) =

1

Nσ

N∑
i=1

F (θ + σϵi)ϵi, where ϵi ∼ N (0, I) are all i.i.d. . (6)

In what follows we assume that F is uniformly bounded over its domain by F . In the case that F is
a sum of discounted rewards, an upper bound of R for the reward function yields an upper bound of
1

1−γR for F , where γ is the discount factor. Whenever F is bounded in absolute value, the random

vector ∇̂V
NFσ(θ) is sub-Gaussian.

Theorem 4.1. If F is a bounded function such that |F | ≤ R1, then the vanilla ES estimator is a
sub-Gaussian vector with parameter

√
2R1

√
8c2+1√

Nσ
; with c = 24e and therefore for any t ≥ 0:

P
(

max
j=1,...,d

∣∣∣∣(∇̂V
NFσ(θ)

)
j
−
(
E
[
∇̂V
NFσ(θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

2R2
1(8c2+1) ,

for a universal constant c.

For the case of pairs of antithetic coupled gradient estimators, one can obtain a similar bound with
comparable performance using this technique.

4.1 Bounds for orthogonal estimators

We show that a general class of orthogonal gradient estimators present similar exponential concentra-
tion properties as the Vanilla ES estimator. Proving these bounds is substantially more challenging
because of the correlation structure between samples. To our knowledge, these are the first results
showing exponential concentration for structured gradient estimators, yielding insight as to why
these perform well in practice. We provide concentration bounds for gradient estimators of the
form:

∇̂Ort
d F (θ) =

1

dσ

d∑
i=1

νibiF (θ + σνibi) ,

where the random vectors νi ∈ Rd are sampled uniformly from the unit sphere using a sequentially
orthogonal process, and bi are zero mean signed lengths, sampled from sub-Gaussian distributions
each with sub-Gaussian parameter βi, independent from each other and from all other sources of

randomness. Let c := 2
√
(24e)2 + 1

2 . Whenever the function F is bounded, the random variable

vector ∇̂Ort
d F (θ) is sub-Gaussian.

Theorem 4.2. Let B = maxi E [|bi|], and β = maxi βi, |F | ≤ R, then the orthogonal gradient

estimator ∇̂Ort
d F (θ) is sub-Gaussian with parameter

√
β2c2R2

σ2d2 + R2B2

4dσ2 .

Assuming N = Td and the availability of T i.i.d. orthogonal estimators (indexed by j), define:

∇̂Ort
N F (θ) =

1

T

T∑
j=1

∇̂Ort,j
d F (θ) .
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Theorem 4.3. The gradient estimator ∇̂Ort
N F (θ) is sub-Gaussian with parameter

1√
T

√
β2c2R2

σ2d2 + R2B2

4σ2d = 1√
N

√
β2c2R2

dσ2 + R2B2

4σ2 ; and therefore:

P
(

max
j=1,...,d

∣∣∣∣(∇̂Ort
N F (θ)

)
j
−
(
E
[
∇̂Ort
N F (θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

β2c2R2σ2

d
+R2B2

4 .

5 Experiments

5.1 Learning efficient navigation policies with ES strategies

We consider the task of closed-loop policy optimization to train stable walking behaviors for
quadruped locomotion of the Minitaur platform on the Bullet simulator (Coumans and Bai, 2016–
2018). We train neural network policies with d ≥ 96 parameters and optimize the blackbox
function F that takes as input parameters of the neural network and outputs the total reward,
by applying MC estimators of gradients of Gaussian smoothings of F , as described in Expres-
sion (6). The main aim of the experiments is to compare policies learnt by using i.i.d. sam-
ples, as in Expression (6), against estimators using GCMC methods. We test four different con-
trol variate terms that lead to four different variants of the MC algorithm: vanilla (no control
variate), forward finite-difference (see Choromanski et al., 2018c, for details), antithetic and
antithetic-coupled (see: below). For each of these four variants we use different sampling strate-
gies of calculating the MC estimator: MCGaussian, Halton (baselines), MCGaussianOrthogonal,
MCGaussianOrthogonalFixed, and MCRandomHadamard that correspond to: independent
Gaussian samples (Salimans et al., 2017), samples constructed from randomized Halton sequences
used on a regular basis in QMC methods, Gaussian orthogonal samples (introduced first in Choro-
manski et al. (2018c) but not tested for m < d and in the locomotion task setting), Gaussian or-
thogonal samples with renormalized lengths (each length equals

√
d) and finally: rows of random

Hadamard matrices (that approximate Gaussian orthogonal samples, but are easier to compute, (see
Choromanski et al., 2018c)). For the antithetic variant using Gaussian orthogonal samples, we also
test the variant which couples the lengths of antithetic pairs of samples as in Algorithm 1; we refer
to this as antithetic− coupled. We tested different number of samples s with the emphasis on MC
estimators satisfying: m≪ d. We chose: m = 8, 16, 32, 48, 56, 64, 96. Full details of the sampling
mechanisms described above are given in the Appendix Section.

Figure 2 shows comparison of different MC methods using antithetic variant for m = 8, 32, 48
samples given to the MC estimator per iteration of the optimization routine (with an exception of the
Halton approach, where we usedm = 96 samples to demonstrate that even with the larger number of
samples standard QMC methods fail). Walkable policies are characterized by total rewardR > 10.0.
We notice that structured approaches outperform the unstructured one and that QMC method based
on Halton sequences did not lead to walkable policies. Since it will be also the case for other settings
considered by us, we exclude it from the subsequent plots.

(a) m = 8 (b) m = 32 (c) m = 48, 600 iterations (d) m = 48, 100 itera-
tions

Figure 2: Training curves for different MC methods. iid, ort, coupled, fixed,
halton-96 correspond to: MCGaussian, MCGaussianOrthogonal, antithetic − coupled,
MCGaussianOrthogonalFixed and Halton-based QMC method. Subfigure (d) is a zoomed ver-
sion of Subfigure (c) after just 100 iterations and with Halton approach excluded.

For m = 32 we excluded the comparison with MCGaussian since it performed substantially
worse than other methods and with MCGaussianOrthogonalFixed since it was very similar to
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MCGaussianOrthogonal (for clarity). Again, for clarity, for m = 8 we plot the max-reward-
curves, where the maximal reward from already constructed policies instead of the current one is
plotted (thus these curves are monotonic). In Subfigure (a) the curves stabilize after about 87 itera-
tions (for the MCGaussianOrthogonal strategy the curve ultimately exceeds reward 10.0 but after
> 500 iterations).

We conclude that for m = 8 the coupling mechanism is the only one that leads to walkable policies
and for m = 32 it leads to the best policy among all considered structured mechanisms. More ex-
perimental results are given in the Appendix. We also attach videos showing how policies learned
by applying certain structured mechanisms work in practice (details in the Appendix). Testing all
variants of the MC mechanism mentioned above, we managed to successfully train stable walking be-
haviours using onlym = 8 samples per iteration only for k = 5 settings: MCGaussianOrthogonal-
antithetic-coupled, MCGaussianOrthogonal-antithetic, MCGaussianOrthogonal-forward-fd,
MCRandomHadamard-antithetic and MCRandomHadamard-vanilla. Thus all 5 policies corre-
spond to some variants of our GCMC mechanism.

We did not conduct hyperparameters tuning to obtain the above curves. We used hyperparameters
applied on a regular basis in other Monte Carlo algorithms for policy optimization, in particular
chose σ = 0.1 and η = 0.01, where σ stands for the standard deviation of the entries of Gaussian
vectors used for MC and η is the gradient step size. The experiments where conducted in a dis-
tributed environment on a cluster of machines, where each machine was responsible for evaluating
exactly one sample.

5.2 Variance-reduced ELBO estimation for deep generative models

In this section, we test GCMC sampling strategies on a deep generative modelling application. We
consider a variational autoencoder (VAE) (Rezende et al., 2014; Kingma and Welling, 2014) with
latent variable z with prior p(z), observed variable x with trainable generative model pθ(x|z), and
trainable recognition model qϕ(z|x). In the standard VAE training algorithm, the evidence lower-
bound (ELBO) for a single training point x is:

Ez∼qϕ(·|x) [log pθ(x, z)− log qϕ(z|x)] .
This objective is then optimised by estimating gradients using a combination of m ∈ N i.i.d. Monte
Carlo samples together with the reparametrisation trick. We adjust the training algorithm by using a
variety of GCMC sampling algorithms, rather than i.i.d. sampling. We train on MNIST, and report
the average train and test ELBO after 50 epochs for a variety of sampling algorithms and numbers
of samples K, to understand the effect of these sampling methods on speeding up learning. The full
results and experiment specifications are given in the Appendix Section 12. We observe that GCMC
methods consistently lead to better log-likelihoods than i.i.d. sampling, in fact with GCMC methods
with 2 samples performing better than i.i.d. methods using 8 samples. We highlight concurrent
work (Buchholz et al., 2018) that presents an in-depth study of quasi-Monte Carlo integration for
variational inference.

6 Conclusion

We have introduced Monte Carlo coupling strategies in Euclidean spaces for improving algorithms
that typically operate in a high-dimensional, low-sample regime, demonstrating fundamental con-
nections to multi-marginal transport. In future work, it will be interesting to explore applications in
other areas such as random feature kernel approximation. We also highlight more general solution
of the K-optimality criterion, and incorporation of a sampling cost penalty into the corresponding
objective as interesting problems left open by this paper.
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APPENDIX: Geometrically Coupled Monte Carlo Sampling

7 Measure-theoretic considerations regarding K-optimality

In this section, we briefly address the measure-theoretic issues arising from the definition of K-
optimality in Section 2.1, and establish several important integrability results that will be used in the
proofs of the results appearing in Section 2. We re-emphasize here that, as stated in Section 2 of
the main paper, we restrict to the case where the Gaussian process GP(0,K) has continuous sample
paths in order to avoid unnecessary technical complications. More precisely, we restrict to Gaussian
processes for which a continuous modification of the process exists, and assume in the following
that it is always this modification that we are working with. The vast majority of commonly used
GP kernels in machine learning lead to continuous GP sample paths, with the exception of special
cases such as the white noise kernel. For further discussion of the properties of kernels that lead to
continuous sample paths in GPs (see e.g. Marcus and Shepp, 1972; Talagrand, 1987; Gin and Nickl,
2015).

We begin by recalling the form of the objective for K-optimality, defined in the main paper in
Expression (2):

argmin
µ∈Λm(η)

Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 .

Firstly, we establish joint measurability of the random variable (m−1
∑m
i=1 f(Xi) − If )

2. We
consider the Gaussian process f taking values in the measurable space (C(Rd;R),Σ), where
C(Rd,R) is the space of continuous functions from Rd to R, and Σ is the product sigma-algebra,
and (X1, . . . , Xm) taking values in the measurable space ((Rd)m,B((Rd)m)), where B((Rd)m)
is the usual Borel sigma algebra on (Rd)m. We aim to establish that (m−1

∑m
i=1 f(Xi) − If )

2

is measurable on (C(Rd;R) × (Rd)m,Σ ⊗ B((Rd)m)). Considering the types of terms that re-
sult from expanding (m−1

∑m
i=1 f(Xi) − If )

2, we note that it is sufficient to prove joint mea-
surability of terms of the form f(Xi) and f(Xi)f(Xj). We deal explicitly with the term f(Xi)
here; the treatment of the term f(Xi)f(Xj) is analogous. To do this, we show that the evaluation
function ψ : (C(Rd;R) × (Rd)m,Σ ⊗ B((Rd)m)) → (R,B(R)) defined by ψ(g, x) = g(x), is
measurable, and since f(Xi) is given by the composition ψ(f,Xi), we have that f(Xi) is mea-
surable, as required. To reach this conclusion, we will show that (i) for all x ∈ Rd, the func-
tion ψ(·, x) : (C(Rd;R),Σ) → R is measurable, and (ii) for all g ∈ C(Rd;R), the function
ψ(g, ·) : Rd → R is continuous. ψ is then said to be a Carathéodory function, and joint measur-
ability follows (see Aliprantis and Border, 2006, Lemma 4.51). For (i), simply note that for all
A ∈ B(R), x ∈ Rd, the set {g ∈ C(Rd;R)|g(x) ∈ A} is a cylinder set, and hence in Σ. In ad-
dition, (ii) follows immediately by continuity of g ∈ C(Rd;R). Putting all this together, we have
established joint measurability of the random variable (m−1

∑m
i=1 f(Xi)− If )

2, which means that
the K-optimality objective appearing in Definition 2.2 is well-defined.

Finally, we make several remarks on pathwise integrability of the Gaussian process GP(0,K).
Firstly, we show that f ∈ L2(η) almost surely, via the following calculation:

EX∼η
[
Ef∼GP(0,K)

[
f(X)2

]]
= EX∼η [K(X,X)] <∞ ,

with the bound following from stationarity of the kernel K. Thus, we may apply Fubini’s theorem
to obtain

Ef∼GP(0,K)

[
EX∼η

[
f(X)2

]]
= EX∼η

[
Ef∼GP(0,K)

[
f(X)2

]]
.

It therefore follows that f ∈ L2(η) almost surely (under the law of the Gaussian process). The joint
integrability with respect to η and the law of the Gaussian process established above is important in
justifying the use of Fubini’s theorem in exchanging orders of expectation in the analysis presented
in Section 9.

8 Examples and counterexamples relating to Section 2

In this section, we present several examples that serve to further illustrate results from the main text.
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8.1 Convexity of the kernel is needed in Theorem 2.9

We present a counterexample illustrating that the convexity assumption on the kernel is required in
theorem 2.9. LetK(x,y) = e−||x−y||2 be the Gaussian kernel and let η ∈ P(Rd) be the spherically
symmetric distribution such that if X ∼ η then ||X|| ∼ U([0, b]) for some b > 0. Note that the
kernel is not convex. Depending on the value of b, two different couplings of the norms will be
optimal: either ||X2|| = ||X1|| or ||X2|| = F−1

R (1 − FR(||X1||)). Indeed it is easy to compute
numerically the following expectations for this choice of η and to note that

E[K(X1,−X1)] < E
[
K

(
X1,

X1

||X1||
F−1
R (1− FR(||X1||)

)]
⇐⇒ b <

3

4
.

This illustrates that in the absence of convexity of the kernel the optimal choice of coupling for two
samples also depends on η: if η assigns a lot of mass to a small area around 0 (b small) then the
coupling of Theorem 2.9 suffers a lot in conjunction with the Gaussian kernel. On the other hand
if η spreads out mass more evenly further from 0 (b large) then the antithetic coupling giving equal
norms to both samples performs better.

8.2 Examples illustrating non-existence of uniformly optimal couplings

Below, we give two examples that expand on the remarks in Section 2 stating that in general, there
does not exist a coupling of Monte Carlo samples (X1, . . . , Xm) that achieves optimal MSE simul-
taneously for a range of functions f for the objective appearing in Expression (1).

Example 8.1. Suppose we want to estimate the value of the following expectation:

EX∼N(0,I) [f(X)] ,

where f : R2 → R is specified in polar coordinates by

f(r, θ) = 1θ∈[0,π) .

The exact value of this integral is 1/2. An optimal coupling for two samples marginally distributed
as N(0, I) in this case can be shown to be any distribution for which X1 and X2 point in opposite
directions almost surely (e.g. taking X2 = −X1). It is readily checked that the corresponding
Monte Carlo estimator is in fact exact, having a mean squared error (MSE) of 0.

Example 8.2. Consider the same setup as Example 8.1, but now with the function

f(r, θ) = 1θ∈[0,π/2)∪[π,3π/2) .

In this case, it is straightforward to show that the two coupled samples of Example 8.1 obtain the
same MSE as a single Gaussian sample, whereas two i.i.d. Gaussian samples obtain half this MSE.

Examples 8.1 and 8.2 illustrate that it is not always possible for one coupling to outperform all others
(in terms of MSE) across a given function class.

9 Proofs of results in Section 2

Theorem 2.4. The optimisation problem defining K-optimality in Equation (2) is equivalent to the
following multi-marginal transport problem:

argmin
µ∈Λm(η)

EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 .
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Proof. We calculate as follows, beginning with the K-optimality objective:

Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2


=Ef∼GP(0,K)

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− EX∼η[f(X)]

)2


=Ef∼GP(0,K)

EX1:m∼µ

 1

m2

m∑
i=1

f2(Xi) +
1

m2

∑
i≠j

f(Xi)f(Xj)

− 2

m
EX∼η[f(X)]

m∑
i=1

f(Xi) + EX∼η[f(X)]2

 .
Removing terms which depend only on the fixed marginal distribution η, and not the joint distribu-
tion µ, the observe that up to a function of η only, the objective above is equivalent to

Ef∼GP(0,K)

EX1:m∼µ

∑
i ̸=j

f(Xi)f(Xj)

 .
By Fubini’s theorem, we obtain

Ef∼GP(0,K)

EX1:m∼µ

∑
i ̸=j

f(Xi)f(Xj)

 = EX1:m∼µ

Ef∼GP(0,K)

∑
i̸=j

f(Xi)f(Xj)


= EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 ,
as required.

Proposition 2.7. Suppose that the function class F is the unit ball in some RKHS given by a kernel
K : Rd × Rd → R. Then the component

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2


of the minimax coupling objective in Equation (3) may be upper-bounded by the following objective:

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK

 , (4)

where θK : P(Rd) → HK is the kernel mean embedding into the RKHS HK associated with K.

Proof. We begin by observing that for f ∈ HK ,

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 = EX1:m

(∫
Rd

f(x)

(
1

m

m∑
i=1

δXi − η

)
(dx)

)2


= EX1:m

⟨f, θK ( 1

m

m∑
i=1

δXi

)
− θK (η)

⟩2

HK

 .
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Using this observation, we next observe that

sup
f∈F

EX1:m∼µ

( 1

m

m∑
i=1

f(Xi)− If

)2
 = sup

f∈F
EX1:m∼µ

⟨f, θK ( 1

m

m∑
i=1

δXi

)
− θK (η)

⟩2

HK


≤ EX1:m∼µ

 sup
f∈F

⟨
f, θK

(
1

m

m∑
i=1

δXi

)
− θK (η)

⟩2

HK

 .
We can now evaluate the supremum; it is realised when f ∈ HK is the unit vector in the di-
rection of θK

(
m−1

∑m
i=1 δXi

)
− θK (η), in which case the squared inner product evaluates to

∥θK
(
m−1

∑m
i=1 δXi

)
− θK (η) ∥2HK

. Substituting this in yields the result.

Theorem 2.8. Given a probability distribution η ∈ P(Rd) and a kernel K : Rd × Rd → R, a
coupling µ ∈ Λm(η) is K-optimal iff it is solves the optimisation problem in Expression (4).

Proof. The optimisation objective

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK


can be rewritten in the following form:

EX1:m∼µ

∥∥∥∥∥θK
(

1

m

m∑
i=1

δXi

)
− θK (η)

∥∥∥∥∥
2

HK


=EX1:m∼µ

∥∥∥∥∥ 1

m

m∑
i=1

K(Xi, ·)− θK (η)

∥∥∥∥∥
2

HK


=EX1:m∼µ

∥∥∥∥∥ 1

m

m∑
i=1

K(Xi, ·)

∥∥∥∥∥
2

HK

− 2

⟨
1

m

m∑
i=1

K(Xi, ·), θK (η)

⟩
HK

+ ∥θK (η)∥2HK

 .
Since the marginal distributions of X1, . . . , Xm are fixed, the only term above that depends on the
coupling between the random variables X1, . . . , Xm is the first term. Thus, minimising the original
objective is equivalent to minimising

EX1:m∼µ

∥∥∥∥∥ 1

m

m∑
i=1

K(Xi, ·)

∥∥∥∥∥
2

HK

 .
Expanding this term yields:

EX1:m∼µ

 1

m2

m∑
i=1

K(Xi, Xi) +
1

m2

∑
i ̸=j

K(Xi, Xj)

 .
Again, the only term depending on the coupling is the final term, so minimising the original objective
is equivalent to the following optimisation problem:

min
µ∈Λm(η)

EX1:m∼µ

∑
i ̸=j

K(Xi, Xj)

 ,
over all joint distribution of X1:m with marginals given by η.

Theorem 2.9. Let η ∈ P(Rd) be isotropic, and let K : Rd × Rd → R be a stationary isotropic
kernel, such that K(x,y) is a strictly decreasing, strictly convex function of ∥x− y∥. Then the K-
optimal coupling of 2 samples (X1, X2) from η is given by first drawing X1 ∼ η, and then setting
the direction of X2 to be opposite to that of X1, and setting the norm of ∥X2∥ so that

FR(∥X2∥) + FR(∥X1∥) = 1 , (5)
where FR is the CDF associated with the norm of a random vector distributed according to η.
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Proof. To demonstrate that the optimal coupling takes the form given in the statement of Theorem,
we proceed in two steps: (i) we show that there exists an optimal coupling µ∗ such that if (X1, X2) ∼
µ∗, then X1/∥X1∥ = −X2/∥X2∥ almost surely, i.e. X1 and X2 point in opposite directions almost
surely, and (ii) that the norms of X1 and X2 satisfy ∥X2∥ = F−1

R (1 − FR(∥X1∥)) almost surely.
We begin with (i).

Let µ ∈ Λ2(η) be optimal for the following optimisation problem:

min
µ∈Λ2(η)

E(X1,X2)∼µ [K(X1, X2)] , (7)

Then note that if we let (X1, X2) ∼ µ, then if R is a random matrix draw independently from
Haar measure on the orthogonal group Od, then µ′ = Law((RX1,−RX1/∥X1∥ × ∥X2∥)) still
lies in Λ2(η), and moreover yields an objective value for (7) at least as small as that achieved by µ.
The former claim comes from observing that since η is radially symmetric, we have Law(RX1) =
Law(X1) = η, and Law(−RX1 × ∥X2∥/∥X1∥) is the law of a random vector with uniformly
random direction (given by −RX1/∥X1∥), and independent norm given by ∥X2∥, and so is again
distributed according to η. For the latter claim, note that we have

∥X1 −X2∥ ≤
∥∥∥∥X1 −

(
−X1

∥X2∥
∥X1∥

)∥∥∥∥ =

∥∥∥∥RX1 −
(
−RX1

∥X2∥
∥X1∥

)∥∥∥∥ ,
and so by the assumption of the theorem that K(x,y) is a decreasing function of ∥x− y∥, we have

K(X1, X2) ≥ K

(
RX1,−RX1

∥X2∥
∥X1∥

)
,

as required. We have therefore demonstrated that there exists an optimal coupling of X1, X2 ∼ η
for (7) such that the vectors X1 and X2 point in opposite directions almost surely.

To establish claim (ii), we note that in order for the coupling to be optimal, under the condition
of convexity of K, we must have ∥X2∥ decreasing monotonically as ∥X1∥ increases. It therefore
follows that the optimal coupling must of the form stated in the theorem.

Theorem 2.10. Let η ∈ P(Rd) be isotropic and let K : Rd × Rd → R be a stationary
isotropic kernel, such that K(x,y) = Φ(||x − y||2), where Φ is a decreasing, convex function.
If Law(X1, . . . , X2m), with m ≤ d, is a solution to the constrained optimal coupling problem

argmin
µ∈Λanti

2m(η)

EX1:2m∼µ

 2m∑
i,j=1

Φ
(
||Xi −Xj ||2

) ,
then it satisfies ⟨Xi, Xj⟩ = 0 a.s. for all 1 ≤ i < j ≤ m.

Proof. Because Xi = −Xi+m a.s., the objective function can be rewritten as follows:

2m∑
i,j=1

Φ
(
||Xi −Xj ||2

)
=

2m∑
i=1

Φ
(
||Xi −Xi||2

)
+ 2

2m−1∑
i=1

2m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
= 2mΦ(0) + 2

m−1∑
i=1

m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
+ 2

2m−1∑
i=m+1

2m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
+ 2

m∑
i=1

2m∑
j=m+1

Φ
(
||Xi −Xj ||2

)
= 2mΦ(0) + 4

m−1∑
i=1

m∑
j=i+1

Φ
(
||Xi −Xj ||2

)
+ 2

m∑
i,j=1

Φ
(
||Xi +Xj ||2

)
= 2mΦ(0) + 2

m∑
i=1

Φ
(
||2Xi||2

)
+ 4

∑
1≤i<j≤m

Φ
(
||Xi −Xj ||2

)
+Φ

(
||Xi +Xj ||2

)
.
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Hence it becomes equivalent to minimise with ||Xi|| fixed

E

 ∑
1≤i<j≤m

Φ
(
||Xi −Xj ||2

)
+Φ

(
||Xi +Xj ||2

)
= E

 ∑
1≤i<j≤m

Φ
(
||Xi||2 + ||Xj ||2 − 2⟨Xi, Xj⟩

)
+Φ

(
||Xi||2 + ||Xj ||2 + 2⟨Xi, Xj⟩

) . (8)

Using convexity note that

2Φ
(
||x||2 + ||y||2

)
= 2Φ

(
||x||2 + ||y||2 − 2⟨x,y⟩+ ||x||2 + ||y||2 + 2⟨x,y⟩

2

)
≤ Φ

(
||x||2 + ||y||2 − 2⟨x,y⟩

)
+Φ

(
||x||2 + ||y||2 + 2⟨x,y⟩

)
and equality is attained whenever ⟨x,y⟩ = 0. Therefore, the expectation in equation (8) is mini-
mized when ⟨Xi, Xj⟩ = 0 a.s. for 1 ≤ i < j ≤ m. This is a set of valid constraints as long as
d ≥ m. Also, if X1 ∼ η and the Xj’s are generated under η conditioned on being orthogonal to
X1, . . . , Xj−1 then Xj also has marginal η because drawing a uniform distribution conditional on
being orthogonal to a uniform axis results in a uniform direction. Hence any optimal coupling must
satisfy this condition.

10 Proofs of results in Section 3

For the reader’s convenience we restate our main result that we prove here.

Theorem 3.1. [Local discrepancy & regular distributions] Denote by Siid a set of independent
samples, each taken from a regular distribution λ and by Sort the set of orthogonal samples for that
distribution. Let s = |Siid| = |Sort|. Then for any fixed u ∈ [0, 1] and a ∈ R+ the following holds:
P[|disrFλ(Siid)(u)| > a] ≤ 2e−

sa2

8
def
= piid(a) and for some port satisfying port < piid it holds point-

wise: P[|disrFλ(Sort)(u)| > a] ≤ port(a) . Also: V ar(disrFλ(Sort)(u)) < V ar(disrFλ(Siid)(u)).

Proof. Consider a set of samples S = {X1, ..., X|S|} with elements of marginal distributions
Unif[0, 1]d. Denote s = |S|. Note that for any given u = (u1, . . . , ud) ∈ [0, 1]d we have:

E[disrS(u)] =
d∏
j=1

uj−
E[|{i : Xi ∈ Ju}|]

s
=

d∏
j=1

uj −
∑
i=1,...,s P[Xi ∈ Ju]

s

=

d∏
j=1

uj −
s ·Vol(Ju)

s
= 0

Thus we conclude that the expected value of disrS(u) is 0. Let η ∈ P(Rd) be some isotropic
distribution and denote by λ the distribution corresponding to the random variable X = z⊤g, where
z ∈ Rd is some fixed deterministic vector and g is sampled from η.

Now consider a set of samples Siid of the form: Siid = {z⊤giid
1 , ..., z⊤giid

s }, where random vectors
giid
1 , ...,giid

s are chosen independently from η. Similarly, consider a set of samples Sort of the form:
Sort = {z⊤gort

1 , ..., z⊤gort
s }, where the marginal distributions of the random vectors gort

1 , ...,gort
s

is η, but this time different gort
i are conditioned to be orthogonal.

For any given u ∈ [0, 1] we have the following:

disrψ(Siid)(u) = u−
∑
i∈S I[ψ(z

⊤giid
i ) < u]

s
,

where ψ def
= Fλ and I is an indicator random variable.
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Note that equivalently, we can rewrite disrψ(Siid)(u) as:

disrψ(Siid)(u) = u−
−
∑
i∈S I[ψ(z

⊤giid
i ) ≥ u] + s

s
= u− 1 +

−
∑
i∈S I[ψ(z

⊤giid
i ) ≥ u]

s
.

From our previous analysis and standard properties of the cdf we conclude that
∑

i∈S I[ψ(z
⊤giid

i )≥u]
s

is an unbiased estimator of u− 1.

Similarly, we obtain:

disrψ(Sort)(u) = u− 1 +
−
∑
i∈S I[ψ(z

⊤gort
i ) ≥ u]

s
.

Again, as before we note that
∑

i∈S I[ψ(z
⊤gort

i )≥u]
s is an unbiased estimator of u − 1 (since the

marginal distributions of the gorti are the same as those of the giidi ). Denote Y iid
i = I[ψ(z⊤giid

i ) ≥ u]
and Y ort

i = I[ψ(z⊤gort
i ) ≥ u]. Note that Y iid

i , Y ort
i ∈ {0, 1} for i = 1, . . . , s. Notice also that even

though the random variables (Y iid
i )si=1 are independent, this is not true of (Y ort

i )si=1.

We will use the following Cramer’s Theorem:

Theorem 10.1. Let Y1, ..., Ys be random variables. Denote: Ws =
Y1+...+Ys

s . Then P[Ws ≥ a] ≤
minθ>0

E[esθWs ]
esθa

.

Denote: Z iid
i = 1− Y iid

i and similarly: Zort
i = 1− Y ort

i . Denote: W iid
s =

Y iid
1 +...+Y iid

s

s , W iid,−
s =

Ziid
1 +...+Ziid

s

s and similarly: W ort
s =

Y ort
1 +...+Y ort

s

s , W ort,−
s =

Zort
1 +...+Zort

s

s . Note that for any
0 < c < 1:

P[|W iid
s − E[W iid

s ]| > c] = P[W iid
s > E[W iid

s ] + c] + P[W iid
s < E[W iid

s ]− c].

Denote: µ = E[W iid
s ]. We get:

P[|W iid
s − E[W iid

s ]| > c] = P[W iid
s > µ+ c] + P[W iid,−

s > µ− + c],

where µ− = 1− µ = E[W iid,−
s ].

Therefore, using Cramer’s Theorem, we get:

P[|W iid
s − E[W iid

s ]| > c] ≤ min
θ>0

E[esθW iid
s ]

esθa1
+min

θ>0

E[esθW iid,−
s ]

esθa2
,

where: a1 = µ + c and a2 = µ− + c. Thus, from independence and the fact that all Y iid
j have the

same distribution, we have:

P[|W iid
s − E[W iid

s ]| > c] ≤ min
θ>0

(E[eθY iid
1 ])s

esθa1
+min

θ>0

(E[eθZiid
1 ])s

esθa2
. (9)

Notice that: |disrψ(Siid)(u)| = |W iid
s − E[W iid

s ]|. Straightforward calculation of the RHS of Equa-
tion (9) leads to the upper bound on |disrψ(Siid)(u)| from Theorem 3.1.

Now notice, that by the same analysis as before, we get:

P[|W ort
s − E[W ort

s ]| > c] ≤ min
θ>0

E[esθW ort
s ]

esθa1
+min

θ>0

E[esθW ort,−
s ]

esθa2
.

Thus to complete the proof of Theorem 3.1, it suffices to show that: E[esθW ort
s ] < E[esθW iid

s ] and:
E[esθW ort,−

s ] < E[esθW iid,−
s ] for any θ > 0. We will show the first inequality. The proof of the

second inequality is completely analogous.
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Lemma 10.2. The following holds for any fixed θ > 0:

E[esθW
ort
s ] < E[esθW

iid
s ].

Proof. Notice first that:

E[esθW
ort
s ] = E[eθ

∑s
i=1 Y

ort
i ] =

∞∑
j=0

θj

j!

∑
j1+...+jk=j

∑
i1<...<ik

E[(Y ort
i1 )j1 ...(Y ort

ik
)jk ]

=

∞∑
j=0

θj

j!

∑
j1+...+jk=j

∑
i1<...<ik

E[Y ort
i1 ...Y ort

ik
],

where the sum over j1, ...jk is the sum over all partitioning of j into positive integers j1, ..., jk, the
sum over i1 < ... < ik is the sum over all increasing nonempty sequences (i1, ..., ik) such that
i1, ...ik ∈ {1, ..., s} (thus k ∈ {1, ..., s}) and furthermore the last equality is true since each Y ort

i is
an indicator random variable (note that the infinite sum above is well-defined since random variables
under consideration are indicators). Similarly,

E[esθW
iid
s ] = E[eθ

∑s
j=1 Y

iid
j ] =

∞∑
j=0

θj

j!

∑
j1+...+jk=j

∑
i1,...,ik

E[Y iid
i1 ...Y iid

ik
],

Thus, since θ > 0, it suffices to show that:

E[Y ort
i1 ...Y ort

ik
] < E[Y iid

i1 ...Y iid
ik

]

or equivalently:

P[Aort
i1 ∧ ... ∧ Aort

ik
] < P[Aiid

i1 ∧ ... ∧ Aiid
ik
],

where Aiid
i and Aort

i stand for events corresponding to indicators Y iid
i and Y ort

i respectively. For
clarity, we present the proof for the inequality above for k = 2, for k > 2 the analysis is analogous.
Notice also that the inequality for k = 2 immediately leads to the inequality regarding the variance
from the statement of the theorem.

Note that it suffices to show that for any t and any z ∈ Rd the following is true:

P[z⊤gort
i ≥ t ∧ z⊤gort

j ≥ t] < P[z⊤giid
i ≥ t ∧ z⊤giid

j ≥ t]

for i ̸= j.

Since t is arbitrary, we can assume without loss of generality that ∥z∥ = 1. Note that then the
following holds:

P[z⊤gort
i ≥ t ∧ z⊤gort

j ≥ t] = P

[
g1√

g21 + ...+ g2d
l1 ≥ t ∧ g2√

g21 + ...+ g2d
l2 ≥ t

]
,

where g = (g1, ..., gn)
⊤ is a multivariate Gaussian vector taken from a distribution N (0, Id) and

l1, l2 are taken independently from the distribution of the length of gort
i (or giid

i since the marginal
distributions of samples are the same). The last equality immediately follows from the fact that gort

i
are taken from the isotropic distribution.

We also have:

P[z⊤giid
i ≥ t ∧ z⊤giid

j ≥ t] = P[z⊤giid
i ≥ t]P[z⊤giid

j ≥ t]

= P

[
g1√

g21 + ...+ g2d
l1 ≥ t

]
· P

[
g2√

g21 + ...+ g2d
l2 ≥ t

]
,

where we use the independence assumption. Thus it suffices to show that:

P
[
g1 ≥ t

l1

√
g21 + ...+ g2d ∧ g2 ≥ t

l2

√
g21 + ...+ g2d

]
< P

[
g1 ≥ t

l1

√
g21 + ...+ g2d

]
· P
[
g2 ≥ t

l2

√
g21 + ...+ g2d

]
.
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Therefore we want to prove that:

P
[
g2 ≥ t

l2

√
g21 + ...+ g2d

∣∣∣∣g1 ≥ t

l1

√
g21 + ...+ g2d

]
< P

[
g2 ≥ t

l2

√
g21 + ...+ g2d

]
.

Note that: t
l1

, t
l2

, g1, g2 and g23 + ...+ g
2
d are independent random variables. Thus it suffices to show

that for any c > 0 and any a, b the following is true:

P
[
g2 ≥ b

√
g21 + g22 + c

∣∣∣∣g1 ≥ a
√
g21 + g22 + c

]
< P

[
g2 > b

√
g21 + g22 + c

]
.

Denote g+i = gi|gi > 0 and g−i = gi|gi < 0. We will prove the inequality above by conditioning
on four possible events" E1 = {g1, g2 > 0}, E2 = {g1, g2 < 0}, E3 = {g1 > 0, g2 < 0},
E4 = {g1 < 0, g2 > 0}. Consider all four cases, one can easily see that in order to prove the
inequality it suffices to prove the following: for any x, y:

P[(g+2 )
2 > x|(g+2 )2 ≤ y] < P[(g+2 )

2 > x],

and similarly:

P[(g+2 )
2 < x|(g+2 )2 ≥ y] < P[(g+2 )

2 < x].

We will prove the first inequality. The proof for the second one is completely analogous.

Denote: A1 = P[(g+2 )2 < x], A2 = P[x < (g+2 )
2 < y] and A3 = P[(g+2 )2 > y]. We want to prove

that: A2

A1+A2
< A2 + A3, which is trivially true since 0 < A1, A2, A3 < 1 and A1 + A2 + A3 = 1.

That completes the proof of Lemma 10.2.

As we have noticed, the proof of Lemma 10.2 completes the proof of Theorem 3.1.

10.1 From low discrepancy to low approximation error

As mentioned in the main body of the paper, sharper concentration results regarding local discrep-
ancies translate to sharper concentration results for the star discrepancy function D∗

η and ultimately
also to sharper results regarding approximation error of MC estimators. We show it in this section.

Define the error coming from the approximation Îf of If that uses the set of samples S as: ϵS(f) =
|If − Îf |.
The following theorem establishes the connection between the discrepancy of a sequence S used for
estimation and the above approximation error ϵS(f).
Theorem 10.3 (Koksma-Hlawka inequality). For any function f with bounded variation and a se-
quence S, the approximation error ϵS(f) satisfies:

ϵS(f) ≤ D∗
λ(S)VHK(f) = sup

u∈[0,1]d
|disrψ(S)(u)|VHK(f),

where VHK stands for the Hardy-Krause variation of f (Niederreiter, 1992) defined as follows:

VHK(f) =
∑

I⊂[d],I ̸=∅

∫
[0,1]d

∣∣∣∣ ∂f∂uI |uj=1,j /∈I

∣∣∣∣ duI .
and ψ = Fλ.

Thus we can conclude that sequences S of lower discrepancies lead to tighter upper bounds on the
approximation error of If .

The following is our main result of this section:
Theorem 10.4. For any N ∈ N, a > 1

N , set of samples S, λ ∈ P([0, 1]) and a function f of
bounded variation the following holds for ϵS(f) = |Îf − If |, where If = EX∼η[f(X)]:

P[ϵS(f) > a] ≤ Np

(
a− 1

N

)
VHK(f),
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if p is such that: P[|disrψ(S))(x)| > a] ≤ p(a) for any fixed x ∈ [0, 1]. In particular, if λ is a

regular distribution and if we take: a = log(|S|)
|S| and N =

2
√

|S|
log(|S|) , then we obtain: P[ϵSiid

(f) >

a] ≤ 4
√

|S|
log(|S|)e

− log2(|S|)
32 = neg(|S|), and for Siid replaced by Sort the bounds are even tighter. In

the above statement neg(|S|) is defined as neg(|S|) = 1
superpoly(|S|) and superpoly stands for some

superpolynomial function.

Proof. Let s = |S|. Consider D∗
λ(S) = supx∈[0,1] |disrψ(S)(x)| for some one-dimensional dis-

tribution λ. We partition interval [0, 1] into N subintervals: [xj , xj+1] of length 1
N each for

j = 0, ..., N − 1. Note that for a fixed a > 0:{
sup
x∈[0,1]

|disrψ(S)(x)| > a

}
=
{
∃x∗ ∈ [0, 1] : |disrψ(S)(x∗)| > a

}
.

Denote: Xx
j = I[sj < x], where sj is the jth sample from ψ(S). Assume that x∗ is in the

subinterval with endpoints: xj∗ and xj∗+1. Note that we have:

X
xj∗

1 + ...+X
xj∗
s

s
≤ Xx∗

1 + ...+Xx∗

s

s
≤ X

xj∗+1

1 + ...+X
xj∗+1
s

s

Thus we get:

disrψ(S)(x
∗) =

∣∣∣∣Xx∗

1 + ...+Xx∗

s

s
− x∗

∣∣∣∣ ≤ max(A,B),

where A =

∣∣∣∣Xxj∗
1 +...+X

xj∗
s

s − x∗
∣∣∣∣ and B =

∣∣∣∣Xxj∗+1
1 +...+X

xj∗+1
s

s − x∗
∣∣∣∣.

Therefore, using triangle inequality, we obtain:

{|disrψ(S)(x∗)| > a} ⊆ {|disrψ(S)(xj∗)|+ |x∗ − xj∗ | > a} ∪ {|disrψ(S)(xj∗+1)|+ |x∗ − xj∗+1| > a}.

Therefore we obtain:

{
sup
x∈[0,1]

|disrψ(S)(x)| > a

}
⊆
{
∃j : |disrψ(S)(xj)| > a− 1

N

}
.

Thus, by the union bound, we conclude that:

P

[{
sup
x∈[0,1]

|disrψ(S)(x)| > a

}]
≤

N∑
j=1

P
[{

|disrψ(S)(xj)| > a− 1

N

}]
.

The statement of Theorem 10.4 follows now from Koksma-Hlawka inequality, and Theorem 3.1.

11 Proofs of results in Section 4

11.1 Exponential concentration

In this section we present the proofs of the results in 4. For completeness we start by reviewing the
classical defnitions of sub-Gaussianity for random variables and random vectors.
Definition 11.1 (Sub-Gaussian Random Variables). A random variable X with mean µ = E[X] is
sub-Gaussian if there is a positive number σ such that:

E[eλ(X−µ)] ≤ eσ
2λ2/2 for all λ ∈ R.

22



A standard Gaussian random variable is sub-Gaussian with parameter σ equal to the said variable’s
standard deviation.
Lemma 11.2 (Concentration for sub-Gaussian random variables). LetX be a sub-Gaussian random
variable with parameter σ and mean µ. It satisfies the following concentration inequality:

P[X − µ ≥ t] ≤ e−
t2

2σ2 .

Paying a factor of 2 we can get an equivalent two sided bound for |X − µ| ≥ t.

The following alternative characterization of sub-Gaussianity will prove useful:
Lemma 11.3 (Alternative characterization of sub-Gaussianity ). A centered random variable X is
sub-Gaussian if there is a constant c and a Gaussian random variable Z ∼ N(0, τ2) such that:

P [|X| ≥ s] ≤ cP [|Z| ≥ s] , for all s ≥ 0.

Additionally, we can switch from the definition in 11.1 to the characterization in Lemma 11.3 in the
following way:

• If X is zero mean sub-Gaussian with parameter σ, then taking τ2 = 2σ2 and c =
√
8e is

enough for Lemma 11.3 to hold for X .
• If X is zero mean sub-Gaussian with sub-Gaussian parameters τ2 and c in Lemma 11.3,

then σ2 = 2c2τ2 is a valid sub-Gaussian parameter for for X , as in Definition 11.1.

The concept of sub-Gaussianity extends to vector valued random variables:
Definition 11.4 (Sub-Gaussian Vector). A random vectorX is sub-Gaussian with parameter at most
σ if for every v ∈ Sd−1 (where Sd−1 is the unit d−dimensional sphere.)

E
[
eλ⟨v,X⟩

]
≤ e

λ2σ2

2 for all λ ∈ R.

We will be using these facts heavily in the following sections.

The following facts will prove useful. For a detailed survey of these results consult (Boucheron et al.,
2013).

Fact 1 If X is sub-Gaussian with parameter σ, X + c is sub-Gaussian with parameter σ for all
c ∈ R.

Fact 2 If X1 and X2 are independent with parameters σ1, σ2 respectively, then X1 + X2 is sub-
Gaussian with parameter

√
σ2
1 + σ2

2 .
Fact 3 Even without assuming independence, if X1 and X2 are sub-Gaussian with parameters

σ1, σ2 respectively, then X1 +X2 is sub-Gaussian with parameter
√
2
√
σ2
1 + σ2

2 .

Fact 4 If X is sub-Gaussian with parameter σ2, cX is sub-Gaussian with parameter c2σ2.

We need the following result showing that the product of a sub-Gaussian random variable and a
bounded random variable is again sub-Gaussian.
Theorem 11.5 (Sub-Gaussian products). Let Y be a bounded random variable such that
Y ∈ [−R1, R2] for R1, R2 ≥ 0 with R1 + R2 = R for some constant R, and let X
be sub-Gaussian with parameter σ and mean µ. Then XY is sub-Gaussian with parameter√
2
√
2g(σ)2R2 + µ2R2/2 + σ2R2

1 where g(σ) = 24eσ.

Theorem 11.5 allows us to prove fast concentration rates for the vanilla ES estimator. We believe
this result is of independent interest, as it tackles a fundamental question regarding concentration of
products of sub-Gaussian variables.

Proof. The proof has two steps, we first show it holds for non-negative and discrete Y . Then we
generalize.

1 Case 1: Y only attains discrete values Y ∈ {0, 1} and X is zero mean.
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We will make use of lemma 11.3 to prove this result. Since X is mean zero and sub-Gaussian there
is τ2 and constant c such that:

P (|X| ≥ s) ≤ cP (|Z| ≥ s),

where Z ∼ N(0, τ2). In fact we can take τ2 = 2σ2, and c =
√
8e.

Let X ′ be an independent copy of X . By Fact 2, X − X ′ is sub-Gaussian with parameter
√
2σ.

SinceX−X ′ has mean zero by Lemma 11.3 we conclude there are constants τ1 such that τ21 = 4σ2

and c1 =
√
8e such that P (|X −X ′| ≥ s) ≤ c1P (|Z ′| ≥ s), where Z ′ ∼ N(0, τ21 ).

Let µXY denote the mean of XY . Let X ′ and Y ′ be independent copies of X and Y ′ respectively.
We proceed to invoke a symmetrization argument. We first show that in order to bound the MGF of
XY it is enough to bound the MGF of XY −X ′Y ′. For any λ ∈ R:

E
[
eλ(XY−µXY )

]
= E

[
eλ(XY−E[X′Y ′])

]
≤ E

[
eλ(XY−X′Y ′)

]
.

The inequality follows from Jensen’s inequality. This means that sub-Gaussianity of XY − X ′Y ′

implies sub-Gaussianity of XY − µXY .

We will show sub-Gaussianity of XY − X ′Y ′. Since Y and Y ′ only take values in {0, 1} we can
write:

|XY −X ′Y ′| =


|X −X ′| if Y = 1, Y ′ = 1,

|X| if Y = 1, Y ′ = 0,

|X ′| if Y = 0, Y ′ = 1,

0 o.w.

Let s > 0. By the union bound:

P(|XY −X ′Y ′| ≥ s) ≤ P(|X −X ′| ≥ s) + P(|X| ≥ s) + P(|X ′| ≥ s).

By sub-Gaussianity of X and X ′ −X and using their Gaussian tail bounds:

P(|XY −X ′Y ′| ≥ s) ≤ c1P(|Z ′| ≥ s) + 2cP(|Z| ≥ s),

where Z ∼ N(0, τ2) and Z ′ ∼ N(0, τ21 ).

Let τ2 = max(τ, τ1) and c2 = 3max(c, c1, 1). Let c2 = 3
√
8e and τ22 = 4σ2. We conclude that for

all s ≥ 0:

P(|XY −X ′Y ′| ≥ s) ≤ c2P(|Z ′′| ≥ s),

where Z ′′ ∼ N(0, τ22 ). The inequality also holds for s = 0 since we have ensured c2 ≥ 1. By the
series of observations right below Lemma 11.3, this implies thatXY is sub-Gaussian with parameter√
2c3τ2 =

√
2 ∗ 3 ∗

√
8 ∗ e ∗ 2 ∗ σ = 24eσ

def
= g(σ).

1 Case 2: X centered, Y ≥ 0 and supported on a finite set a1 < a2 < · · · < am.

Denote by µXY the mean of XY . In order to show XY is sub-Gaussian we have to bound its MGF
E
[
eλ(XY−µXY )

]
. For i ≥ 1 letXi = X1(Y ≤ ai). Define a0 = 0 thenXY =

∑n
i=1Xi(ai−ai−1)
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and therefore E [XY ] =
∑n
i=1(ai − ai−1)E[Xi]. Notice that

∑n
i=1 ai − ai−1 = an − a0. Let

pi =
an−a0
ai−ai−1

. Let σ be the sub-Gaussianity parameter of X .

E
[
eλ(XY−µXY )

]
= E

[
e
∑n

i=1 λ(ai−ai−1)(Xi−E[Xi])
]

≤
∏
i

E

[(
eλ(ai−ai−1)(Xi−E[Xi])

) an−a0
ai−ai−1

] ai−ai−1
an−a0

=
∏
i

E
[
eλ(an−a0)(Xi−E[Xi])

] ai−ai−1
an−a0

≤
∏
i

(
e

λ2(an−a0)2g(σ)2

2

) ai−ai−1
an−a0

= e
λ2g(σ)2(an−a0)2

2 ,

where g(σ) is defined as in Case 1. The first inequality follows by Hölder’s inequality with pa-
rameters pi. The second inequality follows from the sub-Gaussianity bound from Case 1 since
Xi = X1(Y ≤ ai).

2 Case 2. Y is non-negative but not necessarily discrete. X has mean zero.

Assume Y ∈ [0, R]. If Y ≥ 0 there is a sequence of simple random variables (all of which are
discrete) Yn with Yn → Y almost surely. Furthermore, all Yn ∈ [0, R], so that the maximal element
in the domain of Yn is at most R.

For any λ ∈ R the previous observation implies λXYn → λXY almost surely. Let f1(x, y) =
|λRX|. Since |X| is integrable, E [f1(X)] < ∞. Notice that pointwise |λXYn| ≤ f1(X,Y ). By
the dominated convergence theorem (Halmos, 2013) we can conclude E [λXYn]

n→∞−−−−→ E [λXY ].
By continuity of the exponential function h(x) = ex this also implies eE[λXYn] n→∞−−−−→ eE[λXY ].

The random variables eλXYn converge to eλXY almost surely. The function f2(x, y) = ef1(x,y)

satisfies:

1. |eλXYn | = eλXYn ≤ f2(X,Y ) pointwise.

2. E [f2(X,Y )] < ∞. Indeed: E [f2(X,Y )] ≤ E[eλRX ] + E
[
e−λRX

]
≤ 2eλ

2R2σ2/2 < ∞.
The first inequality holds by nonnegativity of the exponential function and because for
any point x, one of λRx or −λRx equals |λRx|. The second inequality holds by sub-
Gaussianity of X .

By the dominated convergence theorem again we conclude that E
[
eλXYn

]
→ E

[
eλXY

]
. Since by

Case 2, E
[
eλXYn

]
≤ eλ

2g(σ)2R2/2 we conclude E
[
eλXYn

]
≤ eλ

2g(σ)2R2/2.

Case 3 X has mean µ and Y ∈ [−R1, R2] can attain negative values.

Define R := R1 + R2 and let −R1 be the smallest element in the support of Y . Let Y1 = Y + R1

and X1 = X − µ. Notice Y1 ∈ [0, R] and X1 has mean zero and sub-Gaussianity parameter σ, like
X . By Case 3 we conclude X1Y1 is sub-Gaussian with parameter g(σ)R.

Since Y is bounded, Y is sub-Gaussian with parameterR/2, (see Boucheron et al., 2013). Therefore
µY is sub-Gaussian with parameter |µ|R/2.

Since X is sub-Gaussian with parameter σ, R1X is sub-Gaussian with parameter σR1.

Notice that X1Y1 = XY +R1X − µY −R1µ. Therefore:
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1. X1Y1 + R1µ is sub-Gaussian with parameter g(σ)R since it is the translate of a g(σ)R
sub-Gaussian random variable.

2. X1Y1 +R1µ+ µY is sub-Gaussian with parameter
√
2
√
g(σ)2R2 + µ2R2/4 by Fact 3.

3. X1Y1 +R1µ+ µY −R1X = XY is sub-Gaussian with parameter

√
2
√
2(g(σ)2R2 + µ2R2/4) + σ2R2

1 =
√
2
√
2g(σ)2R2 + µ2R2/2 + σ2R2

1.

This shows thatXY is sub-Gaussian with parameter
√
2
√

2g(σ)2R2 + µ2R2/2 + σ2R2
1 which con-

cludes the proof.

11.2 The vanilla ES estimator

In this section we focus on proving Theorem 4.1. Recall that given F : Θ → R, the Vanilla ES
estimator is defined as:

∇̂V
NFσ(θ) =

1

Nσ

N∑
i=1

F (θ + σϵi)ϵi,

where ϵi ∼ N (0, I) are all i.i.d. and σ is the variance of the length of the sensing direction.

In what follows we assume that F is uniformly bounded over its domain by F . If F is a sum of
discounted rewards, an upper bound of R for the reward function yields an upper bound of 1

1−γR
for F , where γ is the discount factor.

We show that whenever F is bounded in absolute value the random vector ∇̂V
NFσ(θ) is sub-

Gaussian.

Theorem 11.6. If F is a bounded function such that |F | ≤ R1, the vanilla ES estimator is a sub-
Gaussian vector with parameter

√
2R1

√
8c2+1√

Nσ
for c = 24e.

Proof. Let v ∈ Sd−1 be an arbitrary d−dimensional unit vector. We start by showing sub-
Gaussianity of the vector F (θ + σϵ)ϵ.

Notice that ⟨v, F (θ + σϵ)ϵ⟩ = F (θ + σϵ)⟨ϵ, v⟩. Since linear combinations of jointly Gaussian
random variables are Gaussian, and ||v|| = 1, the random variable ⟨ϵ, v⟩ is a N (0, 1) Gaussian
random variable and therefore ⟨ϵ, v⟩ is 1-sub-Gaussian.

By Theorem 11.5, since F is assumed to be in the range [−R1, R1], it follows that ⟨v, F (θ+ ϵ)ϵ⟩ is√
2R1

√
8c2 + 1 sub-Gaussian, where c = g(1).

By noting that each ϵi is independent from all others, we can obtain that ⟨v, ∇̂V
NFσ(θ)⟩ is

√
2R1

√
8g(1)2+1√
Nσ

sub-Gaussian. Since v was arbitrary this concludes the proof.

Corollary 11.7 (Exponential Concentration for the Vanilla ES estimator). If F is a bounded function
such that |F | ≤ R1:

P
(

max
j=1,··· ,d

∣∣∣∣(∇̂V
NFσ(θ)

)
j
−
(
E
[
∇̂V
NFσ(θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

2R2
1(8g(1)2+1)

For any t ≥ 0.

The combination of Theorem 11.6 and Corollary 11.7 conclude the proof of Theorem 4.1.
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11.3 Orthogonal Bounds

In this section we prove Theorem 4.3. We prove concentration bounds for orthogonal gradient
estimators of the form:

∇̂Ort
d F (θ) =

1

dσ

d∑
i=1

νibiF (θ + σνibi) ,

where the random vectors νi ∈ Sd−1 are in the unit sphere and are sampled uniformly from the unit
sphere using a sequentially orthogonal process, the function F is bounded supx |F (x)| ≤ R < ∞,
and bi are zero mean signed lengths, sampled from sub-Gaussian distributions each with parameter
βi and independent from each other and from all other sources of randomness.
Theorem 11.8. Let B = maxi E [|bi|], β = maxi βi, |F | ≤ R, the orthogonal gradient estimator

∇̂Ort
d F (θ) is sub-Gaussian with parameter

√
β2c2R2

σ2d2 + R2B2

4σ2d . Where c = 2
√

(24e)2 + 1
2 , and

ln(e) = 1.

Proof. We start by lumping in 1
σ with F so that |F |/σ ≤ R/σ. We proceed with the proof, and at

the end subsitute R by R/σ.

In order to show the concentration of the random vector ∇̂Ort
d F (θ), it is enough to show that for any

fixed u ∈ Sd−1, ⟨u, ∇̂Ort
d F (θ)⟩ is a sub-Gaussian random variable.

Given u ∈ Sd−1, define αi = ⟨u, νi⟩. Notice that
∑d
i=1 α

2
i = 1 and that:

⟨u, d∇̂Ort
d F (θ)⟩ =

d∑
i=1

αibiF (θ + σ2νibi)

We wish to control:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

.

We start by decomposing the MGF above as follows:

E

[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]+

E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]− E

[
⟨u, d∇̂Ort

d F (θ)⟩
] ))]

.

And first bounding the conditional MGF:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]))∣∣∣ν1, · · · , νd] .

Notice that conditional on ν1, · · · , νd, the sum ⟨u, ∇̂Ort
d F (θ)⟩ =

∑
i=1 αibiF (θ + σ2νibi) is made

of d (conditionally) independent random variables {αibiF (θ + σ2νibi)}di=1, and therefore, by The-
orem 11.5 and Fact 2, the conditional MGF is bounded by:

e
λ2

2

∑d
i=1 α

2
iβ

2
i c

2R2

.
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For c = maxi

√
2
√

2g(βi)2+E[bi]2/2+β2
i

βi
derived from applying Theorem 11.5 to this case, where βi

are the sub-Gaussian parameters of the random variables bi. Since
∑d
i=1 α

2
i = 1 the bound reduces

to:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]))∣∣∣ν1, · · · , νd] ≤ e

λ2

2 β
2c2R2

,

where β is an uppper bound to βi for all i. Notice that this bound has no dependence on dimension.

To provide a bound for the MGF:

E
[
exp

(
λ
(
E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd]− E

[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

.

The random variable:

E
[
⟨u, d∇̂Ort

d F (θ)⟩
∣∣∣ν1, · · · , νd] = d∑

i=1

E [αibif(θ + σνibi)|ν1, · · · , νd]

=

d∑
i=1

αiE [bif(θ + σνibi)|ν1, · · · , νd]

is bounded. Indeed by Hölder:

∣∣∣∣∣
d∑
i=1

αiE [bif(θ + σνibi)|ν1, · · · , νd]

∣∣∣∣∣ ≤ RB∥α∥1,

where E [|bi|] ≤ B, ∀i and α ∈ Rd with α ∈ Sd−1. The later implies ∥α∥1 ≤
√
d. And R is a

uniform upper bound for f .

The previous observations imply in turn that this random variable is bounded by RB
√
d, and there-

fore that it is sub-Gaussian because it is bounded (Boucheron et al., 2013). Therefore:

E
[
exp

(
λ
(
E
[
⟨u, d∇̂Ort

d F (θ)⟩|ν1, · · · , νd
]
− E

[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

≤ exp

(
λ2R2B2d

8

)
.

Plugging these two bounds together:

E
[
exp

(
λ
(
⟨u, d∇̂Ort

d F (θ)⟩ − E
[
⟨u, d∇̂Ort

d F (θ)⟩
]))]

≤ e
4λ2β2c2R2+λ2R2B2d

8 .

As a consequence:

E
[
exp

(
λ
(
⟨u, ∇̂Ort

d F (θ)⟩ − E
[
⟨u, ∇̂Ort

d F (θ)⟩
]))]

≤ e
λ2β2c2R2

2d2
+λ2R2B2

8d .

With c = maxi
√
2
√
2 ∗ g(βi)2 + E[bi]2/2 + β2

i with g the function defined in Theorem 11.5.

Assuming N = Td and therefore availability of T i.i.d. orthogonal estimators (indexed by j) define:

∇̂Ort
N F (θ) =

1

T

T∑
j=1

∇̂Ort,j
d F (θ).

The following corollary is immediate:
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Corollary 11.9. The gradient estimator ∇̂Ort
N F (θ) is sub-Gaussian with parameter

1√
T

√
β2c2R2

d2σ2 + R2B2

4σ2d = 1√
N

√
β2c2R2

dσ2 + R2B2

4σ2 .

And therefore:

Corollary 11.10. The orthogonal gradient estimator ∇̂Ort
N F (θ) satisfies the following concentration

inequality:

P
(

max
j=1,···d

∣∣∣∣(∇̂Ort
N F (θ)

)
j
−
(
E
[
∇̂Ort
N F (θ)

])
j

∣∣∣∣ ≥ t

)
≤ 2de

−t2Nσ2

β2c2R2

d
+R2B2

4 .

This argument finalizes the proof of Theorem 4.3. Whenever the lengths of the scalings B, βi are
of order O(1), we recover a concentration rate of order O(d exp(−t2N)), which is comparable to
the rate for the vanilla estimator. The analysis of orthogonal estimators is substantially harder than
in the vanilla case due to the non i.i.d nature of the sampling process. This is to our knowledge the
first result of its type.

12 Experiments: further details for variational autoencoder implementation

In this section, we give further details on the setup of the variational autoencoder experiments on
MNIST appearing in Section 5.2 of the main paper.

12.1 Architectures

We use a 64-dimensional N(0, I) distribution for the prior over the latent state z. The generative
model pθ(x|z) is specified by a fully-connected neural network with 64 input units and two hidden
layers of 500 units. The hidden unit activation functions are ReLUs, and the final layer activations
are sigmoids. A Bernoulli likelihood is used to train the output of the network. Here, θ represents
the trainable parameters of the network. The recognition model qϕ(z|x) is also given by a fully con-
nected neural network with two hidden layers of 500 units. The hidden layer activation functions are
ReLUs, and the final layer is linear, outputting a mean vector µϕ(x) and a log-standard deviation vec-
tor log(σϕ(x)), which parametrise an approximate factorised Gaussian posterior N(µϕ(x), σ

2
ϕ(x))

for the latent encoding given x. Here, ϕ are the trainable parameters of the network. We initialise
all weights of the networks using the normalised initialisation of (Glorot and Bengio, 2010), and
initialise biases to 0.

12.2 Results

Table 1: Train and test ELBO achieved with various sampling algorithms. iid refers to independently
sampled directions, in contrast to ort, which refers to orthogonally constrained directions as in Al-
gorithm 2. anti-eq corresponds to antithetic pairs of samples with matching norms (as in Algorithm
2, and anti-inv corresponds to antithetic pairs with norm couplings as in Algorithm 1.

m = 2

iid iid-anti-eq iid-anti-inv ort ort-anti-eq ort-anti-inv

Train -99.59 -98.60 -98.64 -99.30 -98.56 -98.47

Test -99.96 -99.02 -99.05 -99.69 -98.97 -98.94

m = 8

iid iid-anti-eq iid-anti-inv ort ort-anti-eq ort-anti-inv

Train -98.88 -98.48 -98.55 -98.79 -98.41 -98.50

Test -99.26 -98.92 -98.98 -99.24 -98.89 -98.95
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We train on minibatches of 50 images, and use the Adam optimiser with a learning rate of 10−4,
and all other parameters set to default settings; the learning rate was softly optimized for the per-
formance of the i.i.d. method. It is thus possible that with further hyperparameter tuning for each
individual sampling method, further improvements in performance may be observed for GCMC
sampling schemes; intuitively, we might expect that the variance reduction in stochastic gradients
that GCMC methods achieve would allow a larger learning rate to be used. We report average test
and train log-likelihood after 50 epochs of training, to assess the impact of the considered sampling
schemes on the speed of learning for the model. We summarize full results for a variety of sampling
methods in Table 1. We note that GCMC methods always improve speed of training relative to i.i.d.,
and in general the most substantial improvement combines some variant of antithetic sampling with
orthogonality constraints.

13 Experiments: Learning efficient navigation policies with ES strategies

In this section we give additional information on the ES gradient estimators described in Section
5.1,as well as a description of the video library that we attach to the paper, and additional experi-
mental results.

13.1 Estimator specification

The vanilla ES gradient estimator is given by

∇̂V
NFσ(θ) =

1

Nσ

N∑
i=1

F (θ + σϵi)ϵi, where ϵi ∼ N (0, I) are all i.i.d. .

We consider three variants of control variates: forward finite-difference, in which the estimator is
given by

1

Nσ

N∑
i=1

(F (θ + σϵi)− F (θ))ϵi ,

antithetic, in which the estimator is given by

1

2Nσ

N∑
i=1

(F (θ + σϵi)− F (θ − σϵi))ϵi ,

and antithetic-coupled, in which the estimator is given by

1

2Nσ

N∑
i=1

(F (θ + σϵi)ϵi + F (θ + σϵ′i)ϵ
′
i − F (θ)(ϵi + ϵ′i)) ,

where εi and ε′i are coupled as in Algorithm 1. Note the additional term dependent on F (θ) ap-
pearing in the antithetic− coupled estimator, in order to cancel the zeroth order term in the Taylor
expansion of the above objective.

13.2 Video library

We attach to the paper a collection of videos showing how policies learned with different tested MC
algorithms work in a simulator. Each file is in a .webm format and its name is using the following
template: sensing_mechanism-control_variate-samples_number, where: sensing_mechanism stands
for the sampling strategy and is chosen from the set: {MCGaussian, MCGaussianOrthogonal,
MCRandomHadamard}, control_variate-samples_number stands for the type of the control variate
term used and is chosen from the set: {vanilla, forward finite-difference, antithetic and antithetic-
coupled} and finally: samples_number stands for the number of samples used in the MC algorithm
at each iteration of the optimization routine to approximate current gradient vector. These videos
serve to illustrate the types of policies learnt under the variety of sampling mechanisms considered
in Section 5.1.
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13.3 RL experiments: additional results

We present here the results of all experiments conducted to learn good quality naviga-
tion policies for the Minitaur platform for the following sampling strategies: MCGaussian,
MCGaussianOrthogonal, MCRandomHadamard, the following control variate terms: vanilla,
forward finite-difference, antithetic and the following number of samples: m = 8, 48, 96.

(a) MCGaussian-antithetic-48 (b) MCGaussian-antithetic-96

(c) MCGaussian-forward_fd-8 (d) MCGaussian-forward_fd-48

(e) MCGaussian-forward_fd-96 (f) MCGaussian-vanilla-8

Figure 3: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCGaussian-vanilla-48 (b) MCGaussian-vanilla-96

(c) MCGaussianOrthogonal-antithetic-16 (d) MCGaussianOrthogonal-antithetic-32

(e) MCGaussianOrthogonal-antithetic-48 (f) MCGaussianOrthogonal-antithetic-64

Figure 4: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCGaussianOrthogonal-antithetic-96 (b) MCGaussianOrthogonal-forward_fd-8

(c) MCGaussianOrthogonal-forward_fd-48 (d) MCGaussianOrthogonal-forward_fd-96

(e) MCGaussianOrthogonal-vanilla-8 (f) MCGaussianOrthogonal-vanilla-48

Figure 5: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCGaussianOrthogonal-vanilla-96 (b) MCRandomHadamard-vanilla-8

(c) MCRandomHadamard-vanilla-48 (d) MCRandomHadamard-vanilla-96

(e) MCRandomHadamard-forward_fd-8 (f) MCRandomHadamard-forward_fd-48

Figure 6: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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(a) MCRandomHadamard-forward_fd-96 (b) MCRandomHadamard-antithetic-8

(c) MCRandomHadamard-antithetic-48 (d) MCRandomHadamard-antithetic-96

Figure 7: Additional experimental results showing training curves for different MC algorithms.
Naming is borrowed from the video library section.
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